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Preface

The Pythia program is frequently used for event generation in high-energy physics. The

emphasis is on multiparticle production in collisions between elementary particles. This in

particular means hard interactions in e+e−, pp and ep colliders, although also other appli-

cations are envisaged. The program is intended to generate complete events, in as much

detail as experimentally observable ones, within the bounds of our current understanding

of the underlying physics. Many of the components of the program represent original re-

search, in the sense that models have been developed and implemented for a number of

aspects not covered by standard theory.

Event generators often have a reputation for being ‘black boxes’; if nothing else, this

report should provide you with a glimpse of what goes on inside the program. Some such

understanding may be of special interest for new users, who have no background in the

field. An attempt has been made to structure the report sufficiently well so that many

of the sections can be read independently of each other, so you can pick the sections that

interest you. We have tried to keep together the physics and the manual sections on specific

topics, where practicable.

A large number of persons should be thanked for their contributions. Bo Andersson and

Gösta Gustafson are the originators of the Lund model, and strongly influenced the early

development of related programs. (Begun with Jetset in 1978, now fused with Pythia.)

Hans-Uno Bengtsson is the originator of the Pythia program. Mats Bengtsson is the

main author of the old final-state parton-shower algorithm. Patrik Edén has contributed

an improved popcorn scenario for baryon production. Maria van Zijl has helped develop

the original multiple-interactions scenarios, Christer Friberg the expanded photon physics

machinery, Emanuel Norrbin the new matrix-element matching of the final-state parton

shower algorithm and the handling of low-mass strings, Leif Lönnblad the Bose-Einstein

models, and Gabriela Miu the matching of initial-state showers. Stefan Wolf provided an

implementation of onium production in NRQCD.

Further bug reports, smaller pieces of code and general comments on the program have

been obtained from users too numerous to be mentioned here, but who are all gratefully

acknowledged. To write programs of this size and complexity would be impossible without

a strong support and user feedback. So, if you find errors, please let us know.

The moral responsibility for any remaining errors clearly rests with the authors. How-

ever, kindly note that this is a ‘University World’ product, distributed ‘as is’, free of charge,

without any binding guarantees. And always remember that the program does not repre-

sent a dead collection of established truths, but rather one of many possible approaches to

the problem of multiparticle production in high-energy physics, at the frontline of current

research. Be critical!
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1. Introduction

Multiparticle production is the most characteristic feature of current high-energy physics.

Today, observed particle multiplicities are typically between ten and a hundred, and with

future machines this range will be extended upward. The bulk of the multiplicity is found

in jets, i.e. in collimated bunches of hadrons (or decay products of hadrons) produced

by the hadronization of partons, i.e. quarks and gluons. (For some applications it will be

convenient to extend the parton concept also to some non-coloured but showering particles,

such as electrons and photons.)

1.1 The complexity of high-energy processes

To first approximation, all processes have a simple structure at the level of interactions

between the fundamental objects of nature, i.e. quarks, leptons and gauge bosons. For

instance, a lot can be understood about the structure of hadronic events at LEP just from

the ‘skeleton’ process e+e− → Z0 → qq. Corrections to this picture can be subdivided,

arbitrarily but conveniently, into three main classes.

Firstly, there are bremsstrahlung-type modifications, i.e. the emission of additional

final-state particles by branchings such as e → eγ or q → qg. Because of the largeness of

the strong coupling constant αs, and because of the presence of the triple gluon vertex,

QCD emission off quarks and gluons is especially prolific. We therefore speak about ‘parton

showers’, wherein a single initial parton may give rise to a whole bunch of partons in the

final state. Also photon emission may give sizable effects in e+e− and ep processes. The

bulk of the bremsstrahlung corrections are universal, i.e. do not depend on the details of the

process studied, but only on one or a few key numbers, such as the momentum transfer scale

of the process. Such universal corrections may be included to arbitrarily high orders, using

a probabilistic language. Alternatively, exact calculations of bremsstrahlung corrections

may be carried out order by order in perturbation theory, but rapidly the calculations then

become prohibitively complicated and the answers correspondingly lengthy.

Secondly, we have ‘true’ higher-order corrections, which involve a combination of loop

graphs and the soft parts of the bremsstrahlung graphs above, a combination needed to

cancel some divergences. In a complete description it is therefore not possible to consider

bremsstrahlung separately, as assumed here. The necessary perturbative calculations are

usually very difficult; only rarely have results been presented that include more than one

non-‘trivial’ order, i.e. more than one loop. As above, answers are usually very lengthy, but

some results are sufficiently simple to be generally known and used, such as the running

of αs, or the correction factor 1 + αs/π + · · · in the partial widths of Z0 → qq decay

channels. For high-precision studies it is imperative to take into account the results of

loop calculations, but usually effects are minor for the qualitative aspects of high-energy

processes.

Thirdly, quarks and gluons are confined. In the two points above, we have used a

perturbative language to describe the short-distance interactions of quarks, leptons and

gauge bosons. For leptons and colourless bosons this language is sufficient. However, for

quarks and gluons it must be complemented with the structure of incoming hadrons, and

– 9 –
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a picture for the hadronization process, wherein the coloured partons are transformed into

jets of colourless hadrons, photons and leptons. The hadronization can be further sub-

divided into fragmentation and decays, where the former describes the way the creation

of new quark-antiquark pairs can break up a high-mass system into lower-mass ones, ul-

timately hadrons. (The word ‘fragmentation’ is also sometimes used in a broader sense,

but we will here use it with this specific meaning.) This process is still not yet understood

from first principles, but has to be based on models. In one sense, hadronization effects

are overwhelmingly large, since this is where the bulk of the multiplicity comes from. In

another sense, the overall energy flow of a high-energy event is mainly determined by the

perturbative processes, with only a minor additional smearing caused by the hadronization

step. One may therefore pick different levels of ambition, but in general detailed studies

require a detailed modelling of the hadronization process.

The simple structure that we started out with has now become considerably more

complex — instead of maybe two final-state partons we have a hundred final particles.

The original physics is not gone, but the skeleton process has been dressed up and is no

longer directly visible. A direct comparison between theory and experiment is therefore

complicated at best, and impossible at worst.

1.2 Event generators

It is here that event generators come to the rescue. In an event generator, the objective

striven for is to use computers to generate events as detailed as could be observed by a per-

fect detector. This is not done in one step, but rather by ‘factorizing’ the full problem into

a number of components, each of which can be handled reasonably accurately. Basically,

this means that the hard process is used as input to generate bremsstrahlung corrections,

and that the result of this exercise is thereafter left to hadronize. This sounds a bit easier

than it really is — else this report would be a lot thinner. However, the basic idea is there:

if the full problem is too complicated to be solved in one go, it may be possible to subdivide

it into smaller tasks of more manageable proportions. In the actual generation procedure,

most steps therefore involve the branching of one object into two, or at least into a very

small number, with the daughters free to branch in their turn. A lot of book-keeping is

involved, but much is of a repetitive nature, and can therefore be left for the computer to

handle.

As the name indicates, the output of an event generator should be in the form of

‘events’, with the same average behaviour and the same fluctuations as real data. In

the data, fluctuations arise from the quantum mechanics of the underlying theory. In

generators, Monte Carlo techniques are used to select all relevant variables according to the

desired probability distributions, and thereby ensure (quasi-)randomness in the final events.

Clearly some loss of information is entailed: quantum mechanics is based on amplitudes,

not probabilities. However, only very rarely do (known) interference phenomena appear

that cannot be cast in a probabilistic language. This is therefore not a more restraining

approximation than many others.

Once there, an event generator can be used in many different ways. The five main

applications are probably the following:

– 10 –
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• To give physicists a feeling for the kind of events one may expect/hope to find, and

at what rates.

• As a help in the planning of a new detector, so that detector performance is optimized,

within other constraints, for the study of interesting physics scenarios.

• As a tool for devising the analysis strategies that should be used on real data, so that

signal-to-background conditions are optimized.

• As a method for estimating detector acceptance corrections that have to be applied

to raw data, in order to extract the ‘true’ physics signal.

• As a convenient framework within which to interpret the observed phenomena in

terms of a more fundamental underlying theory (usually the Standard Model).

Where does a generator fit into the overall analysis chain of an experiment? In ‘real

life’, the machine produces interactions. These events are observed by detectors, and the

interesting ones are written to tape by the data acquisition system. Afterward the events

may be reconstructed, i.e. the electronics signals (from wire chambers, calorimeters, and

all the rest) may be translated into a deduced setup of charged tracks or neutral energy de-

positions, in the best of worlds with full knowledge of momenta and particle species. Based

on this cleaned-up information, one may proceed with the physics analysis. In the Monte

Carlo world, the rôle of the machine, namely to produce events, is taken by the event gener-

ators described in this report. The behaviour of the detectors — how particles produced by

the event generator traverse the detector, spiral in magnetic fields, shower in calorimeters,

or sneak out through cracks, etc. — is simulated in programs such as Geant [Bru89]. Be

warned that this latter activity is sometimes called event simulation, which is somewhat

unfortunate since the same words could equally well be applied to what, here, we call event

generation. A more appropriate term is detector simulation. Ideally, the output of this

simulation has exactly the same format as the real data recorded by the detector, and can

therefore be put through the same event reconstruction and physics analysis chain, except

that here we know what the ‘right answer’ should be, and so can see how well we are doing.

Since the full chain of detector simulation and event reconstruction is very time-

consuming, one often does ‘quick and dirty’ studies in which these steps are skipped entirely,

or at least replaced by very simplified procedures which only take into account the geo-

metric acceptance of the detector and other trivial effects. One may then use the output

of the event generator directly in the physics studies.

There are still many holes in our understanding of the full event structure, despite an

impressive amount of work and detailed calculations. To put together a generator therefore

involves making a choice on what to include, and how to include it. At best, the spread

between generators can be used to give some impression of the uncertainties involved. A

multitude of approximations will be discussed in the main part of this report, but already

here is should be noted that many major approximations are related to the almost complete

neglect of non-‘trivial’ higher-order effects, as already mentioned. It can therefore only be

hoped that the ‘trivial’ higher order parts give the bulk of the experimental behaviour. By

and large, this seems to be the case; for e+e− annihilation it even turns out to be a very

good approximation.

– 11 –
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The necessity to make compromises has one major implication: to write a good event

generator is an art, not an exact science. It is therefore essential not to blindly trust the

results of any single event generator, but always to make several cross-checks. In addition,

with computer programs of tens of thousands of lines, the question is not whether bugs

exist, but how many there are, and how critical their positions. Further, an event generator

cannot be thought of as all-powerful, or able to give intelligent answers to ill-posed ques-

tions; sound judgement and some understanding of a generator are necessary prerequisites

for successful use. In spite of these limitations, the event-generator approach is the most

powerful tool at our disposal if we wish to gain a detailed and realistic understanding of

physics at current or future high-energy colliders.

1.3 The origins of the current program

Over the years, many event generators have appeared. A recent comprehensive overview

is the Les Houches guidebook to Monte Carlo event generators [Dob04]. Surveys

of generators for e+e− physics in general and LEP in particular may be found in

[Kle89, Sjo89, Kno96, Lon96, Bam00], for high-energy hadron-hadron (pp) physics in

[Ans90, Sjo92, Kno93, LHC00], and for ep physics in [HER92, HER99]. We refer the

reader to those for additional details and references. In this particular report, the two

closely connected programs Jetset and Pythia, now merged under the Pythia label,

will be described.

Jetset has its roots in the efforts of the Lund group to understand the hadronization

process, starting in the late seventies [And83]. The so-called string fragmentation model

was developed as an explicit and detailed framework, within which the long-range confine-

ment forces are allowed to distribute the energies and flavours of a parton configuration

among a collection of primary hadrons, which subsequently may decay further. This model,

known as the Lund string model, or ‘Lund’ for short, contained a number of specific pre-

dictions, which were confirmed by data from e+e− annihilation around 30 GeV at PETRA

and PEP, whence the model gained a widespread acceptance. The Lund string model is

still today the most elaborate and widely used fragmentation model at our disposal. It

remains at the heart of the Pythia program.

In order to predict the shape of events at PETRA/PEP, and to study the fragmentation

process in detail, it was necessary to start out from the partonic configurations that were to

fragment. The generation of complete e+e− hadronic events was therefore added, originally

based on simple γ exchange and first-order QCD matrix elements, later extended to full

γ∗/Z0 exchange with first-order initial-state QED radiation and second-order QCD matrix

elements. A number of utility routines were also provided early on, for everything from

event listing to jet finding.

By the mid-eighties it was clear that the pure matrix-element approach had reached

the limit of its usefulness, in the sense that it could not fully describe the exclusive multijet

topologies of the data. (It is still useful for inclusive descriptions, like the optimized pertur-

bation theory discussed in section 6.1.6, and in combination with renormalon contributions

[Dok97].) Therefore a parton-shower description was developed [Ben87a] as an alternative

to the higher-order matrix-element one. (Or rather as a complement, since the trend over

– 12 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

the years has been towards the development of methods to marry the two approaches.)

The combination of parton showers and string fragmentation has been very successful, and

has formed the main approach to the description of hadronic Z0 events.

This way, the Jetset code came to cover the four main areas of fragmentation, final-

state parton showers, e+e− event generation and general utilities.

The successes of string fragmentation in e+e− made it interesting to try to extend

this framework to other processes, and explore possible physics consequences. Therefore a

number of other programs were written, which combined a process-specific description of

the hard interactions with the general fragmentation framework of Jetset. The Pythia

program evolved out of early studies on fixed-target proton-proton processes, addressed

mainly at issues related to string drawing.

With time, the interest shifted towards hadron collisions at higher energies, first to the

SPS pp collider, and later to the Tevatron, SSC and LHC, in the context of a number of

workshops in the USA and Europe. Parton showers were added, for final-state radiation by

making use of the Jetset routine, for initial-state one by the development of the concept

of ‘backwards evolution’, specifically for Pythia [Sjo85]. Also a framework was developed

for minimum-bias and underlying events [Sjo87a].

Another main change was the introduction of an increasing number of hard processes,

within the Standard Model and beyond. A special emphasis was put on the search for the

Standard Model Higgs, in different mass ranges and in different channels, with due respect

to possible background processes.

The bulk of the machinery developed for hard processes actually depended little on

the choice of initial state, as long as the appropriate parton distributions were there for

the incoming partons and particles. It therefore made sense to extend the program from

being only a pp generator to working also for e+e− and ep. This process was completed in

1991, again spurred on by physics workshop activities. Currently Pythia should therefore

work well for a selection of different possible incoming beam particles.

An effort independent of the Lund group activities got going to include supersymmetric

event simulation in Pythia. This resulted in the SPythia program [Mre97].

While Jetset was independent of Pythia until 1996, their ties had grown much

stronger over the years, and the border-line between the two programs had become more

and more artificial. It was therefore decided to merge the two, and also include the

SPythia extensions, starting from Pythia 6.1. The different origins in part still are

reflected in this manual, but the striving is towards a seamless merger.

Among the most recent developments, primarily intended for Tevatron and LHC

physics studies, is the introduction of ‘interleaved evolution’ in Pythia 6.3, with new

p⊥-ordered parton showers and a more sophisticated framework for minimum-bias and

underlying events [Sjo04, Sjo04a]. The possibilities for studying physics beyond the Stan-

dard Model have also been extended significantly, to include supersymmetric models with

R-parity violation, Technicolor models, Z′/W′ models, as well as models with (Randall-

Sundrum) extra dimensions. This still only includes the models available internally in

Pythia. Versatility is further enhanced by the addition of an interface to external user
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processes, according to the Les Houches Accord (LHA) standard [Boo01], and by interfaces

to SUSY RGE and decay packages via the SUSY Les Houches Accord (SLHA) [Ska03].

The tasks of including new processes, and of improving the simulation of parton showers

and other aspects of already present processes, are never-ending. Work therefore continues

apace.

1.4 About this report

As we see, Jetset and Pythia started out as very ideologically motivated programs, de-

veloped to study specific physics questions in enough detail that explicit predictions could

be made for experimental quantities. As it was recognized that experimental imperfections

could distort the basic predictions, the programs were made available for general use by

experimentalists. It thus became feasible to explore the models in more detail than would

otherwise have been possible. As time went by, the emphasis came to shift somewhat, away

from the original strong coupling to a specific fragmentation model, towards a description

of high-energy multiparticle production processes in general. Correspondingly, the use ex-

panded from being one of just comparing data with specific model predictions, to one of

extensive use for the understanding of detector performance, for the derivation of accep-

tance correction factors, for the prediction of physics at future high-energy accelerators,

and for the design of related detectors.

While the ideology may be less apparent, it is still there, however. This is not something

unique to the programs discussed here, but inherent in any event generator, or at least

any generator that attempts to go beyond the simple parton level skeleton description of

a hard process. Do not accept the myth that everything available in Monte Carlo form

represents ages-old common knowledge, tested and true. Ideology is present by commissions

or omissions in any number of details. A program like Pythia represents a major amount of

original physics research, often on complicated topics where no simple answers are available.

As a (potential) program user you must be aware of this, so that you can form your own

opinion, not just about what to trust and what not to trust, but also how much to trust a

given prediction, i.e. how uncertain it is likely to be. Pythia is particularly well endowed

in this respect, since a number of publications exist where most of the relevant physics

is explained in considerable detail. In fact, the problem may rather be the opposite, to

find the relevant information among all the possible places. One main objective of the

current report is therefore to collect much of this information in one single place. Not

all the material found in specialized papers is reproduced, by a wide margin, but at least

enough should be found here to understand the general picture and to know where to go

for details.

The official reference for Pythia is therefore the current report. It is intended to up-

date and extend the previous round of published physics descriptions and program manuals

[Sjo01, Sjo01a, Sjo03a]. Further specification could include a statement of the type ‘We use

Pythia version X.xxx’. (If you are a LATEX fan, you may want to know that the program

name in this report has been generated by the command \textsc{Pythia}.) Kindly do

not refer to Pythia as ‘unpublished’, ‘private communication’ or ‘in preparation’: such

phrases are incorrect and only create unnecessary confusion.
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In addition, remember that many of the individual physics components are documented

in separate publications. If some of these contain ideas that are useful to you, there is every

reason to cite them. A reasonable selection would vary as a function of the physics you

are studying. The criterion for which to pick should be simple: imagine that a Monte

Carlo implementation had not been available. Would you then have cited a given paper on

the grounds of its physics contents alone? If so, do not punish the extra effort of turning

these ideas into publicly available software. (Monte Carlo manuals are good for nothing

in the eyes of many theorists, so often only the acceptance of ‘mainstream’ publications

counts.) Here follows a list of some main areas where the Pythia programs contain original

research:

Fragmentation/hadronization:

• The string fragmentation model [And83, And98].

• The string effect [And80].

• Baryon production (diquark/popcorn) [And82, And85, Ede97].

• Fragmentation of systems with string junctions [Sjo03].

• Small-mass string fragmentation [Nor98].

• Fragmentation of multiparton systems [Sjo84].

• Colour rearrangement [Sjo94a] and Bose-Einstein effects [Lon95].

• Fragmentation effects on αs determinations [Sjo84a].

Parton Showers:

• Initial-state parton showers (Q2-ordering) [Sjo85, Miu99].

• Final-state parton showers (Q2-ordering) [Ben87a, Nor01].

• Initial-state parton showers (p2
⊥-ordering) [Sjo04a].

• Final-state parton showers (p2
⊥-ordering) [Sjo04a].

• Photon radiation from quarks [Sjo92c]

DIS and photon physics:

• Deeply Inelastic Scattering [And81a, Ben88].

• Photoproduction [Sch93a], γγ [Sch94a] and γ∗p/γ∗γ/γ∗γ∗ [Fri00] physics.

• Parton distributions of the photon [Sch95, Sch96].

Beyond the Standard Model physics:

• Supersymmetry [Amb96, Mre99a], with R-parity violation [Ska01, Sjo03].

• Technicolor [Lan02a].

• Extra dimensions [Bij01]

• Z′ models [Lyn00]

Other topics:

• Colour flow in hard scatterings [Ben84].

• Elastic and diffractive cross sections [Sch94].
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• Minijets, underlying event, and minimum-bias (multiple parton-parton interactions)

[Sjo87a, Sjo04, Sjo04a].

• Rapidity gaps [Dok92].

• Jet clustering in k⊥ [Sjo83].

In addition to a physics survey, the current report also contains a complete manual

for the program. Such manuals have always been updated and distributed jointly with

the programs, but have grown in size with time. A word of warning may therefore be in

place. The program description is fairly lengthy, and certainly could not be absorbed in

one sitting. This is not even necessary, since all switches and parameters are provided with

sensible default values, based on our best understanding (of the physics, and of what you

expect to happen if you do not specify any options). As a new user, you can therefore

disregard all the fancy options, and just run the program with a minimum ado. Later on,

as you gain experience, the options that seem useful can be tried out. No single user is ever

likely to find need for more than a fraction of the total number of possibilities available,

yet many of them have been added to meet specific user requests.

In some instances, not even this report will provide you with all the information you

desire. You may wish to find out about recent versions of the program, know about related

software, pick up a few sample main programs to get going, or get hold of related physics

papers. Some such material can be found on the Pythia web page:

http://www.thep.lu.se/~torbjorn/Pythia.html.

1.5 Disclaimer

At all times it should be remembered that this is not a commercial product, developed

and supported by professionals. Instead it is a ‘University World’ product, developed by

a very few physicists (mainly the current first author) originally for their own needs, and

supplied to other physicists on an ‘as-is’ basis, free of charge. (It is protected by copyright,

however, so is not ‘free software’ in the nowadays common meaning. This is not intended

to stifle research, but to make people respect some common-sense ‘intellectual property’

rights: code should not be ‘borrowed’ and redistributed in such a form that credit would

not go to the people who did the work.)

No guarantees are therefore given for the proper functioning of the program, nor for the

validity of physics results. In the end, it is always up to you to decide for yourself whether

to trust a given result or not. Usually this requires comparison either with analytical results

or with results of other programs, or with both. Even this is not necessarily foolproof: for

instance, if an error is made in the calculation of a matrix element for a given process, this

error will be propagated both into the analytical results based on the original calculation

and into all the event generators which subsequently make use of the published formulae.

In the end, there is no substitute for a sound physics judgement.

This does not mean that you are all on your own, with a program nobody feels re-

sponsible for. Attempts are made to check processes as carefully as possible, to write

programs that do not invite unnecessary errors, and to provide a detailed and accurate

documentation. All of this while maintaining the full power and flexibility, of course, since
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the physics must always take precedence in any conflict of interests. If nevertheless any

errors or unclear statements are found, please do communicate them to one of the authors.

Every attempt will be made to solve problems as soon as is reasonably possible, given that

this support is by a few persons, who mainly have other responsibilities.

However, in order to make debugging at all possible, we request that any sample

code you want to submit as evidence be completely self-contained, and peeled off from all

irrelevant aspects. Use simple write statements or the Pythia histogramming routines to

make your point. Chances are that, if the error cannot be reproduced by fifty lines of code,

in a main program linked only to Pythia, the problem is sitting elsewhere. Numerous

errors have been caused by linking to other (flawed) libraries, e.g. collaboration-specific

frameworks for running Pythia. Then you should put the blame elsewhere.

1.6 Appendix: the historical Pythia

The ‘Pythia’ label may need some explanation.

The myth tells how Apollon, the God of Wisdom, killed the powerful dragon-like

monster Python, close to the village of Delphi in Greece. To commemorate this victory,

Apollon founded the Pythic Oracle in Delphi, on the slopes of Mount Parnassos. Here men

could come to learn the will of the Gods and the course of the future. The oracle plays an

important rôle in many of the other Greek myths, such as those of Heracles and of King

Oedipus.

Questions were to be put to the Pythia, the ‘Priestess’ or ‘Prophetess’ of the Oracle. In

fact, she was a local woman, usually a young maiden, of no particular religious schooling.

Seated on a tripod, she inhaled the obnoxious vapours that seeped up through a crevice in

the ground. This brought her to a trance-like state, in which she would scream seemingly

random words and sounds. It was the task of the professional priests in Delphi to record

those utterings and edit them into the official Oracle prophecies, which often took the form

of poems in perfect hexameter. In fact, even these edited replies were often less than easy

to interpret. The Pythic oracle acquired a reputation for ambiguous answers.

The Oracle existed already at the beginning of the historical era in Greece, and was

universally recognized as the foremost religious seat. Individuals and city states came to

consult, on everything from cures for childlessness to matters of war. Lavish gifts allowed

the temple area to be built and decorated. Many states supplied their own treasury halls,

where especially beautiful gifts were on display. Sideshows included the Omphalos, a stone

reputedly marking the centre of the Earth, and the Pythic games, second only to the

Olympic ones in importance.

Strife inside Greece eventually led to a decline in the power of the Oracle. A serious

blow was dealt when the Oracle of Zeus Ammon (see below) declared Alexander the Great

to be the son of Zeus. The Pythic Oracle lived on, however, and was only closed by a

Roman Imperial decree in 390 ad, at a time when Christianity was ruthlessly destroying

any religious opposition. Pythia then had been at the service of man and Gods for a

millennium and a half.

The rôle of the Pythic Oracle prophecies on the course of history is nowhere better

described than in ‘The Histories’ by Herodotus [HerBC], the classical and captivating
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description of the Ancient World at the time of the Great War between Greeks and Persians.

Especially famous is the episode with King Croisus of Lydia. Contemplating a war against

the upstart Persian Empire, he resolves to ask an oracle what the outcome of a potential

battle would be. However, to have some guarantee for the veracity of any prophecy, he

decides to send embassies to all the renowned oracles of the known World. The messengers

are instructed to inquire the various divinities, on the hundredth day after their departure,

what King Croisus is doing at that very moment. From the Pythia the messengers bring

back the reply

I know the number of grains of sand as well as the expanse of the sea,

And I comprehend the dumb and hear him who does not speak,

There came to my mind the smell of the hard-shelled turtle,

Boiled in copper together with the lamb,

With copper below and copper above.

The veracity of the Pythia is thus established by the crafty ruler, who had waited until

the appointed day, slaughtered a turtle and a lamb, and boiled them together in a copper

cauldron with a copper lid. Also the Oracle of Zeus Ammon in the Libyan desert is able

to give a correct reply (lost to posterity), while all others fail. King Croisus now sends

a second embassy to Delphi, inquiring after the outcome of a battle against the Persians.

The Pythia answers

If Croisus passes over the Halys he will dissolve a great Empire.

Taking this to mean he would win, the King collects his army and crosses the border river,

only to suffer a crushing defeat and see his Kingdom conquered. When the victorious King

Cyrus allows Croisus to send an embassy to upbraid the Oracle, the God Apollon answers

through his Prophetess that he has correctly predicted the destruction of a great empire

— Croisus’ own — and that he cannot be held responsible if people choose to interpret the

Oracle answers to their own liking.

The history of the Pythia program is neither as long nor as dignified as that of its

eponym. However, some points of contact exist. You must be very careful when you formu-

late the questions: any ambiguities will corrupt the reply you get. And you must be even

more careful not to misinterpret the answers; in particular not to pick the interpretation

that suits you before considering the alternatives. Finally, even a perfect God has servants

that are only human: a priest might mishear the screams of the Pythia and therefore pro-

duce an erroneous oracle reply; the current authors might unwittingly let a bug free in the

program Pythia.
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2. Physics overview

In this section we will try to give an overview of the main physics features of Pythia, and

also to introduce some terminology. The details will be discussed in subsequent sections.

For the description of a typical high-energy event, an event generator should contain a

simulation of several physics aspects. If we try to follow the evolution of an event in some

semblance of a time order, one may arrange these aspects as follows:

1. Initially two beam particles are coming in towards each other. Normally each par-

ticle is characterized by a set of parton distributions, which defines the partonic

substructure in terms of flavour composition and energy sharing.

2. One shower initiator parton from each beam starts off a sequence of branchings, such

as q → qg, which build up an initial-state shower.

3. One incoming parton from each of the two showers enters the hard process, where

then a number of outgoing partons are produced, usually two. It is the nature of this

process that determines the main characteristics of the event.

4. The hard process may produce a set of short-lived resonances, like the Z0/W± gauge

bosons, whose decay to normal partons has to be considered in close association with

the hard process itself.

5. The outgoing partons may branch, just like the incoming did, to build up final-state

showers.

6. In addition to the hard process considered above, further semihard interactions may

occur between the other partons of two incoming hadrons.

7. When a shower initiator is taken out of a beam particle, a beam remnant is left

behind. This remnant may have an internal structure, and a net colour charge that

relates it to the rest of the final state.

8. The QCD confinement mechanism ensures that the outgoing quarks and gluons are

not observable, but instead fragment to colour neutral hadrons.

9. Normally the fragmentation mechanism can be seen as occurring in a set of separate

colour singlet subsystems, but interconnection effects such as colour rearrangement

or Bose-Einstein may complicate the picture.

10. Many of the produced hadrons are unstable and decay further.

Conventionally, only quarks and gluons are counted as partons, while leptons and

photons are not. If pushed ad absurdum this may lead to some unwieldy terminology. We

will therefore, where it does not matter, speak of an electron or a photon in the ‘partonic’

substructure of an electron, lump branchings e → eγ together with other ‘parton shower’

branchings such as q → qg, and so on. With this notation, the division into the above ten

points applies equally well to an interaction between two leptons, between a lepton and a

hadron, and between two hadrons.

In the following sections, we will survey the above ten aspects, not in the same order

as given here, but rather in the order in which they appear in the program execution, i.e.

starting with the hard process.
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2.1 Hard processes and parton distributions

In the original Jetset code, only two hard processes were available. The first and main

one is e+e− → γ∗/Z0 → qq. Here the ‘∗’ of γ∗ is used to denote that the photon must be

off the mass shell. The distinction is of some importance, since a photon on the mass shell

cannot decay. Of course also the Z0 can be off the mass shell, but here the distinction is

less relevant (strictly speaking, a Z0 is always off the mass shell). In the following we may

not always use ‘∗’ consistently, but the rule of thumb is to use a ‘∗’ only when a process

is not kinematically possible for a particle of nominal mass. The quark q in the final state

of e+e− → γ∗/Z0 → qq may be u, d, s, c, b or t; the flavour in each event is picked at

random, according to the relative couplings, evaluated at the hadronic c.m. energy. Also

the angular distribution of the final qq pair is included. No parton-distribution functions

are needed.

The other original Jetset process is a routine to generate ggg and γgg final states,

as expected in onium 1−− decays such as Υ. Given the large top mass, toponium de-

cays weakly much too fast for these processes to be of any interest, so therefore no new

applications are expected.

2.1.1 Hard processes

The current Pythia contains a much richer selection, with around 300 different hard

processes. These may be classified in many different ways.

One is according to the number of final-state objects: we speak of ‘2 → 1’ processes,

‘2 → 2’ ones, ‘2 → 3’ ones, etc. This aspect is very relevant from a programming point

of view: the more particles in the final state, the more complicated the phase space and

therefore the whole generation procedure. In fact, Pythia is optimized for 2 → 1 and

2 → 2 processes. There is currently no generic treatment of processes with three or more

particles in the final state, but rather a few different machineries, each tailored to the pole

structure of a specific class of graphs.

Another classification is according to the physics scenario. This will be the main theme

of section 8. The following major groups may be distinguished:

• Hard QCD processes, e.g. qg → qg.

• Soft QCD processes, such as diffractive and elastic scattering, and minimum-bias

events. Hidden in this class is also process 96, which is used internally for the merging

of soft and hard physics, and for the generation of multiple interactions.

• Heavy-flavour production, both open and hidden, e.g. gg → tt and gg → J/ψg.

• Prompt-photon production, e.g. qg → qγ.

• Photon-induced processes, e.g. γg → qq.

• Deeply Inelastic Scattering, e.g. q` → q`.

• W/Z production, such as the e+e− → γ∗/Z0 or qq → W+W−.

• Standard Model Higgs production, where the Higgs is reasonably light and narrow,

and can therefore still be considered as a resonance.
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• Gauge boson scattering processes, such as WW → WW, when the Standard Model

Higgs is so heavy and broad that resonant and non-resonant contributions have to

be considered together.

• Non-standard Higgs particle production, within the framework of a two-Higgs-doublet

scenario with three neutral (h0, H0 and A0) and two charged (H±) Higgs states.

Normally associated with SUSY (see below), but does not have to be.

• Production of new gauge bosons, such as a Z′, W′ and R (a horizontal boson, coupling

between generations).

• Technicolor production, as an alternative scenario to the standard picture of elec-

troweak symmetry breaking by a fundamental Higgs.

• Compositeness is a possibility not only in the Higgs sector, but may also apply to

fermions, e.g. giving d∗ and u∗ production. At energies below the threshold for new

particle production, contact interactions may still modify the standard behaviour.

• Left-right symmetric models give rise to doubly charged Higgs states, in fact one

set belonging to the left and one to the right SU(2) gauge group. Decays involve

right-handed W’s and neutrinos.

• Leptoquark (LQ) production is encountered in some beyond-the-Standard-Model sce-

narios.

• Supersymmetry (SUSY) is probably the favourite scenario for physics beyond the

Standard Model. A rich set of processes are allowed, already if one obeys R-parity

conservation, and even more so if one does not. The main supersymmetric machin-

ery and process selection is inherited from SPythia [Mre97], however with many

improvements in the event generation chain. Many different SUSY scenarios have

been proposed, and the program is flexible enough to allow input from several of

these, in addition to the ones provided internally.

• The possibility of extra dimensions at low energies has been a topic of much study in

recent years, but has still not settled down to some standard scenarios. Its inclusion

into Pythia is also only in a very first stage.

This is by no means a survey of all interesting physics. Also, within the scenarios studied,

not all contributing graphs have always been included, but only the more important and/or

more interesting ones. In many cases, various approximations are involved in the matrix

elements coded.

2.1.2 Resonance decays

As we noted above, the bulk of the processes above are of the 2 → 2 kind, with very

few leading to the production of more than two final-state particles. This may be seen

as a major limitation, and indeed is so at times. However, often one can come quite far

with only one or two particles in the final state, since showers will add the required extra

activity. The classification may also be misleading at times, since an s-channel resonance

is considered as a single particle, even if it is assumed always to decay into two final-state

particles. Thus the process e+e− → W+W− → q1q
′
1 q2q

′
2 is classified as 2 → 2, although

the decay treatment of the W pair includes the full 2 → 4 matrix elements (in the doubly

resonant approximation, i.e. excluding interference with non-WW four-fermion graphs).
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Particles which admit this close connection between the hard process and the subse-

quent evolution are collectively called resonances in this manual. It includes all particles in

mass above the b quark system, such as t, Z0, W±, h0, supersymmetric particles, and many

more. Typically their decays are given by electroweak physics, or physics beyond the Stan-

dard Model. What characterizes a (Pythia) resonance is that partial widths and branching

ratios can be calculated dynamically, as a function of the actual mass of a particle. There-

fore not only do branching ratios change between an h0 of nominal mass 100 GeV and one

of 200 GeV, but also for a Higgs of nominal mass 200 GeV, the branching ratios would

change between an actual mass of 190 GeV and 210 GeV, say. This is particularly relevant

for reasonably broad resonances, and in threshold regions. For an approach like this to

work, it is clearly necessary to have perturbative expressions available for all partial widths.

Decay chains can become quite lengthy, e.g. for supersymmetric processes, but follow

a straight perturbative pattern. If the simulation is restricted to only some set of decays,

the corresponding cross section reduction can easily be calculated. (Except in some rare

cases where a nontrivial threshold behaviour could complicate matters.) It is therefore

standard in Pythia to quote cross sections with such reductions already included. Note

that the branching ratios of a particle is affected also by restrictions made in the secondary

or subsequent decays. For instance, the branching ratio of h0 → W+W−, relative to

h0 → Z0Z0 and other channels, is changed if the allowed W decays are restricted.

The decay products of resonances are typically quarks, leptons, or other resonances, e.g.

W → qq′ or h0 → W+W−. Ordinary hadrons are not produced in these decays, but only

in subsequent hadronization steps. In decays to quarks, parton showers are automatically

added to give a more realistic multijet structure, and one may also allow photon emission

off leptons. If the decay products in turn are resonances, further decays are necessary.

Often spin information is available in resonance decay matrix elements. This means that

the angular orientations in the two decays of a W+W− pair are properly correlated. In

other cases, the information is not available, and then resonances decay isotropically.

Of course, the above ‘resonance’ terminology is arbitrary. A ρ, for instance, could

also be called a resonance, but not in the above sense. The width is not perturbatively

calculable, it decays to hadrons by strong interactions, and so on. From a practical point

of view, the main dividing line is that the values of — or a change in — branching ratios

cannot affect the cross section of a process. For instance, if one wanted to consider the decay

Z0 → cc, with a D meson producing a lepton, not only would there then be the problem of

different leptonic branching ratios for different D’s (which means that fragmentation and

decay treatments would no longer decouple), but also that of additional cc pair production

in parton-shower evolution, at a rate that is unknown beforehand. In practice, it is therefore

next to impossible to force D decay modes in a consistent manner.

2.1.3 Parton distributions

The cross section for a process ij → k is given by

σij→k =

∫
dx1

∫
dx2 f1

i (x1) f2
j (x2) σ̂ij→k . (2.1)

Here σ̂ is the cross section for the hard partonic process, as codified in the matrix elements
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for each specific process. For processes with many particles in the final state it would

be replaced by an integral over the allowed final-state phase space. The fa
i (x) are the

parton-distribution functions, which describe the probability to find a parton i inside beam

particle a, with parton i carrying a fraction x of the total a momentum. Actually, parton

distributions also depend on some momentum scale Q2 that characterizes the hard process.

Parton distributions are most familiar for hadrons, such as the proton, which are

inherently composite objects, made up of quarks and gluons. Since we do not understand

QCD, a derivation from first principles of hadron parton distributions does not yet exist,

although some progress is being made in lattice QCD studies. It is therefore necessary

to rely on parameterizations, where experimental data are used in conjunction with the

evolution equations for the Q2 dependence, to pin down the parton distributions. Several

different groups have therefore produced their own fits, based on slightly different sets of

data, and with some variation in the theoretical assumptions.

Also for fundamental particles, such as the electron, is it convenient to introduce parton

distributions. The function f e
e (x) thus parameterizes the probability that the electron that

takes part in the hard process retains a fraction x of the original energy, the rest being

radiated (into photons) in the initial state. Of course, such radiation could equally well be

made part of the hard interaction, but the parton-distribution approach usually is much

more convenient. If need be, a description with fundamental electrons is recovered for

the choice f e
e (x,Q2) = δ(x − 1). Note that, contrary to the proton case, electron parton

distributions are calculable from first principles, and reduce to the δ function above for

Q2 → 0.

The electron may also contain photons, and the photon may in its turn contain quarks

and gluons. The internal structure of the photon is a bit of a problem, since the photon

contains a point-like part, which is perturbatively calculable, and a resolved part (with

further subdivisions), which is not. Normally, the photon parton distributions are therefore

parameterized, just as the hadron ones. Since the electron ultimately contains quarks and

gluons, hard QCD processes like qg → qg therefore not only appear in pp collisions, but

also in ep ones (‘resolved photoproduction’) and in e+e− ones (‘doubly resolved 2γ events’).

The parton distribution function approach here makes it much easier to reuse one and the

same hard process in different contexts.

There is also another kind of possible generalization. The two processes qq → γ∗/Z0,

studied in hadron colliders, and e+e− → γ∗/Z0, studied in e+e− colliders, are really special

cases of a common process, ff → γ∗/Z0, where f denotes a fundamental fermion, i.e. a

quark, lepton or neutrino. The whole structure is therefore only coded once, and then

slightly different couplings and colour prefactors are used, depending on the initial state

considered. Usually the interesting cross section is a sum over several different initial states,

e.g. uu → γ∗/Z0 and dd → γ∗/Z0 in a hadron collider. This kind of summation is always

implicitly done, even when not explicitly mentioned in the text.

A final comment on parton distributions is that, in general, the composite structure

of hadrons allow for multiple parton-parton scatterings to occur, in which case correllated

parton distributions should be used to describe the multi-parton structure of the incoming

beams. This will be discussed in section 2.3.
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2.2 Initial- and final-state radiation

In every process that contains coloured and/or charged objects in the initial or final state,

gluon and/or photon radiation may give large corrections to the overall topology of events.

Starting from a basic 2 → 2 process, this kind of corrections will generate 2 → 3, 2 → 4,

and so on, final-state topologies. As the available energies are increased, hard emission

of this kind is increasingly important, relative to fragmentation, in determining the event

structure.

Two traditional approaches exist to the modelling of perturbative corrections. One is

the matrix-element method, in which Feynman diagrams are calculated, order by order.

In principle, this is the correct approach, which takes into account exact kinematics, and

the full interference and helicity structure. The only problem is that calculations become

increasingly difficult in higher orders, in particular for the loop graphs. Only in excep-

tional cases have therefore more than one loop been calculated in full, and often we do not

have any loop corrections at all at our disposal. On the other hand, we have indirect but

strong evidence that, in fact, the emission of multiple soft gluons plays a significant rôle

in building up the event structure, e.g. at LEP, and this sets a limit to the applicability

of matrix elements. Since the phase space available for gluon emission increases with the

available energy, the matrix-element approach becomes less relevant for the full structure

of events at higher energies. However, the perturbative expansion is better behaved at

higher energy scales, owing to the running of αs. As a consequence, inclusive measure-

ments, e.g. of the rate of well-separated jets, should yield more reliable results at high

energies.

The second possible approach is the parton-shower one. Here an arbitrary number of

branchings of one parton into two (or more) may be combined, to yield a description of

multijet events, with no explicit upper limit on the number of partons involved. This is

possible since the full matrix-element expressions are not used, but only approximations

derived by simplifying the kinematics, and the interference and helicity structure. Parton

showers are therefore expected to give a good description of the substructure of jets, but in

principle the shower approach has limited predictive power for the rate of well-separated

jets (i.e. the 2/3/4/5-jet composition). In practice, shower programs may be matched to

first-order matrix elements to describe the hard-gluon emission region reasonably well, in

particular for the e+e− annihilation process. Nevertheless, the shower description is not

optimal for absolute αs determinations.

Thus the two approaches are complementary in many respects, and both have found

use. Because of its simplicity and flexibility, the parton-shower option is often the first

choice, while the full higher-order matrix elements one (i.e. including loops) is mainly

used for αs determinations, angular distribution of jets, triple-gluon vertex studies, and

other specialized studies. With improved calculational techniques and faster computers,

Born-level calculations have been pushed to higher orders, and have seen increasing use.

Obviously, the ultimate goal would be to have an approach where the best aspects of the

two worlds are harmoniously married. This is currently a topic of quite some study, with

several new approaches having emerged over the last few years.
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2.2.1 Matrix elements

Matrix elements are especially made use of in the older Jetset-originated implementation

of the process e+e− → γ∗/Z0 → qq.

For initial-state QED radiation, a first-order (un-exponentiated) description has been

adopted. This means that events are subdivided into two classes, those where a photon

is radiated above some minimum energy, and those without such a photon. In the latter

class, the soft and virtual corrections have been lumped together to give a total event rate

that is correct up to one loop. This approach worked fine at PETRA/PEP energies, but

does not do so well for the Z0 line shape, i.e. in regions where the cross section is rapidly

varying and high precision is strived for.

For final-state QCD radiation, several options are available. The default is the parton-

shower one (see below), but some matrix-elements options also exist. In the definition of

3- or 4-jet events, a cut is introduced whereby it is required that any two partons have an

invariant mass bigger than some fraction of the c.m. energy. 3-jet events which do not fulfil

this requirement are lumped with the 2-jet ones. The first-order matrix-element option,

which only contains 3- and 2-jet events therefore involves no ambiguities. In second order,

where also 4-jets have to be considered, a main issue is what to do with 4-jet events that

fail the cuts. Depending on the choice of recombination scheme, whereby the two nearby

partons are joined into one, different 3-jet events are produced. Therefore the second-order

differential 3-jet rate has been the subject of some controversy, and the program actually

contains two different implementations.

By contrast, the normal Pythia event generation machinery does not contain any full

higher-order matrix elements, with loop contributions included. There are several cases

where higher-order matrix elements are included at the Born level. Consider the case of

resonance production at a hadron collider, e.g. of a W, which is contained in the lowest-

order process qq′ → W. In an inclusive description, additional jets recoiling against the W

may be generated by parton showers. Pythia also contains the two first-order processes

qg → Wq′ and qq′ → Wg. The cross sections for these processes are divergent when the

p⊥ → 0. In this region a correct treatment would therefore have to take into account loop

corrections, which are not available in Pythia.

Even without having these accessible, we know approximately what the outcome should

be. The virtual corrections have to cancel the p⊥ → 0 singularities of the real emission. The

total cross section of W production therefore receives finite O(αs) corrections to the lowest-

order answer. These corrections can often be neglected to first approximation, except when

high precision is required. As for the shape of the W p⊥ spectrum, the large cross section

for low-p⊥ emission has to be interpreted as allowing more than one emission to take place.

A resummation procedure is therefore necessary to have matrix element make sense at

small p⊥. The outcome is a cross section below the näıve one, with a finite behaviour in

the p⊥ → 0 limit.

Depending on the physics application, one could then use Pythia in one of two ways.

In an inclusive description, which is dominated by the region of reasonably small p⊥, the

preferred option is lowest-order matrix elements combined with parton showers, which ac-
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tually is one way of achieving the required resummation. For W production as background

to some other process, say, only the large-p⊥ tail might be of interest. Then the shower ap-

proach may be inefficient, since only few events will end up in the interesting region, while

the matrix-element alternative allows reasonable cuts to be inserted from the beginning

of the generation procedure. (One would probably still want to add showers to describe

additional softer radiation, at the cost of some smearing of the original cuts.) Furthermore,

and not less importantly, the matrix elements should give a more precise prediction of the

high-p⊥ event rate than the approximate shower procedure.

In the particular case considered here, that of W production, and a few similar pro-

cesses, actually the shower has been improved by a matching to first-order matrix elements,

thus giving a decent description over the whole p⊥ range. This does not provide the first-

order corrections to the total W production rate, however, nor the possibility to select only

a high-p⊥ tail of events.

2.2.2 Parton showers

The separation of radiation into initial- and final-state showers is arbitrary, but very

convenient. There are also situations where it is appropriate: for instance, the process

e+e− → Z0 → qq only contains final-state QCD radiation (QED radiation, however, is

possible both in the initial and final state), while qq → Z0 → e+e− only contains initial-

state QCD one. Similarly, the distinction of emission as coming either from the q or from

the q is arbitrary. In general, the assignment of radiation to a given mother parton is a

good approximation for an emission close to the direction of motion of that parton, but

not for the wide-angle emission in between two jets, where interference terms are expected

to be important.

In both initial- and final-state showers, the structure is given in terms of branchings

a → bc, specifically e → eγ, q → qg, q → qγ, g → gg, and g → qq. (Further branchings,

like γ → e+e− and γ → qq, could also have been added, but have not yet been of interest.)

Each of these processes is characterized by a splitting kernel Pa→bc(z). The branching rate

is proportional to the integral
∫

Pa→bc(z) dz. The z value picked for a branching describes

the energy sharing, with daughter b taking a fraction z and daughter c the remaining 1− z

of the mother energy. Once formed, the daughters b and c may in turn branch, and so on.

Each parton is characterized by some virtuality scale Q2, which gives an approximate

sense of time ordering to the cascade. We stress here that somewhat different definition of

Q2 are possible, and that Pythia actually implements two distinct alternatives, as you will

see. In the initial-state shower, Q2 values are gradually increasing as the hard scattering

is approached, while Q2 is decreasing in the final-state showers. Shower evolution is cut

off at some lower scale Q0, typically around 1 GeV for QCD branchings. From above, a

maximum scale Qmax is introduced, where the showers are matched to the hard interaction

itself. The relation between Qmax and the kinematics of the hard scattering is uncertain,

and the choice made can strongly affect the amount of well-separated jets.

Despite a number of common traits, the initial- and final-state radiation machineries

are in fact quite different, and are described separately below.
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Final-state showers are time-like, i.e. partons have m2 = E2 − p2 ≥ 0. The evolution

variable Q2 of the cascade has therefore traditionally in Pythia been associated with the

m2 of the branching parton. As discussed above, this choice is not unique, and in more

recent versions of Pythia, a p⊥-ordered shower algorithm, with Q2 = p2
⊥ = z(1 − z)m2,

is available in addition to the mass-ordered one. Regardless of the exact definition of

the ordering variable, the general strategy is the same: starting from some maximum

scale Q2
max, an original parton is evolved downwards in Q2 until a branching occurs. The

selected Q2 value defines the mass of the branching parton, or the p⊥ of the branching,

depending on whether the mass-ordering or the p⊥-ordering is used. In both cases, the

z value obtained from the splitting kernel represents the parton energy division between

the daughters. These daughters may now, in turn, evolve downwards, in this case with

maximum virtuality already defined by the previous branching, and so on down to the Q0

cut-off.

In QCD showers, corrections to the leading-log picture, so-called coherence effects,

lead to an ordering of subsequent emissions in terms of decreasing angles. For the mass-

ordering constraint, this does not follow automatically, but is implemented as an additional

requirement on allowed emissions. The p⊥-ordered shower leads to the correct behaviour

without such modifications [Gus86]. Photon emission is not affected by angular ordering.

It is also possible to obtain non-trivial correlations between azimuthal angles in the various

branchings, some of which are implemented as options. Finally, the theoretical analysis

strongly suggests the scale choice αs = αs(p
2
⊥) = αs(z(1 − z)m2), and this is the default in

the program, for both shower algorithms.

The final-state radiation machinery is normally applied in the c.m. frame of the hard

scattering or a decaying resonance. The total energy and momentum of that subsystem is

preserved, as is the direction of the outgoing partons (in their common rest frame), where

applicable.

In contrast to final-state showers, initial-state ones are space-like. This means that,

in the sequence of branchings a → bc that lead up from the shower initiator to the hard

interaction, particles a and b have m2 = E2 − p2 < 0. The ‘side branch’ particle c, which

does not participate in the hard scattering, may be on the mass shell, or have a time-like

virtuality. In the latter case a time-like shower will evolve off it, rather like the final-

state radiation described above. To first approximation, the evolution of the space-like

main branch is characterized by the evolution variable Q2 = −m2, which is required to be

strictly increasing along the shower, i.e. Q2
b > Q2

a. Corrections to this picture have been

calculated, but are basically absent in Pythia. Again, in more recent versions of Pythia,

a p⊥-ordered ISR algorithm is also available, with Q2 = p2
⊥ = −(1 − z)m2.

Initial-state radiation is handled within the backwards evolution scheme. In this ap-

proach, the choice of the hard scattering is based on the use of evolved parton distributions,

which means that the inclusive effects of initial-state radiation are already included. What

remains is therefore to construct the exclusive showers. This is done starting from the

two incoming partons at the hard interaction, tracing the showers ‘backwards in time’,

back to the two shower initiators. In other words, given a parton b, one tries to find the

parton a that branched into b. The evolution in the Monte Carlo is therefore in terms of
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a sequence of decreasing Q2 (space-like virtuality or transverse momentum, as applicable)

and increasing momentum fractions x. Branchings on the two sides are interleaved in a

common sequence of decreasing Q2 values.

In the above formalism, there is no real distinction between gluon and photon emission.

Some of the details actually do differ, as will be explained in the full description.

The initial- and final-state radiation shifts around the kinematics of the original hard

interaction. In Deeply Inelastic Scattering, this means that the x and Q2 values that can

be derived from the momentum of the scattered lepton do not automatically agree with

the values originally picked. In high-p⊥ processes, it means that one no longer has two

jets with opposite and compensating p⊥, but more complicated topologies. Effects of any

original kinematics selection cuts are therefore smeared out, an unfortunate side-effect of

the parton-shower approach.

2.3 Beam remnants and multiple interactions

To begin with, consider a hadron-hadron collision where only a single parton-parton inter-

action occurs, i.e. we ignore the possibility of multiple interactions for the moment. In that

case, the initial-state radiation algorithm reconstructs one shower initiator in each beam.

This initiator only takes some fraction of the total beam energy, leaving behind a beam

remnant which takes the rest. For a proton beam, a u quark initiator would leave behind

a ud diquark beam remnant, with an antitriplet colour charge. The remnant is therefore

colour-connected to the hard interaction, and forms part of the same fragmenting system.

It is further customary to assign a primordial transverse momentum to the shower initiator,

to take into account the motion of quarks inside the original hadron, at least as required by

the uncertainty principle by the proton size, probably augmented by unresolved (i.e. not

simulated) soft shower activity. This primordial k⊥ is selected according to some suitable

distribution, and the recoil is assumed to be taken up by the beam remnant.

Often the remnant is more complicated, e.g. a gluon initiator would leave behind a uud

proton remnant system in a colour octet state, which can conveniently be subdivided into

a colour triplet quark and a colour antitriplet diquark, each of which are colour-connected

to the hard interaction. The energy sharing between these two remnant objects, and their

relative transverse momentum, introduces additional degrees of freedom, which are not

understood from first principles.

Näıvely, one would expect an ep event to have only one beam remnant, and an e+e−

event none. This is not always correct, e.g. a γγ → qq interaction in an e+e− event would

leave behind the e+ and e− as beam remnants, and a qq → gg interaction in resolved

photoproduction in an e+e− event would leave behind one e± and one q or q in each

remnant. Corresponding complications occur for photoproduction in ep events.

There is another source of beam remnants. If parton distributions are used to resolve

an electron inside an electron, some of the original energy is not used in the hard interaction,

but is rather associated with initial-state photon radiation. The initial-state shower is in

principle intended to trace this evolution and reconstruct the original electron before any

radiation at all took place. However, because of cut-off procedures, some small amount

may be left unaccounted for. Alternatively, you may have chosen to switch off initial-state
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radiation altogether, but still preserved the resolved electron parton distributions. In either

case the remaining energy is given to a single photon of vanishing transverse momentum,

which is then considered in the same spirit as ‘true’ beam remnants.

So far we have assumed that each event only contains one hard interaction, i.e. that

each incoming particle has only one parton which takes part in hard processes, and that all

other constituents sail through unaffected. This is appropriate in e+e− or ep events, but

not necessarily so in hadron-hadron collisions (where a resolved photon counts as a hadron).

Here each of the beam particles contains a multitude of partons, and so the probability

for several interactions in one and the same event need not be negligible. In principle

these additional interactions could arise because one single parton from one beam scatters

against several different partons from the other beam, or because several partons from each

beam take part in separate 2 → 2 scatterings. Both are expected, but combinatorics should

favour the latter, which is the mechanism considered in Pythia.

The dominant 2 → 2 QCD cross sections are divergent for p⊥ → 0, and drop rapidly

for larger p⊥. Probably the lowest-order perturbative cross sections will be regularized

at small p⊥ by colour coherence effects: an exchanged gluon of small p⊥ has a large

transverse wave function and can therefore not resolve the individual colour charges of

the two incoming hadrons; it will only couple to an average colour charge that vanishes

in the limit p⊥ → 0. In the program, some effective p⊥min scale is therefore introduced,

below which the perturbative cross section is either assumed completely vanishing or at

least strongly damped. Phenomenologically, p⊥min comes out to be a number of the order

of 1.5–2.5 GeV, with some energy dependence.

In a typical ‘minimum-bias’ event one therefore expects to find one or a few scatterings

at scales around or a bit above p⊥min, while a high-p⊥ event also may have additional

scatterings at the p⊥min scale. The probability to have several high-p⊥ scatterings in the

same event is small, since the cross section drops so rapidly with p⊥.

The understanding of multiple interaction is still very primitive. Pythia therefore

contains several different options. These differ e.g. on the issue of the ‘pedestal’ effect: is

there an increased probability or not for additional interactions in an event which is known

to contain a hard scattering, compared with one that contains no hard interactions? Other

differences concern the level of detail in the generation of scatterings after the first one,

and the model that describes how the scatterings are intercorrelated in flavour, colour, and

momentum space.

The default underlying-event scenario obtained in a call to PYEVNT corresponds to the

so-called ‘Tune A’ [Fie02] (although with a slightly different energy dependence), which

reproduces many aspects of Tevatron data correctly. Starting from Pythia version 6.3, a

more advanced model for the underlying event is also available. This model is obtained

by calling PYEVNW instead of PYEVNT, but one should then not forget to also change the

relevant parameter settings to an appropriate tune of the new model.

2.4 Hadronization

QCD perturbation theory, formulated in terms of quarks and gluons, is valid at short

distances. At long distances, QCD becomes strongly interacting and perturbation the-
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ory breaks down. In this confinement regime, the coloured partons are transformed into

colourless hadrons, a process called either hadronization or fragmentation. In this paper

we reserve the former term for the combination of fragmentation and the subsequent decay

of unstable particles.

The fragmentation process has yet to be understood from first principles, starting

from the QCD Lagrangian. This has left the way clear for the development of a number

of different phenomenological models. Three main schools are usually distinguished, string

fragmentation (SF), independent fragmentation (IF) and cluster fragmentation (CF), but

many variants and hybrids exist. Being models, none of them can lay claims to being

‘correct’, although some may be better founded than others. The best that can be aimed

for is internal consistency, a good representation of existing data, and a predictive power

for properties not yet studied or results at higher energies.

2.4.1 String fragmentation

The original Jetset program is intimately connected with string fragmentation, in the

form of the time-honoured ‘Lund model’. This is the default for all Pythia applications,

but independent fragmentation options also exist (although not actively maintained), for

applications where one wishes to study the importance of string effects.

All current models are of a probabilistic and iterative nature. This means that the

fragmentation process as a whole is described in terms of one or a few simple underlying

branchings, of the type jet → hadron + remainder-jet, string → hadron + remainder-

string, and so on. At each branching, probabilistic rules are given for the production of

new flavours, and for the sharing of energy and momentum between the products.

To understand fragmentation models, it is useful to start with the simplest possible

system, a colour-singlet qq 2-jet event, as produced in e+e− annihilation. Here lattice

QCD studies lend support to a linear confinement picture (in the absence of dynamical

quarks), i.e. the energy stored in the colour dipole field between a charge and an anticharge

increases linearly with the separation between the charges, if the short-distance Coulomb

term is neglected. This is quite different from the behaviour in QED, and is related to the

presence of a triple-gluon vertex in QCD. The details are not yet well understood, however.

The assumption of linear confinement provides the starting point for the string model.

As the q and q partons move apart from their common production vertex, the physical

picture is that of a colour flux tube (or maybe a colour vortex line) being stretched between

the q and the q. The transverse dimensions of the tube are of typical hadronic sizes,

roughly 1 fm. If the tube is assumed to be uniform along its length, this automatically

leads to a confinement picture with a linearly rising potential. In order to obtain a Lorentz

covariant and causal description of the energy flow due to this linear confinement, the

most straightforward way is to use the dynamics of the massless relativistic string with no

transverse degrees of freedom. The mathematical, one-dimensional string can be thought

of as parameterizing the position of the axis of a cylindrically symmetric flux tube. From

hadron spectroscopy, the string constant, i.e. the amount of energy per unit length, is

deduced to be κ ≈ 1 GeV/fm. The expression ‘massless’ relativistic string is somewhat of

a misnomer: κ effectively corresponds to a ‘mass density’ along the string.
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Let us now turn to the fragmentation process. As the q and q move apart, the potential

energy stored in the string increases, and the string may break by the production of a new

q′q′ pair, so that the system splits into two colour-singlet systems qq′ and q′q. If the

invariant mass of either of these string pieces is large enough, further breaks may occur.

In the Lund string model, the string break-up process is assumed to proceed until only

on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with a

quark in one end and an antiquark in the other.

In order to generate the quark-antiquark pairs q′q′ which lead to string break-ups, the

Lund model invokes the idea of quantum mechanical tunnelling. This leads to a flavour-

independent Gaussian spectrum for the p⊥ of q′q′ pairs. Since the string is assumed to

have no transverse excitations, this p⊥ is locally compensated between the quark and the

antiquark of the pair. The total p⊥ of a hadron is made up out of the p⊥ contributions

from the quark and antiquark that together form the hadron. Some contribution of very

soft perturbative gluon emission may also effectively be included in this description.

The tunnelling picture also implies a suppression of heavy-quark production, u : d : s :

c ≈ 1 : 1 : 0.3 : 10−11. Charm and heavier quarks hence are not expected to be produced

in the soft fragmentation, but only in perturbative parton-shower branchings g → qq.

When the quark and antiquark from two adjacent string breaks are combined to form

a meson, it is necessary to invoke an algorithm to choose between the different allowed

possibilities, notably between pseudoscalar and vector mesons. Here the string model

is not particularly predictive. Qualitatively one expects a 1 : 3 ratio, from counting the

number of spin states, multiplied by some wave-function normalization factor, which should

disfavour heavier states.

A tunnelling mechanism can also be used to explain the production of baryons. This

is still a poorly understood area. In the simplest possible approach, a diquark in a colour

antitriplet state is just treated like an ordinary antiquark, such that a string can break either

by quark-antiquark or antidiquark-diquark pair production. A more complex scenario is

the ‘popcorn’ one, where diquarks as such do not exist, but rather quark-antiquark pairs

are produced one after the other. This latter picture gives a less strong correlation in

flavour and momentum space between the baryon and the antibaryon of a pair.

In general, the different string breaks are causally disconnected. This means that it is

possible to describe the breaks in any convenient order, e.g. from the quark end inwards.

One therefore is led to write down an iterative scheme for the fragmentation, as follows.

Assume an initial quark q moving out along the +z axis, with the antiquark going out in

the opposite direction. By the production of a q1q1 pair, a meson with flavour content

qq1 is produced, leaving behind an unpaired quark q1. A second pair q2q2 may now be

produced, to give a new meson with flavours q1q2, etc. At each step the produced hadron

takes some fraction of the available energy and momentum. This process may be iterated

until all energy is used up, with some modifications close to the q end of the string in order

to make total energy and momentum come out right.

The choice of starting the fragmentation from the quark end is arbitrary, however. A

fragmentation process described in terms of starting at the q end of the system and frag-

menting towards the q end should be equivalent. This ‘left-right’ symmetry constrains the
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allowed shape of the fragmentation function f(z), where z is the fraction of the remaining

light-cone momentum E ± pz (+ for the q jet, − for the q one) taken by each new particle.

The resulting ‘Lund symmetric fragmentation function’ has two free parameters, which are

determined from data.

If several partons are moving apart from a common origin, the details of the string

drawing become more complicated. For a qqg event, a string is stretched from the q end via

the g to the q end, i.e. the gluon is a kink on the string, carrying energy and momentum.

As a consequence, the gluon has two string pieces attached, and the ratio of gluon to quark

string force is 2, a number which can be compared with the ratio of colour charge Casimir

operators, NC/CF = 2/(1 − 1/N2
C) = 9/4. In this, as in other respects, the string model

can be viewed as a variant of QCD where the number of colours NC is not 3 but infinite.

Note that the factor 2 above does not depend on the kinematical configuration: a smaller

opening angle between two partons corresponds to a smaller string length drawn out per

unit time, but also to an increased transverse velocity of the string piece, which gives an

exactly compensating boost factor in the energy density per unit string length.

The qqg string will fragment along its length. To first approximation this means that

there is one fragmenting string piece between q and g and a second one between g and q.

One hadron is straddling both string pieces, i.e. sitting around the gluon corner. The rest

of the particles are produced as in two simple qq strings, but strings boosted with respect

to the overall c.m. frame. When considered in detail, the string motion and fragmentation

is more complicated, with the appearance of additional string regions during the time

evolution of the system. These corrections are especially important for soft and collinear

gluons, since they provide a smooth transition between events where such radiation took

place and events where it did not. Therefore the string fragmentation scheme is ‘infrared

safe’ with respect to soft or collinear gluon emission.

Another possible colour topology arises when considering baryon-number-violating pro-

cesses, or events where more than one valence quark has been knocked out of a beam baryon

(as can happen when multiple parton-parton interactions occur). In this case, there will

be three (anti-)colour carriers connected antisymmetrically in colour, and of which no two

may naturally be considered to form a diquark system. The string topology will thus not be

of the simple qq type, but rather a ‘Y’ shaped topology is spanned between the endpoints.

The vertex of the ‘Y’ topology comes to be of special interest in the fragmentation, and

will be referred to as a ‘string junction’. Each of the three string pieces undergo a frag-

mentation process subject to exactly the same principles as outlined above, only a baryon

containing the junction will eventually be formed. The picture is essentially that of three

jets going out, with the junction baryon formed ‘in the middle’, hence the junction baryon

will tend to have a soft spectrum when the jets are widely separated. Note that, in the

limit that two of the endpoints of the ‘Y’ come close together, the diquark picture for beam

remnants mentioned above is effectively recovered, with only minor differences remaining.

For events that involve many partons, there may be several possible topologies for

their ordering along the string. An example would be a qqg1g2 (the gluon indices are here

used to label two different gluon-momentum vectors), where the string can connect the

partons in either of the sequences q− g1 − g2 − q and q− g2 − g1 − q. The matrix elements
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that are calculable in perturbation theory contain interference terms between these two

possibilities, which means that the colour flow is not always well-defined. Fortunately, the

interference terms are down in magnitude by a factor 1/N2
C , where NC = 3 is the number

of colours, so approximate recipes can be found. In the leading log shower description, on

the other hand, the rules for the colour flow are well-defined.

A final comment: in the argumentation for the importance of colour flows there is a

tacit assumption that soft-gluon exchanges between partons will not normally mess up the

original colour assignment. Colour rearrangement models provide toy scenarios wherein

deviations from this rule could be studied. Of particular interest has been the process

e+e− → W+W− → q1q2q3q4, where the original singlets q1q2 and q3q4 could be rearranged

to q1q4 and q3q2. So far, there are no experimental evidence for dramatic effects of this kind,

but the more realistic models predict effects sufficiently small that these have not been ruled

out. Another example of nontrivial effects is that of Bose-Einstein correlations between

identical final-state particles, which reflect the true quantum nature of the hadronization

process.

2.4.2 Decays

A large fraction of the particles produced by fragmentation are unstable and subsequently

decay into the observable stable (or almost stable) ones. It is therefore important to include

all particles with their proper mass distributions and decay properties. Although involv-

ing little deep physics, this is less trivial than it may sound: while a lot of experimental

information is available, there is also very much that is missing. For charm mesons, it is

necessary to put together measured exclusive branching ratios with some inclusive multi-

plicity distributions to obtain a consistent and reasonably complete set of decay channels,

a rather delicate task. For bottom even less is known, and for some B baryons only a rather

simple phase-space type of generator has been used for hadronic decays.

Normally it is assumed that decay products are distributed according to phase space,

i.e. that there is no dynamics involved in their relative distribution. However, in many cases

additional assumptions are necessary, e.g. for semileptonic decays of charm and bottom

hadrons one needs to include the proper weak matrix elements. Particles may also be

produced polarized and impart a non-isotropic distribution to their decay products. Many

of these effects are not at all treated in the program. In fact, spin information is not at all

carried along, but has to be reconstructed explicitly when needed.

This normal decay treatment makes use of a set of tables where branching ratios and

decay modes are stored. It encompasses all hadrons made out of d, u, s, c and b quarks, and

also the leptons. The decay products are hadrons, leptons and photons. Some bb states are

sufficiently heavy that they are allowed to decay to partonic states, like Υ → ggg, which

subsequently fragment, but these are exceptions.

You may at will change the particle properties, decay channels or branching ratios

of the above particles. There is no censorship of what is allowed or not allowed, beyond

energy-momentum, spin, and (electrical and colour) charge conservation. There is also no

impact e.g. on the cross section of processes, since there is no way of knowing e.g. if the

restriction to one specific decay of a particle is because that decay is of particular interest
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to us, or because recent measurement have shown that this indeed is the only channel.

Furthermore, the number of particles produced of each species in the hadronization process

is not known beforehand, and so cannot be used to correctly bias the preceding steps of

the generation chain. All of this contrasts with the class of ‘resonances’ described above,

in section 2.1.2.
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3. Program overview

This section contains a diverse collection of information. The first part is an overview of

previous Jetset and Pythia versions. The second gives instructions for installation of

the program and describes its philosophy: how it is constructed and how it is supposed

to be used. It also contains some information on how to read this manual. The third and

final part contains several examples of pieces of code or short programs, to illustrate the

general style of program usage. This last part is mainly intended as an introduction for

completely new users, and can be skipped by more experienced ones.

The combined Pythia package is completely self-contained. Interfaces to externally

defined subprocesses, parton-distribution function libraries, SUSY parameter calculators,

τ decay libraries, and a time routine are provided, however, plus a few other optional

interfaces.

Many programs written by other persons make use of Pythia, especially the string

fragmentation machinery. It is not the intention to give a complete list here. A majority of

these programs are specific to given collaborations, and therefore not publicly distributed.

Below we give a list of a few public programs from the ‘Lund group’, which may have a

somewhat wider application. None of them are supported by the Pythia author team, so

any requests should be directed to the persons mentioned.

• Ariadne is a generator for dipole emission, written mainly by L. Lönnblad [Pet88].

• LDCMC is a related program for initial-state radiation according to the Linked

Dipole Chain model, also written mainly by L. Lönnblad [Kha99].

• Aroma is a generator for heavy-flavour processes in leptoproduction, written by

G. Ingelman, J. Rathsman and G. Schuler [Ing88].

• Fritiof is a generator for hadron-hadron, hadron-nucleus and nucleus-nucleus colli-

sions [Nil87].

• Lepto is a leptoproduction event generator, written mainly by G. Ingelman [Ing80].

It can generate parton configurations in Deeply Inelastic Scattering according to a

number of possibilities.

• PomPyt is a generator for pomeron interactions written by G. Ingelman and collab-

orators [Bru96].

One should also note that a version of Pythia has been modified to include the effects

of longitudinally polarized incoming protons. This is the work of St. Güllenstern et al.

[Gul93].

3.1 Update history

For the record, in tables 1 and 2 we list the official main versions of Jetset and Pythia,

respectively, with some brief comments.

Versions before 6.1: All versions preceding Pythia 6.1 should now be considered ob-

solete, and are no longer maintained. For stable applications, the earlier combination

Jetset 7.4 and Pythia 5.7 could still be used, however.
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No. Date Publ. Main new or improved features

1 Nov 78 [Sjo78] single-quark jets

2 May 79 [Sjo79] heavy-flavour jets

3.1 Aug 79 — 2-jets in e+e−, preliminary 3-jets

3.2 Apr 80 [Sjo80] 3-jets in e+e− with full matrix elements,

toponium → ggg decays

3.3 Aug 80 — softer fragmentation spectrum

4.1 Apr 81 — baryon production and diquark fragmentation,

fourth-generation quarks, larger jet systems

4.2 Nov 81 — low-p⊥ physics

4.3 Mar 82 [Sjo82] 4-jets and QFD structure in e+e−,

Jul 82 [Sjo83] event-analysis routines

5.1 Apr 83 — improved string fragmentation scheme, symmetric

fragmentation, full 2nd order QCD for e+e−

5.2 Nov 83 — momentum-conservation schemes for IF,

initial-state photon radiation in e+e−

5.3 May 84 — ‘popcorn’ model for baryon production

6.1 Jan 85 — common blocks restructured, parton showers

6.2 Oct 85 [Sjo86] error detection

6.3 Oct 86 [Sjo87] new parton-shower scheme

7.1 Feb 89 — new particle codes and common-block structure,

more mesons, improved decays, vertex information,

Abelian gluon model, Bose-Einstein effects

7.2 Nov 89 — interface to new standard common block,

photon emission in showers

7.3 May 90 [Sjo92d] expanded support for non-standard particles

7.4 Dec 93 [Sjo94] updated particle data and defaults

Table 1: The main versions of Jetset, with their date of appearance, published manuals, and

main changes from previous versions.

Changes in version 6.1: The move from Jetset 7.4 and Pythia 5.7 to Pythia 6.1

was a major one. For reasons of space, individual points are therefore not listed separately

below, but only the main ones. The Pythia web page contains complete update notes,

where all changes are documented by topic and subversion.

The main new features of Pythia 6.1, either present from the beginning or added

later on, include:

• Pythia and Jetset have been merged.

• All real variables are declared in double precision.

• The internal mapping of particle codes has changed.

• The supersymmetric process machinery of SPythia has been included and further

improved, with several new processes.
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No. Date Publ. Main new or improved features

1 Dec 82 [Ben84] synthesis of predecessors Compton, Highpt and

Kassandra

2 —

3.1 —

3.2 —

3.3 Feb 84 [Ben84a] scale-breaking parton distributions

3.4 Sep 84 [Ben85] more efficient kinematics selection

4.1 Dec 84 initial- and final-state parton showers, W and Z

4.2 Jun 85 multiple interactions

4.3 Aug 85 WW, WZ, ZZ and R processes

4.4 Nov 85 γW, γZ, γγ processes

4.5 Jan 86 H0 production, diffractive and elastic events

4.6 May 86 angular correlation in resonance pair decays

4.7 May 86 Z′0 and H+ processes

4.8 Jan 87 [Ben87] variable impact parameter in multiple interactions

4.9 May 87 gH+ process

5.1 May 87 massive matrix elements for heavy quarks

5.2 Jun 87 intermediate boson scattering

5.3 Oct 89 new particle and subprocess codes, new common-block

structure, new kinematics selection, some

lepton-hadron interactions, new subprocesses

5.4 Jun 90 s-dependent widths, resonances not on the mass shell,

new processes, new parton distributions

5.5 Jan 91 improved e+e− and ep, several new processes

5.6 Sep 91 [Sjo92d] reorganized parton distributions, new processes,

user-defined external processes

5.7 Dec 93 [Sjo94] new total cross sections, photoproduction, top decay

6.1 Mar 97 [Sjo01] merger with Jetset, double precision, supersymmetry,

technicolor, extra dimensions, etc. new processes,

improved showers, virtual-photon processes

6.2 Aug 01 [Sjo01a] Les Houches Accord user processes, R-parity violation

6.3 Aug 03 [Sjo03a] improved multiple interactions, p⊥-ordered showers,

SUSY Les Houches Accord interface

6.4 Mar 06 this none so far

Table 2: The main versions of Pythia, with their date of appearance, published manuals, and

main changes from previous versions.

• Many new processes of beyond-the-Standard-Model physics, in areas such as techni-

color and doubly-charged Higgs bosons.

• An expanded description of QCD processes in virtual-photon interactions, combined
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with a new machinery for the flux of virtual photons from leptons.

• Initial-state parton showers are matched to the next-to-leading order matrix elements

for gauge boson production.

• Final-state parton showers are matched to a number of different first-order matrix

elements for gluon emission, including full mass dependence.

• The hadronization description of low-mass strings has been improved, with conse-

quences especially for heavy-flavour production.

• An alternative baryon production model has been introduced.

• Colour rearrangement is included as a new option, and several alternative Bose-

Einstein descriptions are added.

Changes in version 6.2: By comparison, the move from Pythia 6.1 to Pythia 6.2 was

rather less dramatic. Again update notes tell the full story. Some of the main new features,

present from the beginning or added later on, which may affect backwards compatibility,

are:

• A new machinery to handle user-defined external processes, according to the Les

Houches Accord standard in [Boo01]. The old machinery is no longer available.

Some of the alternatives for the FRAME argument in the PYINIT call have also been

renamed to make way for a new ’USER’ option.

• The maximum size of the decay channel table has been increased from 4000 to 8000,

affecting the MDME, BRAT and KFDP arrays in the PYDAT3 common block.

• A number of internally used and passed arrays, such as WDTP, WDTE, WDTPP, WDTEP,

WDTPM, WDTEM, XLAM and IDLAM, have been expanded from dimension 300 to 400.

• Lepton- and baryon-number-violating decay channels have been included for super-

symmetric particles [Ska01, Sjo03]. Thus the decay tables have grown considerably

longer.

• The string hadronization scheme has been improved and expanded better to handle

junction topologies, where three strings meet. This is relevant for baryon-number-

violating processes, and also for the handling of baryon beam remnants. Thus new

routines have been introduced, and also e.g. new K(I,1) status codes.

• A runtime interface to Isasusy has been added, for determining the SUSY mass

spectrum and mixing parameters more accurately than with the internal Pythia

routines.

• The Technicolor scenario is updated and extended. A new common block, PYTCSM,

is introduced for the parameters and switches in Technicolor and related scenarios,

and variables are moved to it from a few other common blocks. New processes 381–

388 are introduced for standard QCD 2 → 2 interactions with Technicolor (or other

compositeness) extensions, while the processes 11, 12, 13, 28, 53, 68, 81 and 82 now

revert back to being pure QCD.

• The PYSHOW time-like showering routine has been expanded to allow showering inside

systems consisting of up to 80 particles, which can be made use of in some resonance

decays and in user-defined processes.
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• The PYSSPA space-like showering routine has been expanded with a q → qγ branching.

• The PYSIGH routine has been split into several, in order to make it more manage-

able. (It had increased to a size of over 7000 lines, which gave some compilers

problems.) All the phase-space and parton-density generic weights remain, whereas

the process-specific matrix elements have been grouped into new routines PYSGQC,

PYSGHF, PYSGWZ, PYSGHG, PYSGSU, PYSGTC and PYSGEX.

• Some exotic particles and QCD effective states have been moved from temporary

flavour codes to a PDG-consistent naming, and a few new codes have been introduced.

• The maximum number of documentation lines in the beginning of the event record

has been expanded from 50 to 100.

• The default parton distribution set for the proton is now CTEQ 5L.

• The default Standard Model Higgs mass has been changed to 115 GeV.

Changes in version 6.3: The major changes in 6.3 was the introduction of a new

underlying-event framework for hadron collisions, together with new transverse-momen-

tum-ordered initial- and final-state parton showers. Other changes include an interface

to SUSY spectrum and decay calculators conformant to the SUSY Les Houches Accord.

Early releases of Pythia 6.3, up to 6.312, were still experimental, and did not include the

new parton showers. Details on these versions can be found in the update notes available

on the web. We here concentrate on the structure of the program after (and including)

version 6.312.

Firstly, there are no incompatibilities between Pythia 6.2 and Pythia 6.3 at the

level of commonblock sizes or subroutine arguments (except for the PYSUGI interface to

Isajet, see below). That is, any program that ran with Pythia 6.2 also ought to run with

Pythia 6.3, without any change required. Note, however, the following news:

• The old (6.2) master event-generation routine PYEVNT is still available; it uses the

old underlying-event machinery (PYMULT) and parton showers (PYSSPA and PYSHOW).

A ‘Tune A’-like set of parameters [Fie02] has been adopted as default. It repro-

duces Tune A at the Tevatron, but implies a slower energy rescaling, to give a more

conservative estimate of the underlying activity at the LHC.

• A new master event-generation routine PYEVNW has been introduced, in parallel with

PYEVNT. By calling PYEVNW instead of PYEVNT a completely new scenario for multiple

interactions [Sjo04] and parton showers [Sjo04a] is obtained. This framework has

still only been fully developed for hadron-hadron collisions (where a resolved photon

counts as a hadron). Note that many of the default parameters now in Pythia are

directly related to the PYEVNT model. These defaults are not appropriate to use with

the new framework, and so all parameters should be set explicitly whenever PYEVNW

is used. See e.g. examples available on the web.

• The current PYSUGI run-time interface to the Isasusy evolution package is based on

Isajet version 7.71 (from Pythia 6.319 onwards). The dimensions of the SSPAR,

SUGMG, SUGPAS and SUGXIN common blocks found in the PYSUGI routine could have

to be modified if another Isajet version is linked.
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• The new routine PYSLHA introduces a generic interface to SUSY spectrum and decay

calculators in agreement with the SUSY Les Houches Accord [Ska03] (SLHA), and

thus offers a long-term solution to the incompatibility problems noted above. Without

SUSY switched on, PYSLHA can still be used stand-alone to read in SLHA decay tables

for any particle, see section 14.4.

• From version 6.321 a run-time interface to FeynHiggs [Hei99] is available, to correct

the Higgs sector of SUSY spectra obtained with either of the PYSUGI and PYSLHA

interfaces.

• From version 6.321 a new set of toy models for investigating final state colour recon-

nection effects are available, see [San05].

• From version 6.322 an option exists to extend the particle content recognized by

Pythia to that of the NMSSM, for use in the context of interfaces to other programs,

see [Puk05].

• Some new processes added, notably J/ψ and Υ production in an NRQCD colour-

octet-model framework.

The update notes tell exactly with what version a new feature or a bug fix is introduced.

Changes in version 6.4: No new features are introduced in Pythia 6.400 relative to the

preceding Pythia 6.327. The main reason for the new version number is to synchronize

with the documentation, i.e. with this updated manual. As changes are made to this

baseline version, they will be documented in the update notes.

3.2 Program installation

The Pythia ‘master copy’ is the one found on the web page

http://www.thep.lu.se/~torbjorn/Pythia.html

There you have, for several subversions xxx:

pythia6xxx.f the Pythia 6.xxx code,

pythia6xxx.tex editions of this Pythia manual, and

pythia6xxx.update plain text update notes to the manual.

In addition to these, one may also find sample main programs and other pieces of related

software, and some physics papers.

The program is written essentially entirely in standard Fortran 77, and should run on

any platform with such a compiler. To a first approximation, program compilation should

therefore be straightforward.

Unfortunately, experience with many different compilers has been uniform: the options

available for obtaining optimized code may actually produce erroneous code (e.g. operations

inside DO loops are moved out before them, where some of the variables have not yet been

properly set). Therefore the general advice is to use a low optimization level. Note that

this is often not the default setting.
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SAVE statements have been included in accordance with the Fortran standard.

All default settings and particle and process data are stored in BLOCK DATA PYDATA.

This subprogram must be linked for a proper functioning of the other routines. On some

platforms this is not done automatically but must be forced by you, e.g. by having a line

EXTERNAL PYDATA

at the beginning of your main program. This applies in particular if Pythia is maintained

as a library from which routines are to be loaded only when they are needed. In this

connection we note that the library approach does not give any significant space advantages

over a loading of the packages as a whole, since a normal run will call on most of the routines

anyway, directly or indirectly.

With the move towards higher energies, e.g. for LHC applications, single-precision (32

bit) real arithmetic has become inappropriate. Therefore a declaration IMPLICIT DOUBLE

PRECISION(A-H,O-Z) at the beginning of each subprogram is inserted to ensure double-

precision (64 bit) real arithmetic. Remember that this also means that all calls to Pythia

routines have to be done with real variables declared correspondingly in the user-written

calling program. An IMPLICIT INTEGER(I-N) is also included to avoid problems on some

compilers. Integer functions beginning with PY have to be declared explicitly. In total,

therefore all routines begin with

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

and you are recommended to do the same in your main programs. Note that, in running text

and in description of common-block default values, the more cumbersome double-precision

notation is not always made explicit, but code examples should be correct.

On a machine where DOUBLE PRECISION would give 128 bits, it may make sense to use

compiler options to revert to 64 bits, since the program is anyway not constructed to make

use of 128 bit precision.

Fortran 77 makes no provision for double-precision complex numbers. Therefore com-

plex numbers have been used only sparingly. However, some matrix element expressions,

mainly for supersymmetric and technicolor processes, simplify considerably when written

in terms of complex variables. In order to achieve a uniform precision, such variables

have been declared COMPLEX*16, and are manipulated with functions such as DCMPLX and

DCONJG. Affected are PYSIGH, PYWIDT and several of the supersymmetry routines. Should

the compiler not accept this deviation from the standard, or some simple equivalent thereof

(like DOUBLE COMPLEX instead of COMPLEX*16) these code pieces could be rewritten to ordi-

nary COMPLEX, also converting the real numbers involved to and from single precision, with

some drop in accuracy for the affected processes. PYRESD already contains some ordinary

COMPLEX variables, and should not cause any problems.

– 41 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

Several compilers report problems when an odd number of integers precede a double-

precision variable in a common block. Therefore an extra integer has been introduced as

padding in a few instances, e.g. NPAD, MSELPD and NGENPD.

Since Fortran 77 provides no date-and-time routine, PYTIME allows a system-specific

routine to be interfaced, with some commented-out examples given in the code. This

routine is only used for cosmetic improvements of the output, however, so can be left at

the default with time 0 given.

A test program, PYTEST, is included in the Pythia package. It is disguised as a

subroutine, so you have to run a main program

CALL PYTEST(1)

END

This program will generate over a thousand events of different types, under a variety of

conditions. If Pythia has not been properly installed, this program is likely to crash, or

at least generate a number of erroneous events. This will then clearly be marked in the

output, which otherwise will just contain a few sample event listings and a table of the

number of different particles produced. To switch off the output of normal events and final

table, use PYTEST(0) instead of PYTEST(1). The final tally of errors detected should read 0.

For a program written to run Pythia 5 and Jetset 7, most of the conversion required

for Pythia 6 is fairly straightforward, and can be automatized. Both a simple Fortran

routine and a more sophisticated Perl [Gar98] script exist to this end, see the Pythia web

page. Some manual checks and interventions may still be required.

3.3 Program philosophy

The Monte Carlo program is built as a slave system, i.e. you, the user, have to supply

the main program. From this the various subroutines are called on to execute specific

tasks, after which control is returned to the main program. Some of these tasks may be

very trivial, whereas the ‘high-level’ routines by themselves may make a large number of

subroutine calls. Many routines are not intended to be called directly by you, but only

from higher-level routines such as PYEXEC, PYEEVT, PYINIT, PYEVNT, or PYEVNW.

Basically, this means that there are three ways by which you communicate with the

programs. First, by setting common-block variables, you specify the details of how the pro-

grams should perform specific tasks, e.g. which subprocesses should be generated, which

particle masses should be assumed, which coupling constants used, which fragmentation

scenarios, and so on with hundreds of options and parameters. Second, by calling subrou-

tines you tell the programs to generate events according to the rules established above.

Normally there are few subroutine arguments, and those are usually related to details of

the physical situation, such as what c.m. energy to assume for events. Third, you can

either look at the common block PYJETS to extract information on the generated event, or

you can call on various functions and subroutines to analyse the event further for you.

It should be noted that, while the physics content is obviously at the centre of attention,

the Pythia package also contains a very extensive setup of auxiliary service routines. The

hope is that this will provide a comfortable working environment, where not only events

are generated, but where you also linger on to perform a lot of the subsequent studies.
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Of course, for detailed studies, it may be necessary to interface the output directly to a

detector simulation program.

The general rule is that all routines have names that are six characters long, beginning

with PY. Apart from dummy copies of routines from other libraries, there are three excep-

tions the length rules: PYK, PYP and PYR. The former two functions are strongly coupled

to the K and P matrices in the PYJETS common block, while the latter is very frequently

used. Also common-block names are six characters long and start with PY. There are three

integer functions, PYK, PYCHGE and PYCOMP. In all routines where they are to be used, they

have to be declared INTEGER.

An index to (almost) all subprograms and common-block variables is found in ap-

pendix B.

On the issue of initialization, the routines of different origin and functionality behave

quite differently. Routines that are intended to be called from many different places, such

as showers, fragmentation and decays, require no specific initialization (except for the

one implied by the presence of BLOCK DATA PYDATA, see above), i.e. each event and each

task stands on its own. Current common-block values are used to perform the tasks in

specific ways, and those rules can be changed from one event to the next (or even within

the generation of one and the same event) without any penalty. The random-number

generator is initialized at the first call, but usually this is transparent.

In the core process generation machinery (e.g. selection of the hard process kinematics),

on the other hand, a sizable amount of initialization is performed in the PYINIT call, and

thereafter the events generated by PYEVNT all obey the rules established at that point.

This improves the efficiency of the generation process, and also ties in with the Monte

Carlo integration of the process cross section over many events. Therefore common-block

variables that specify methods and constraints to be used have to be set before the PYINIT

call and then not be changed afterwards, with few exceptions. Of course, it is possible

to perform several PYINIT calls in the same run, but there is a significant time overhead

involved, so this is not something one would do for each new event. The two older separate

process generation routines PYEEVT (and some of the routines called by it) and PYONIA

also contain some elements of initialization, where there are a few advantages if events are

generated in a coherent fashion. The cross section is not as complicated here, however, so

the penalty for reinitialization is small, and also does not require any special user calls.

Apart from writing a title page, giving a brief initialization information, printing error

messages if need be, and responding to explicit requests for listings, all tasks of the program

are performed ‘silently’. All output is directed to unit MSTU(11), by default 6, and it is up

to you to set this unit open for write. The only exceptions are PYRGET, PYRSET and PYUPDA

where, for obvious reasons, the input/output file number is specified at each call. Here you

again have to see to it that proper read/write access is set.

The programs are extremely versatile, but the price to be paid for this is having a

large number of adjustable parameters and switches for alternative modes of operation.

No single user is ever likely to need more than a fraction of the available options. Since

all these parameters and switches are assigned sensible default values, there is no reason

to worry about them until the need arises.
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Unless explicitly stated (or obvious from the context) all switches and parameters can

be changed independently of each other. One should note, however, that if only a few

switches/parameters are changed, this may result in an artificially bad agreement with

data. Many disagreements can often be cured by a subsequent retuning of some other

parameters of the model, in particular those that were once determined by a comparison

with data in the context of the default scenario. For example, for e+e− annihilation, such

a retuning could involve one QCD parameter (αs or Λ), the longitudinal fragmentation

function, and the average transverse momentum in fragmentation.

The program contains a number of checks that requested processes have been imple-

mented, that flavours specified for jet systems make sense, that the energy is sufficient to

allow hadronization, that the memory space in PYJETS is large enough, etc. If anything

goes wrong that the program can catch (obviously this may not always be possible), an

error message will be printed and the treatment of the corresponding event will be cut

short. In serious cases, the program will abort. As long as no error messages appear on the

output, it may not be worthwhile to look into the rules for error checking, but if but one

message appears, it should be enough cause for alarm to receive prompt attention. Also

warnings are sometimes printed. These are less serious, and the experienced user might

deliberately do operations which go against the rules, but still can be made to make sense

in their context. Only the first few warnings will be printed, thereafter the program will

be quiet. By default, the program is set to stop execution after ten errors, after printing

the last erroneous event.

It must be emphasized that not all errors will be caught. In particular, one tricky

question is what happens if an integer-valued common-block switch or subroutine/function

argument is used with a value that is not defined. In some subroutine calls, a prompt return

will be expedited, but in most instances the subsequent action is entirely unpredictable,

and often completely haywire. The same goes for real-valued variables that are assigned

values outside the physically sensible range. One example will suffice here: if PARJ(2) is

defined as the s/u suppression factor, a value > 1 will not give more profuse production of

s than of u, but actually a spillover into c production. Users, beware!

3.4 Manual conventions

In the manual parts of this report, some conventions are used. All names of subprograms,

common blocks and variables are given in upper-case ‘typewriter’ style, e.g. MSTP(111) =

0. Also program examples are given in this style.

If a common-block variable must have a value set at the beginning of execution, then

a default value is stored in the block data subprogram PYDATA. Such a default value is

usually indicated by a ‘(D = . . . )’ immediately after the variable name, e.g.

MSTJ(1) : (D = 1) choice of fragmentation scheme.

All variables in the fragmentation-related common blocks (with very few exceptions,

clearly marked) can be freely changed from one event to the next, or even within the

treatment of one single event; see discussion on initialization in the previous section. In

the process-generation machinery common blocks the situation is more complicated. The

values of many switches and parameters are used already in the PYINIT call, and cannot
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be changed after that. The problem is mentioned in the preamble to the afflicted common

blocks, which in particular means PYPARS and PYSUBS. For the variables which may still

be changed from one event to the next, a ‘(C)’ is added after the ‘(D = . . . )’ statement.

Normally, variables internal to the program are kept in separate common blocks and

arrays, but in a few cases such internal variables appear among arrays of switches and

parameters, mainly for historical reasons. These are denoted by ‘(R)’ for variables you

may want to read, because they contain potentially interesting information, and by ‘(I)’

for purely internal variables. In neither case may the variables be changed by you.

In the description of a switch, the alternatives that this switch may take are often

enumerated, e.g.

MSTJ(1) : (D = 1) choice of fragmentation scheme.

= 0 : no jet fragmentation at all.

= 1 : string fragmentation according to the Lund model.

= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).

If you then use any value other than 0, 1 or 2, results are undefined. The action could

even be different in different parts of the program, depending on the order in which the

alternatives are identified.

It is also up to you to choose physically sensible values for parameters: there is no

check on the allowed ranges of variables. We gave an example of this at the end of the

preceding section.

Subroutines you are expected to use are enclosed in a box at the point where they are

defined:

CALL PYLIST(MLIST)

This is followed by a description of input or output parameters. The difference between

input and output is not explicitly marked, but should be obvious from the context. In fact,

the event-analysis routines of section 15.5 return values, while all the rest only have input

variables.

Routines that are only used internally are not boxed in. However, we use boxes for all

common blocks, so as to enhance the readability.

In running text, often specific switches and parameters will be mentioned, without

a reference to the place where they are described further. The Index at the very end of

the document allows you to find this place. Often names for switches begin with MST

and parameters with PAR. No common-block variables begin with PY. There is thus no

possibility to confuse an array element with a function or subroutine call.

An almost complete list of common blocks, with brief comments on their main func-

tions, is the following:

C...The event record.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Parameters.
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COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

C...Particle properties + some flavour parameters.

COMMON/PYDAT2KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

C...Decay information.

COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

C...Particle names

COMMON/PYDAT4/CHAF(500,2)

CHARACTER CHAF*16

C...Random number generator information.

COMMON/PYDATR/MRPY(6),RRPY(100)

C...Selection of hard scattering subprocesses.

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Internal variables.

COMMON/PYINT1/MINT(400),VINT(400)

C...Process information.

COMMON/PYINT2/ISET(500),KFPR(500,2),COEF(500,20),ICOL(40,4,2)

C...Parton distributions and cross sections.

COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000)

C...Resonance width and secondary decay treatment.

COMMON/PYINT4/MWID(500),WIDS(500,5)

C...Generation and cross section statistics.

COMMON/PYINT5/NGENPD,NGEN(0:500,3),XSEC(0:500,3)

C...Process names.

COMMON/PYINT6/PROC(0:500)

CHARACTER PROC*28

C...Total cross sections.

COMMON/PYINT7/SIGT(0:6,0:6,0:5)

C...Photon parton distributions: total and valence only.

COMMON/PYINT8/XPVMD(-6:6),XPANL(-6:6),XPANH(-6:6),XPBEH(-6:6),

&XPDIR(-6:6)

COMMON/PYINT9/VXPVMD(-6:6),VXPANL(-6:6),VXPANH(-6:6),VXPDGM(-6:6)

C...Colour tag information in the Les Houches Accord format.

COMMON/PYCTAG/NCT, MCT(4000,2)

C...Partons and their scales for the new pT-ordered final-state showers.

PARAMETER (MAXNUP=500)

COMMON/PYPART/NPART,NPARTD,IPART(MAXNUP),PTPART(MAXNUP)

C...Multiple interactions in the new model.

COMMON/PYINTM/KFIVAL(2,3),NMI(2),IMI(2,800,2),NVC(2,-6:6),

&XASSOC(2,-6:6,240),XPSVC(-6:6,-1:240),PVCTOT(2,-1:1),

&XMI(2,240),Q2MI(240),IMISEP(0:240)

C...Hardest initial-state radiation in the new model.
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COMMON/PYISMX/MIMX,JSMX,KFLAMX,KFLCMX,KFBEAM(2),NISGEN(2,240),

&PT2MX,PT2AMX,ZMX,RM2CMX,Q2BMX,PHIMX

C...Possible joined interactions in backwards evolution.

COMMON/PYISJN/MJN1MX,MJN2MX,MJOIND(2,240)

C...Supersymmetry parameters.

COMMON/PYMSSM/IMSS(0:99),RMSS(0:99)

C...Supersymmetry mixing matrices.

COMMON/PYSSMT/ZMIX(4,4),UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),

&SFMIX(16,4),ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)

C...R-parity-violating couplings in supersymmetry.

COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)

C...Internal parameters for R-parity-violating processes.

COMMON/PYRVNV/AB(2,16,2),RMS(0:3),RES(6,5),IDR,IDR2,DCMASS,KFR(3)

COMMON/PYRVPM/RM(0:3),A(2),B(2),RESM(2),RESW(2),MFLAG

LOGICAL MFLAG

C...Parameters for Gauss integration of supersymmetric widths.

COMMON/PYINTS/XXM(20)

COMMON/PYG2DX/X1

C...Parameters of TechniColor Strawman Model and other compositeness.

COMMON/PYTCSM/ITCM(0:99),RTCM(0:99)

C...Histogram information.

COMMON/PYBINS/IHIST(4),INDX(1000),BIN(20000)

C...HEPEVT common block.

PARAMETER (NMXHEP=4000)

COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)

DOUBLE PRECISION PHEP,VHEP

C...User process initialization common block.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP

COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),

&LPRUP(MAXPUP)

C...User process event common block.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP

COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),

&VTIMUP(MAXNUP),SPINUP(MAXNUP)
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3.5 Getting started with the simple routines

Normally Pythia is expected to take care of the full event generation process. At times,

however, one may want to access the more simple underlying routines, which allow a large

flexibility to ‘do it yourself’. We therefore start with a few cases of this kind, at the same

time introducing some of the more frequently used utility routines.

As a first example, assume that you want to study the production of uu 2-jet systems

at 20 GeV energy. To do this, write a main program

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

CALL PY2ENT(0,2,-2,20D0)

CALL PYLIST(1)

END

and run this program, linked together with Pythia. The routine PY2ENT is specifically

intended for storing two entries (partons or particles). The first argument (0) is a command

to perform fragmentation and decay directly after the entries have been stored, the second

and third that the two entries are u (2) and u (−2), and the last that the c.m. energy of

the pair is 20 GeV, in double precision. When this is run, the resulting event is stored in

the PYJETS common block. This information can then be read out by you. No output is

produced by PY2ENT itself, except for a title page which appears once for every Pythia

run.

Instead the second command, to PYLIST, provides a simple visible summary of the

information stored in PYJETS. The argument (1) indicates that the short version should be

used, which is suitable for viewing the listing directly on an 80-column terminal screen. It

might look as shown here.

Event listing (summary)

I particle/jet KS KF orig p_x p_y p_z E m

1 (u) A 12 2 0 0.000 0.000 10.000 10.000 0.006

2 (ubar) V 11 -2 0 0.000 0.000 -10.000 10.000 0.006

3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000

4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885

5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781

6 pi+ 1 211 3 0.125 -0.266 0.097 0.339 0.140

7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193

8 (K*+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846

9 p~- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938

10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140

11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140

12 (pi0) 11 111 4 -0.011 0.301 0.546 0.638 0.135

13 pi- 1 -211 5 0.089 0.343 2.089 2.124 0.140

14 (pi0) 11 111 5 -0.316 -0.197 4.449 4.467 0.135
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15 (Lambda0) 11 3122 7 -0.208 0.014 -1.403 1.804 1.116

16 gamma 1 22 7 -0.046 0.020 0.006 0.050 0.000

17 K+ 1 321 8 -0.084 0.299 -2.139 2.217 0.494

18 (pi0) 11 111 8 -0.040 0.410 -0.614 0.751 0.135

19 gamma 1 22 12 0.059 0.146 0.224 0.274 0.000

20 gamma 1 22 12 -0.070 0.155 0.322 0.364 0.000

21 gamma 1 22 14 -0.322 -0.162 4.027 4.043 0.000

22 gamma 1 22 14 0.006 -0.035 0.422 0.423 0.000

23 p+ 1 2212 15 -0.178 0.033 -1.343 1.649 0.938

24 pi- 1 -211 15 -0.030 -0.018 -0.059 0.156 0.140

25 gamma 1 22 18 -0.006 0.384 -0.585 0.699 0.000

26 gamma 1 22 18 -0.034 0.026 -0.029 0.052 0.000

sum: 0.00 0.000 0.000 0.000 20.000 20.000

(A few blanks have been removed between the columns to make it fit into the format of

this text.) Look in the particle/jet column and note that the first two lines are the original

u and u. The parentheses enclosing the names, ‘(u)’ and ‘(ubar)’, are there as a reminder

that these partons actually have been allowed to fragment. The partons are still retained

so that event histories can be studied. Also note that the KF (flavour code) column contains

2 in the first line and −2 in the second. These are the codes actually stored to denote the

presence of a u and a u, cf. the PY2ENT call, while the names written are just conveniences

used when producing visible output. The A and V near the end of the particle/jet column

indicate the beginning and end of a string (or cluster, or independent fragmentation) parton

system; any intermediate entries belonging to the same system would have had an I in that

column. (This gives a poor man’s representation of an up-down arrow, l.)
In the orig (origin) column, the zeros indicate that u and u are two initial entries.

The subsequent line, number 3, denotes the fragmenting uu string system as a whole, and

has origin 1, since the first parton of this string system is entry number 1. The particles

in lines 4–10 have origin 3 to denote that they come directly from the fragmentation of

this string. In string fragmentation it is not meaningful to say that a particle comes from

only the u quark or only the u one. It is the string system as a whole that gives a ρ+, a

ρ−, a π+, a Σ0, a K∗+, a p−, and a π−. Note that some of the particle names are again

enclosed in parentheses, indicating that these particles are not present in the final state

either, but have decayed further. Thus the π− in line 13 and the π0 in line 14 have origin

5, as an indication that they come from the decay of the ρ− in line 5. Only the names not

enclosed in parentheses remain at the end of the fragmentation/decay chain, and are thus

experimentally observable. The actual status code used to distinguish between different

classes of entries is given in the KS column; codes in the range 1–10 correspond to remaining

entries, and those above 10 to those that have fragmented or decayed.

The columns with p x, p y, p z, E and m are quite self-explanatory. All momenta,

energies and masses are given in units of GeV, since the speed of light is taken to be c = 1.

Note that energy and momentum are conserved at each step of the fragmentation/decay

process (although there exist options where this is not true). Also note that the z axis plays
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the rôle of preferred direction, along which the original partons are placed. The final line

is intended as a quick check that nothing funny happened. It contains the summed charge,

summed momentum, summed energy and invariant mass of the final entries at the end of

the fragmentation/decay chain, and the values should agree with the input implied by the

PY2ENT arguments. (In fact, warnings would normally appear on the output if anything

untoward happened, but that is another story.)

The above example has illustrated roughly what information is to be had in the event

record, but not so much about how it is stored. This is better seen by using a 132-column

format for listing events. Try e.g. the following program

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

CALL PY3ENT(0,1,21,-1,30D0,0.9D0,0.7D0)

CALL PYLIST(2)

CALL PYEDIT(3)

CALL PYLIST(2)

END

where a 3-jet dgd event is generated in the first executable line and listed in the second.

This listing will contain the numbers as directly stored in the common block PYJETS

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

For particle I, K(I,1) thus gives information on whether or not a parton or particle has

fragmented or decayed, K(I,2) gives the particle code, K(I,3) its origin, K(I,4) and

K(I,5) the position of fragmentation/decay products, and P(I,1)–P(I,5) momentum,

energy and mass. The number of lines in current use is given by N, i.e. 1 ≤ I ≤ N. The

V matrix contains decay vertices; to view those PYLIST(3) has to be used. NPAD is a

dummy, needed to avoid some compiler troubles. It is important to learn the rules for how

information is stored in PYJETS.

The third executable line in the program illustrates another important point about

Pythia: a number of routines are available for manipulating and analyzing the event

record after the event has been generated. Thus PYEDIT(3) will remove everything except

stable charged particles, as shown by the result of the second PYLIST call. More advanced

possibilities include things like sphericity or clustering routines. Pythia also contains

some simple routines for histogramming, used to give self-contained examples of analysis

procedures.

Apart from the input arguments of subroutine calls, control on the doings of Pythia

may be imposed via many common blocks. Here sensible default values are always provided.

A user might want to switch off all particle decays by putting MSTJ(21) = 0 or increase

the s/u ratio in fragmentation by putting PARJ(2) = 0.40D0, to give but two examples. It

is by exploring the possibilities offered here that Pythia can be turned into an extremely

versatile tool, even if all the nice physics is already present in the default values.

As a final, semi-realistic example, assume that the p⊥ spectrum of π+ particles is to

be studied in 91.2 GeV e+e− annihilation events, where p⊥ is to be defined with respect
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to the sphericity axis. Using the internal routines for simple histogramming, a complete

program might look like

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Book histograms.

CALL PYBOOK(1,’pT spectrum of pi+’,100,0D0,5D0)

C...Number of events to generate. Loop over events.

NEVT=100

DO 110 IEVT=1,NEVT

C...Generate event. List first one.

CALL PYEEVT(0,91.2D0)

IF(IEVT.EQ.1) CALL PYLIST(1)

C...Find sphericity axis.

CALL PYSPHE(SPH,APL)

C...Rotate event so that sphericity axis is along z axis.

CALL PYEDIT(31)

C...Loop over all particles, but skip if not pi+.

DO 100 I=1,N

IF(K(I,2).NE.211) GOTO 100

C...Calculate pT and fill in histogram.

PT=SQRT(P(I,1)**2+P(I,2)**2)

CALL PYFILL(1,PT,1D0)

C...End of particle and event loops.

100 CONTINUE

110 CONTINUE

C...Normalize histogram properly and list it.

CALL PYFACT(1,20D0/NEVT)

CALL PYHIST
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END

Study this program, try to understand what happens at each step, and run it to check that

it works. You should then be ready to look at the relevant sections of this report and start

writing your own programs.

3.6 Getting started with the event generation machinery

A run with the full Pythia event generation machinery has to be more strictly organized

than the simple examples above, in that it is necessary to initialize the generation before

events can be generated, and in that it is not possible to change switches and parameters

freely during the course of the run. A fairly precise recipe for how a run should be structured

can therefore be given.

Thus, the nowadays normal usage of Pythia can be subdivided into three steps.

1. The initialization step. It is here that all the basic characteristics of the coming

generation are specified. The material in this section includes the following.

• Declarations for double precision and integer variables and integer functions:

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

• Common blocks, at least the following, and maybe some more:

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

• Selection of required processes. Some fixed ‘menus’ of subprocesses can be se-

lected with different MSEL values, but with MSEL=0 it is possible to compose ‘à

la carte’, using the subprocess numbers. To generate processes 14, 18 and 29,

for instance, one needs

MSEL=0

MSUB(14)=1

MSUB(18)=1

MSUB(29)=1

• Selection of kinematics cuts in the CKIN array. To generate hard scatterings

with 50 GeV ≤ p⊥ ≤ 100 GeV, for instance, use

CKIN(3)=50D0

CKIN(4)=100D0

Unfortunately, initial- and final-state radiation will shift around the kinematics

of the hard scattering, making the effects of cuts less predictable. One therefore

always has to be very careful that no desired event configurations are cut out.

• Definition of underlying physics scenario, e.g. Higgs mass.
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• Selection of parton-distribution sets, Q2 definitions, showering and multiple in-

teractions parameters, and all other details of the generation.

• Switching off of generator parts not needed for toy simulations, e.g. fragmenta-

tion for parton level studies.

• Initialization of the event generation procedure. Here kinematics is set up,

maxima of differential cross sections are found for future Monte Carlo generation,

and a number of other preparatory tasks carried out. Initialization is performed

by PYINIT, which should be called only after the switches and parameters above

have been set to their desired values. The frame, the beam particles and the

energy have to be specified, e.g.

CALL PYINIT(’CMS’,’p’,’pbar’,1800D0)

• Any other initial material required by you, e.g. histogram booking.

2. The generation loop. It is here that events are generated and studied. It includes

the following tasks:

• Generation of the next event, with

CALL PYEVNT

or, for the new multiple interactions and showering model,

CALL PYEVNW

• Printing of a few events, to check that everything is working as planned, with

CALL PYLIST(1)

• An analysis of the event for properties of interest, either directly reading out

information from the PYJETS common block or making use of the utility routines

in Pythia.

• Saving of events on disk or tape, or interfacing to detector simulation.

3. The finishing step. Here the tasks are:

• Printing a table of deduced cross sections, obtained as a by-product of the Monte

Carlo generation activity, with the command

CALL PYSTAT(1)

• Printing histograms and other user output.

To illustrate this structure, imagine a toy example, where one wants to simulate the

production of a 300 GeV Higgs particle. In Pythia, a program for this might look some-

thing like the following.

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common blocks.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)
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COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Number of events to generate. Switch on proper processes.

NEV=1000

MSEL=0

MSUB(102)=1

MSUB(123)=1

MSUB(124)=1

C...Select Higgs mass and kinematics cuts in mass.

PMAS(25,1)=300D0

CKIN(1)=290D0

CKIN(2)=310D0

C...For simulation of hard process only: cut out unnecessary tasks.

MSTP(61)=0

MSTP(71)=0

MSTP(81)=0

MSTP(111)=0

C...Initialize and list partial widths.

CALL PYINIT(’CMS’,’p’,’p’,14000D0)

CALL PYSTAT(2)

C...Book histogram.

CALL PYBOOK(1,’Higgs mass’,50,275D0,325D0)

C...Generate events. Look at first few.

DO 200 IEV=1,NEV

CALL PYEVNT

IF(IEV.LE.3) CALL PYLIST(1)

C...Loop over particles to find Higgs and histogram its mass.

DO 100 I=1,N

IF(K(I,1).LT.20.AND.K(I,2).EQ.25) HMASS=P(I,5)

100 CONTINUE

CALL PYFILL(1,HMASS,1D0)

200 CONTINUE

C...Print cross sections and histograms.

CALL PYSTAT(1)
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CALL PYHIST

END

Here 102, 123 and 124 are the three main Higgs production graphs gg → h, ZZ → h, and

WW → h, and MSUB(ISUB) = 1 is the command to switch on process ISUB. Full freedom

to combine subprocesses ‘à la carte’ is ensured by MSEL = 0; ready-made ‘menus’ can be

ordered with other MSEL numbers. The PMAS command sets the mass of the Higgs, and the

CKIN variables the desired mass range of the Higgs — a Higgs with a 300 GeV nominal mass

actually has a fairly broad Breit-Wigner type mass distribution. The MSTP switches that

come next are there to modify the generation procedure, in this case to switch off initial-

and final-state radiation, multiple interactions among beam jets, and fragmentation, to

give only the ‘parton skeleton’ of the hard process. The PYINIT call initializes Pythia, by

finding maxima of cross sections, recalculating the Higgs decay properties (which depend

on the Higgs mass), etc. The decay properties can be listed with PYSTAT(2).

Inside the event loop, PYEVNT is called to generate an event, and PYLIST(1) to list

the event. The information used by PYLIST(1) is the event record, stored in the common

block PYJETS. Here one finds all produced particles, both final and intermediate ones, with

information on particle species and event history (K array), particle momenta (P array)

and production vertices (V array). In the loop over all particles produced, 1 through N, the

Higgs particle is found by its code, K(I,2) = 25, and its mass is stored in P(I,5).

After all events have been generated, PYSTAT(1) gives a summary of the number of

events generated in the various allowed channels, and the inferred cross sections.

In the run above, a typical event listing might look like the following.

Event listing (summary)

I particle/jet KF p_x p_y p_z E m

1 !p+! 2212 0.000 0.000 8000.000 8000.000 0.938

2 !p+! 2212 0.000 0.000-8000.000 8000.000 0.938

======================================================================

3 !g! 21 -0.505 -0.229 28.553 28.558 0.000

4 !g! 21 0.224 0.041 -788.073 788.073 0.000

5 !g! 21 -0.505 -0.229 28.553 28.558 0.000

6 !g! 21 0.224 0.041 -788.073 788.073 0.000

7 !H0! 25 -0.281 -0.188 -759.520 816.631 300.027

8 !W+! 24 120.648 35.239 -397.843 424.829 80.023

9 !W-! -24 -120.929 -35.426 -361.677 391.801 82.579

10 !e+! -11 12.922 -4.760 -160.940 161.528 0.001

11 !nu_e! 12 107.726 39.999 -236.903 263.302 0.000

12 !s! 3 -62.423 7.195 -256.713 264.292 0.199

13 !cbar! -4 -58.506 -42.621 -104.963 127.509 1.350

======================================================================
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14 (H0) 25 -0.281 -0.188 -759.520 816.631 300.027

15 (W+) 24 120.648 35.239 -397.843 424.829 80.023

16 (W-) -24 -120.929 -35.426 -361.677 391.801 82.579

17 e+ -11 12.922 -4.760 -160.940 161.528 0.001

18 nu_e 12 107.726 39.999 -236.903 263.302 0.000

19 s A 3 -62.423 7.195 -256.713 264.292 0.199

20 cbar V -4 -58.506 -42.621 -104.963 127.509 1.350

21 ud_1 A 2103 -0.101 0.176 7971.328 7971.328 0.771

22 d V 1 -0.316 0.001 -87.390 87.390 0.010

23 u A 2 0.606 0.052 -0.751 0.967 0.006

24 uu_1 V 2203 0.092 -0.042-7123.668 7123.668 0.771

======================================================================

sum: 2.00 0.00 0.00 0.00 15999.98 15999.98

The above event listing is abnormally short, in part because some columns of information

were removed to make it fit into this text, in part because all initial- and final-state QCD

radiation, all non-trivial beam jet structure, and all fragmentation was inhibited in the

generation. Therefore only the skeleton of the process is visible. In lines 1 and 2 one

recognizes the two incoming protons. In lines 3 and 4 are incoming partons before initial-

state radiation and in 5 and 6 after — since there is no such radiation they coincide here.

Line 7 shows the Higgs produced by gg fusion, 8 and 9 its decay products and 10–13 the

second-step decay products. Up to this point lines give a summary of the event history,

indicated by the exclamation marks that surround particle names (and also reflected in the

K(I,1) code, not shown). From line 14 onwards come the particles actually produced in the

final states, first in lines 14–16 particles that subsequently decayed, which have their names

surrounded by brackets, and finally the particles and partons left in the end, including beam

remnants. Here this also includes a number of unfragmented partons, since fragmentation

was inhibited. Ordinarily, the listing would have gone on for a few hundred more lines, with

the particles produced in the fragmentation and their decay products. The final line gives

total charge and momentum, as a convenient check that nothing unexpected happened.

The first column of the listing is just a counter, the second gives the particle name and

information on status and string drawing (the A and V), the third the particle-flavour

code (which is used to give the name), and the subsequent columns give the momentum

components.

One of the main problems is to select kinematics efficiently. Imagine for instance that

one is interested in the production of a single Z with a transverse momentum in excess of

50 GeV. If one tries to generate the inclusive sample of Z events, by the basic production

graphs qq → Z, then most events will have low transverse momenta and will have to be

discarded. That any of the desired events are produced at all is due to the initial-state

generation machinery, which can build up transverse momenta for the incoming q and

q. However, the amount of initial-state radiation cannot be constrained beforehand. To

increase the efficiency, one may therefore turn to the higher-order processes qg → Zq and

qq → Zg, where already the hard subprocess gives a transverse momentum to the Z. This
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transverse momentum can be constrained as one wishes, but again initial- and final-state

radiation will smear the picture. If one were to set a p⊥ cut at 50 GeV for the hard-

process generation, those events where the Z was given only 40 GeV in the hard process

but got the rest from initial-state radiation would be missed. Not only therefore would

cross sections come out wrong, but so might the typical event shapes. In the end, it is

therefore necessary to find some reasonable compromise, by starting the generation at 30

GeV, say, if one knows that only rarely do events below this value fluctuate up to 50 GeV.

Of course, most events will therefore not contain a Z above 50 GeV, and one will have to

live with some inefficiency. It is not uncommon that only one event out of ten can be used,

and occasionally it can be even worse.

If it is difficult to set kinematics, it is often easier to set the flavour content of a

process. In a Higgs study, one might wish, for example, to consider the decay h0 → Z0Z0,

with each Z0 → e+e− or µ+µ−. It is therefore necessary to inhibit all other h0 and Z0 decay

channels, and also to adjust cross sections to take into account this change, all of which

is fairly straightforward. The same cannot be said for decays of ordinary hadrons, where

the number produced in a process is not known beforehand, and therefore inconsistencies

easily can arise if one tries to force specific decay channels.

In the examples given above, all run-specific parameters are set in the code (in the

main program; alternatively it could be in a subroutine called by the main program).

This approach is allowing maximum flexibility to change parameters during the course

of the run. However, in many experimental collaborations one does not want to allow

this freedom, but only one set of parameters, to be read in from an external file at the

beginning of a run and thereafter never changed. This in particular applies when Pythia

is to be linked with other libraries, such as Geant [Bru89] and detector-specific software.

While a linking of a normal-sized main program with Pythia is essentially instantaneous

on current platforms (typically less than a second), this may not hold for other libraries.

For this purpose one then needs a parser of Pythia parameters, the core of which can be

provided by the PYGIVE routine.

As an example, consider a main program of the form

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Input and output strings.

CHARACTER FRAME*12,BEAM*12,TARGET*12,PARAM*100

C...Read parameters for PYINIT call.

READ(*,*) FRAME,BEAM,TARGET,ENERGY

C...Read number of events to generate, and to print.

READ(*,*) NEV,NPRT
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C...Loop over reading and setting parameters/switches.

100 READ(*,’(A)’,END=200) PARAM

CALL PYGIVE(PARAM)

GOTO 100

C...Initialize PYTHIA.

200 CALL PYINIT(FRAME,BEAM,TARGET,ENERGY)

C...Event generation loop

DO 300 IEV=1,NEV

CALL PYEVNT

IF(IEV.LE.NPRT) CALL PYLIST(1)

300 CONTINUE

C...Print cross sections.

CALL PYSTAT(1)

END

and a file indata with the contents

CMS,p,p,14000.

1000,3

! below follows commands sent to PYGIVE

MSEL=0 ! Mix processes freely

MSUB(102)=1 ! g + g -> h0

MSUB(123)=1 ! Z0 + Z0 -> h0

MSUB(124)=1 ! W+ + W- -> h0

PMAS(25,1)=300. ! Higgs mass

CKIN(1)=290. ! lower cutoff on mass

CKIN(2)=310. ! upper cutoff on mass

MSTP(61)=0 ! no initial-state showers

MSTP(71)=0 ! no final-state showers

MSTP(81)=0 ! no multiple interactions

MSTP(111)=0 ! no hadronization

Here the text following the exclamation marks is interpreted as a comment by PYGIVE, and

thus purely intended to allow better documentation of changes. The main program could

then be linked to Pythia, to an executable a.out, and run e.g. with a Unix command line

a.out < indata > output

to produce results on the file output. Here the indata could be changed without requiring

a recompilation. Of course, the main program would have to be more realistic, e.g. with

events saved to disk or tape, but the principle should be clear.

Further examples of how to use Pythia are available on the Pythia webpage.
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4. Monte Carlo techniques

Quantum mechanics introduces a concept of randomness in the behaviour of physical pro-

cesses. The virtue of event generators is that this randomness can be simulated by the use

of Monte Carlo techniques. In the process, the program authors have to use some ingenuity

to find the most efficient way to simulate an assumed probability distribution. A detailed

description of possible techniques would carry us too far, but in this section some of the

most frequently used approaches are presented, since they will appear in discussions in

subsequent sections. Further examples may be found e.g. in [Jam80].

First of all one assumes the existence of a random number generator. This is a (Fortran)

function which, each time it is called, returns a number R in the range between 0 and 1,

such that the inclusive distribution of numbers R is flat in the range, and such that different

numbers R are uncorrelated. The random number generator that comes with Pythia is

described at the end of this section, and we defer the discussion until then.

4.1 Selection from a distribution

The situation that is probably most common is that we know a function f(x) which is non-

negative in the allowed x range xmin ≤ x ≤ xmax. We want to select an x ‘at random’ so

that the probability in a small interval dx around a given x is proportional to f(x) dx. Here

f(x) might be a fragmentation function, a differential cross section, or any of a number of

distributions.

One does not have to assume that the integral of f(x) is explicitly normalized to unity:

by the Monte Carlo procedure of picking exactly one accepted x value, normalization is

implicit in the final result. Sometimes the integral of f(x) does carry a physics content of

its own, as part of an overall weight factor we want to keep track of. Consider, for instance,

the case when x represents one or several phase-space variables and f(x) a differential cross

section; here the integral has a meaning of total cross section for the process studied. The

task of a Monte Carlo is then, on the one hand, to generate events one at a time, and,

on the other hand, to estimate the total cross section. The discussion of this important

example is deferred to section 7.4.

If it is possible to find a primitive function F (x) which has a known inverse F−1(x),

an x can be found as follows (method 1):
∫ x

xmin

f(x) dx = R

∫ xmax

xmin

f(x) dx

=⇒ x = F−1(F (xmin) + R(F (xmax) − F (xmin))) . (4.1)

The statement of the first line is that a fraction R of the total area under f(x) should be

to the left of x. However, seldom are functions of interest so nice that the method above

works. It is therefore necessary to use more complicated schemes.

Special tricks can sometimes be found. Consider e.g. the generation of a Gaussian

f(x) = exp(−x2). This function is not integrable, but if we combine it with the same

Gaussian distribution of a second variable y, it is possible to transform to polar coordinates

f(x) dx f(y) dy = exp(−x2 − y2) dxdy = r exp(−r2) dr dϕ , (4.2)
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and now the r and ϕ distributions may be easily generated and recombined to yield x.

At the same time we get a second number y, which can also be used. For the generation

of transverse momenta in fragmentation, this is very convenient, since in fact we want to

assign two transverse degrees of freedom.

If the maximum of f(x) is known, f(x) ≤ fmax in the x range considered, a hit-or-miss

method will always yield the correct answer (method 2):

1. select an x with even probability in the allowed range, i.e. x = xmin +R(xmax−xmin);

2. compare a (new) R with the ratio f(x)/fmax; if f(x)/fmax ≤ R, then reject the x

value and return to point 1 for a new try;

3. otherwise the most recent x value is retained as final answer.

The probability that f(x)/fmax > R is proportional to f(x); hence the correct distribution

of retained x values. The efficiency of this method, i.e. the average probability that an

x will be retained, is (
∫

f(x) dx)/(fmax(xmax − xmin)). The method is acceptable if this

number is not too low, i.e. if f(x) does not fluctuate too wildly.

Very often f(x) does have narrow spikes, and it may not even be possible to define an

fmax. An example of the former phenomenon is a function with a singularity just outside

the allowed region, an example of the latter an integrable singularity just at the xmin and/or

xmax borders. Variable transformations may then be used to make a function smoother.

Thus a function f(x) which blows up as 1/x for x → 0, with an xmin close to 0, would

instead be roughly constant if transformed to the variable y = ln x.

The variable transformation strategy may be seen as a combination of methods 1 and

2, as follows. Assume the existence of a function g(x), with f(x) ≤ g(x) over the x range

of interest. Here g(x) is picked to be a ‘simple’ function, such that the primitive function

G(x) and its inverse G−1(x) are known. Then (method 3):

1. select an x according to the distribution g(x), using method 1;

2. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x

value and return to point 1 for a new try;

3. otherwise the most recent x value is retained as final answer.

This works, since the first step will select x with a probability g(x) dx = dG(x) and the

second retain this choice with probability f(x)/g(x). The total probability to pick a value

x is then just the product of the two, i.e. f(x) dx.

If f(x) has several spikes, method 3 may work for each spike separately, but it may not

be possible to find a g(x) that covers all of them at the same time, and which still has an

invertible primitive function. However, assume that we can find a function g(x) =
∑

i gi(x),

such that f(x) ≤ g(x) over the x range considered, and such that the functions gi(x) each

are non-negative and simple, in the sense that we can find primitive functions and their

inverses. In that case (method 4):

1. select an i at random, with relative probability given by the integrals

∫ xmax

xmin

gi(x) dx = Gi(xmax) − Gi(xmin) ; (4.3)

– 60 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

2. for the i selected, use method 1 to find an x, i.e.

x = G−1
i (Gi(xmin) + R(Gi(xmax) − Gi(xmin))) ; (4.4)

3. compare a (new) R with the ratio f(x)/g(x); if f(x)/g(x) ≤ R, then reject the x

value and return to point 1 for a new try;

4. otherwise the most recent x value is retained as final answer.

This is just a trivial extension of method 3, where steps 1 and 2 ensure that, on the average,

each x value picked there is distributed according to g(x): the first step picks i with relative

probability
∫

gi(x) dx, the second x with absolute probability gi(x)/
∫

gi(x) dx (this is one

place where one must remember to do normalization correctly); the product of the two is

therefore gi(x) and the sum over all i gives back g(x).

We have now arrived at an approach that is sufficiently powerful for a large selection

of problems. In general, for a function f(x) which is known to have sharp peaks in a few

different places, the generic behaviour at each peak separately may be covered by one or a

few simple functions gi(x), to which one adds a few more gi(x) to cover the basic behaviour

away from the peaks. By a suitable selection of the relative strengths of the different gi’s,

it is possible to find a function g(x) that matches well the general behaviour of f(x), and

thus achieve a reasonable Monte Carlo efficiency.

The major additional complication is when x is a multidimensional variable. Usually

the problem is not so much f(x) itself, but rather that the phase-space boundaries may

be very complicated. If the boundaries factorize it is possible to pick phase-space points

restricted to the desired region. Otherwise the region may have to be inscribed in a hyper-

rectangle, with points picked within the whole hyper-rectangle but only retained if they

are inside the allowed region. This may lead to a significant loss in efficiency. Variable

transformations may often make the allowed region easier to handle.

There are two main methods to handle several dimensions, each with its set of vari-

ations. The first method is based on a factorized ansatz, i.e. one attempts to find a

function g(x) which is everywhere larger than f(x), and which can be factorized into

g(x) = g(1)(x1) g(2)(x2) · · · g(n)(xn), where x = (x1, x2, . . . , xn). Here each g(j)(xj) may

in its turn be a sum of functions g
(j)
i , as in method 4 above. First, each xj is selected

independently, and afterwards the ratio f(x)/g(x) is used to determine whether to retain

the point.

The second method is useful if the boundaries of the allowed region can be written in

a form where the maximum range of x1 is known, the allowed range of x2 only depends

on x1, that of x3 only on x1 and x2, and so on until xn, whose range may depend on all

the preceding variables. In that case it may be possible to find a function g(x) that can

be integrated over x2 through xn to yield a simple function of x1, according to which x1 is

selected. Having done that, x2 is selected according to a distribution which now depends

on x1, but with x3 through xn integrated over. In particular, the allowed range for x2 is

known. The procedure is continued until xn is reached, where now the function depends

on all the preceding xj values. In the end, the ratio f(x)/g(x) is again used to determine

whether to retain the point.
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4.2 The veto algorithm

The ‘radioactive decay’ type of problems is very common, in particular in parton showers,

but it is also used, e.g. in the multiple interactions description in Pythia. In this kind of

problems there is one variable t, which may be thought of as giving a kind of time axis along

which different events are ordered. The probability that ‘something will happen’ (a nucleus

decay, a parton branch) at time t is described by a function f(t), which is non-negative

in the range of t values to be studied. However, this näıve probability is modified by the

additional requirement that something can only happen at time t if it did not happen at

earlier times t′ < t. (The original nucleus cannot decay once again if it already did decay;

possibly the decay products may decay in their turn, but that is another question.)

The probability that nothing has happened by time t is expressed by the function

N (t) and the differential probability that something happens at time t by P(t). The basic

equation then is

P(t) = −dN
dt

= f(t)N (t) . (4.5)

For simplicity, we shall assume that the process starts at time t = 0, with N (0) = 1.

The above equation can be solved easily if one notes that dN/N = d lnN :

N (t) = N (0) exp

{
−

∫ t

0
f(t′) dt′

}
= exp

{
−

∫ t

0
f(t′) dt′

}
, (4.6)

and thus

P(t) = f(t) exp

{
−

∫ t

0
f(t′) dt′

}
. (4.7)

With f(t) = c this is nothing but the textbook formulae for radioactive decay. In particular,

at small times the correct decay probability, P(t), agrees well with the input one, f(t), since

the exponential factor is close to unity there. At larger t, the exponential gives a dampening

which ensures that the integral of P(t) never can exceed unity, even if the integral of f(t)

does. The exponential can be seen as the probability that nothing happens between the

original time 0 and the final time t. In the parton-shower language, this corresponds to

the so-called Sudakov form factor.

If f(t) has a primitive function with a known inverse, it is easy to select t values

correctly:

∫ t

0
P(t′) dt′ = N (0) −N (t) = 1 − exp

{
−

∫ t

0
f(t′) dt′

}
= 1 − R , (4.8)

which has the solution

F (0) − F (t) = ln R =⇒ t = F−1(F (0) − ln R) . (4.9)

If f(t) is not sufficiently nice, one may again try to find a better function g(t), with

f(t) ≤ g(t) for all t ≥ 0. However to use method 3 with this g(t) would not work, since the

method would not correctly take into account the effects of the exponential term in P(t).

Instead one may use the so-called veto algorithm:
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1. start with i = 0 and t0 = 0;

2. add 1 to i and select ti = G−1(G(ti−1) − ln R), i.e. according to g(t), but with the

constraint that ti > ti−1,

3. compare a (new) R with the ratio f(ti)/g(ti); if f(ti)/g(ti) ≤ R, then return to point

2 for a new try;

4. otherwise ti is retained as final answer.

It may not be apparent why this works. Consider, however, the various ways in which

one can select a specific time t. The probability that the first try works, t = t1, i.e. that

no intermediate t values need be rejected, is given by

P0(t) = exp

{
−

∫ t

0
g(t′) dt′

}
g(t)

f(t)

g(t)
= f(t) exp

{
−

∫ t

0
g(t′) dt′

}
, (4.10)

where the exponential times g(t) comes from eq. (4.7) applied to g, and the ratio f(t)/g(t)

is the probability that t is accepted. Now consider the case where one intermediate time

t1 is rejected and t = t2 is only accepted in the second step. This gives

P1(t) =

∫ t

0
dt1 exp

{
−

∫ t1

0
g(t′) dt′

}
g(t1)

[
1 − f(t1)

g(t1)

]
exp

{
−

∫ t

t1

g(t′) dt′
}

g(t)
f(t)

g(t)
,

(4.11)

where the first exponential times g(t1) gives the probability that t1 is first selected, the

square brackets the probability that t1 is subsequently rejected, the following piece the

probability that t = t2 is selected when starting from t1, and the final factor that t is

retained. The whole is to be integrated over all possible intermediate times t1. The

exponentials together give an integral over the range from 0 to t, just as in P0, and the

factor for the final step being accepted is also the same, so therefore one finds that

P1(t) = P0(t)

∫ t

0
dt1 [g(t1) − f(t1)] . (4.12)

This generalizes. In P2 one has to consider two intermediate times, 0 ≤ t1 ≤ t2 ≤ t3 = t,

and so

P2(t) = P0(t)

∫ t

0
dt1 [g(t1) − f(t1)]

∫ t

t1

dt2 [g(t2) − f(t2)]

= P0(t)
1

2

(∫ t

0

[
g(t′) − f(t′)

]
dt′

)2

. (4.13)

The last equality is most easily seen if one also considers the alternative region 0 ≤ t2 ≤
t1 ≤ t, where the rôles of t1 and t2 have just been interchanged, and the integral therefore

has the same value as in the region considered. Adding the two regions, however, the

integrals over t1 and t2 decouple, and become equal. In general, for Pi, the i intermediate

times can be ordered in i! different ways. Therefore the total probability to accept t, in

any step, is

P(t) =
∞∑

i=0

Pi(t) = P0(t)
∞∑

i=0

1

i!

(∫ t

0

[
g(t′) − f(t′)

]
dt′

)i
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= f(t) exp

{
−

∫ t

0
g(t′) dt′

}
exp

{∫ t

0

[
g(t′) − f(t′)

]
dt′

}

= f(t) exp

{
−

∫ t

0
f(t′) dt′

}
, (4.14)

which is the desired answer.

If the process is to be stopped at some scale tmax, i.e. if one would like to remain with a

fraction N (tmax) of events where nothing happens at all, this is easy to include in the veto

algorithm: just iterate upwards in t at usual, but stop the process if no allowed branching

is found before tmax.

Usually f(t) is a function also of additional variables x. The methods of the preceding

section are easy to generalize if one can find a suitable function g(t, x) with f(t, x) ≤ g(t, x).

The g(t) used in the veto algorithm is the integral of g(t, x) over x. Each time a ti has

been selected also an xi is picked, according to g(ti, x) dx, and the (t, x) point is accepted

with probability f(ti, xi)/g(ti, xi).

4.3 The random number generator

In recent years, progress has been made in constructing portable generators with large

periods and other good properties; see the review [Jam90]. Therefore the current version

contains a random number generator based on the algorithm proposed by Marsaglia, Zaman

and Tsang [Mar90]. This routine should work on any machine with a mantissa of at least

48 digits, i.e. on computers with a 64-bit (or more) representation of double precision real

numbers. Given the same initial state, the sequence will also be identical on different

platforms. This need not mean that the same sequence of events will be generated, since

the different treatments of roundoff errors in numerical operations will lead to slightly

different real numbers being tested against these random numbers in IF statements. Also

code optimization may lead to a divergence of the event sequence.

Apart from nomenclature issues, the coding of PYR as a function rather than a subrou-

tine, and the extension to double precision, the only difference between our code and the

code given in [Jam90] is that slightly different algorithms are used to ensure that the ran-

dom number is not equal to 0 or 1 within the machine precision. Further developments of

the algorithm has been proposed [Lus94] to remove residual possibilities of small long-range

correlations, at the price of a slower generation procedure. However, given that Pythia is

using random numbers for so many different tasks, without any fixed cycle, this has been

deemed unnecessary.

The generator has a period of over 1043, and the possibility to obtain almost 109

different and disjoint subsequences, selected by giving an initial integer number. The price

to be paid for the long period is that the state of the generator at a given moment cannot be

described by a single integer, but requires about 100 words. Some of these are real numbers,

and are thus not correctly represented in decimal form. The old-style procedure, which

made it possible to restart the generation from a seed value written to the run output, is

therefore not convenient. The CERN library implementation keeps track of the number

of random numbers generated since the start. With this value saved, in a subsequent run
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the random generator can be asked to skip ahead the corresponding number of random

numbers. Pythia is a heavy user of random numbers, however: typically 30% of the full

run time is spent on random number generation. Of this, half is overhead coming from

the function call administration, but the other half is truly related to the speed of the

algorithm. Therefore a skipping ahead would take place with 15% of the time cost of the

original run, i.e. an uncomfortably high figure.

Instead a different solution is chosen here. Two special routines are provided for

writing and reading the state of the random number generator (plus some initialization

information) on a sequential file, in a platform-dependent internal representation. The file

used for this purpose has to be specified by you, and opened for read and write. A state

is written as a single record, in free format. It is possible to write an arbitrary number of

states on a file, and a record can be overwritten, if so desired. The event generation loop

might then look something like:

1. save the state of the generator on file (using flag set in point 3 below),

2. generate an event,

3. study the event for errors or other reasons why to regenerate it later; set flag to

overwrite previous generator state if no errors, otherwise set flag to create new record;

4. loop back to point 1.

With this procedure, the file will contain the state before each of the problematical events.

These events can therefore be generated in a shorter run, where further information can

be printed. (Inside Pythia, some initialization may take place in connection with the

very first event generated in a run, so it may be necessary to generate one ordinary event

before reading in a saved state to generate the interesting events.) An alternative approach

might be to save the state every 100 events or so. If the events are subsequently processed

through a detector simulation, you may have to save also other sets of seeds, naturally.

Unfortunately, the procedure is not always going to work. For instance, if cross section

maximum violations have occured before the interesting event in the original run, there is

a possibility that another event is picked in the re-started one, where the maximum weight

estimate has not been updated. Another problem is the multiple interaction machinery,

where some of the options contain an element of learning, which again means that the

event sequence may be broken.

In addition to the service routines, the common block which contains the state of the

generator is available for manipulation, if you so desire. In particular, the initial seed value

is by default 19780503, i.e. different from the Marsaglia/CERN default 54217137. It is

possible to change this value before any random numbers have been generated, or to force

re-initialization in mid-run with any desired new seed.

It should be noted that, of course, the appearance of a random number generator

package inside Pythia does in no way preclude the use of other routines. You can easily

revert to having PYR as nothing but an interface to an arbitrary external random number

generator; e.g. to call a routine RNDM all you need to have is

FUNCTION PYR(IDUMMY)

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
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100 PYR=RNDM(IDUMMY)

IF(PYR.LE.0D0.OR.PYR.GE.1D0) GOTO 100

RETURN

END

The random generator subpackage consists of the following components.

R = PYR(IDUMMY)

Purpose: to generate a (pseudo)random number R uniformly in the range 0 < R < 1, i.e.

excluding the endpoints.

IDUMMY : dummy input argument; normally 0.

CALL PYRGET(LFN,MOVE)

Purpose: to dump the current state of the random number generator on a separate file,

using internal representation for real and integer numbers. To be precise, the full

contents of the PYDATR common block are written on the file, with the exception

of MRPY(6).

LFN : (logical file number) the file number to which the state is dumped. You must

associate this number with a true file (with a platform-dependent name), and see

to it that this file is open for write.

MOVE : choice of adding a new record to the file or overwriting old record(s). Normally

only options 0 or −1 should be used.

= 0 (or > 0) : add a new record to the end of the file.

= -1 : overwrite the last record with a new one (i.e. do one BACKSPACE before the

new write).

= −n : back up n records before writing the new record. The records following after

the new one are lost, i.e. the last n old records are lost and one new added.

CALL PYRSET(LFN,MOVE)

Purpose: to read in a state for the random number generator, from which the subsequent

generation can proceed. The state must previously have been saved by a PYRGET

call. Again the full contents of the PYDATR common block are read, with the

exception of MRPY(6).

LFN : (logical file number) the file number from which the state is read. You must

associate this number with a true file previously written with a PYRGET call, and

see to it that this file is open for read.

MOVE : positioning in file before a record is read. With zero value, records are read one

after the other for each new call, while non-zero values may be used to navigate

back and forth, and e.g. return to the same initial state several times.

= 0 : read the next record.
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= +n : skip ahead n records before reading the record that sets the state of the

random number generator.

= −n : back up n records before reading the record that sets the state of the random

number generator.

COMMON/PYDATR/MRPY(6),RRPY(100)

Purpose: to contain the state of the random number generator at any moment (for com-

munication between PYR, PYRGET and PYRSET), and also to provide you with the

possibility to initialize different random number sequences, and to know how

many numbers have been generated.

MRPY(1) : (D = 19780503) the integer number that specifies which of the possible subse-

quences will be initialized in the next PYR call for which MRPY(2) = 0. Allowed

values are 0 ≤ MRPY(1) ≤ 900 000 000, the original Marsaglia (and CERN library)

seed is 54217137. The MRPY(1) value is not changed by any of the Pythia rou-

tines.

MRPY(2) : (D = 0) initialization flag, put to 1 in the first PYR call of run. A re-initialization

of the random number generator can be made in mid-run by resetting MRPY(2)

to 0 by hand. In addition, any time the counter MRPY(3) reaches 1000000000, it

is reset to 0 and MRPY(2) is increased by 1.

MRPY(3) : (R) counter for the number of random numbers generated from the beginning

of the run. To avoid overflow when very many numbers are generated, MRPY(2)

is used as described above.

MRPY(4), MRPY(5) : I97 and J97 of the CERN library implementation; part of the state

of the generator.

MRPY(6) : (R) current position, i.e. how many records after beginning, in the file; used

by PYRGET and PYRSET.

RRPY(1) - RRPY(97) : the U array of the CERN library implementation; part of the state

of the generator.

RRPY(98) - RRPY(100) : C, CD and CM of the CERN library implementation; the first part

of the state of the generator, the latter two constants calculated at initialization.
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5. The event record

The event record is the central repository for information about the particles produced in

the current event: flavours, momenta, event history, and production vertices. It plays a very

central rôle: without a proper understanding of what the record is and how information

is stored, it is meaningless to try to use Pythia. The record is stored in the common

block PYJETS. Almost all the routines that the user calls can be viewed as performing some

action on the record: fill a new event, let partons fragment or particles decay, boost it, list

it, find clusters, etc.

In this section we will first describe the KF flavour code, subsequently the PYJETS

common block, and then give a few comments about the rôle of the event record in the

programs.

To ease the interfacing of different event generators, a HEPEVT standard common-block

structure for the event record has been agreed on. For historical reasons the standard

common blocks are not directly used in Pythia, but a conversion routine comes with the

program, and is described at the end of this section.

5.1 Particle codes

The Particle Data Group particle code [PDG88, PDG92, PDG00] is used consistently

throughout the program. Almost all known discrepancies between earlier versions of the

PDG standard and the Pythia usage have now been resolved. The one known exception is

the (very uncertain) classification of f0(980), with f0(1370) also affected as a consequence.

There is also a possible point of confusion in the technicolor sector between π′0
tc and ηtc. The

latter is retained for historical reasons, whereas the former was introduced for consistency

in models of top-color-assisted technicolor. The PDG standard, with the local Pythia

extensions, is referred to as the KF particle code. This code you have to be thoroughly

familiar with. It is described below.

The KF code is not convenient for a direct storing of masses, decay data, or other

particle properties, since the KF codes are so spread out. Instead a compressed code KC

between 1 and 500 is used here. A particle and its antiparticle are mapped to the same

KC code, but else the mapping is unique. Normally this code is only used at very specific

places in the program, not visible to the user. If need be, the correspondence can always

be obtained by using the function PYCOMP, i.e. KC = PYCOMP(KF). This mapping is not

hardcoded, but can be changed by user intervention, e.g. by introducing new particles

with the PYUPDA facility. It is therefore not intended that you should ever want or need

to know any KC codes at all. It may be useful to know, however, that for codes smaller

than 80, KF and KC agree. Normally a user would never do the inverse mapping, but we

note that this is stored as KF = KCHG(KC,4), making use of the KCHG array in the PYDAT2

common block. Of course, the sign of a particle could never be recovered by this inverse

operation.

The particle names printed in the tables in this section correspond to the ones ob-

tained with the routine PYNAME, which is used extensively, e.g. in PYLIST. Greek characters
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are spelt out in full, with a capital first letter to correspond to a capital Greek letter.

Generically the name of a particle is made up of the following pieces:

1. The basic root name. This includes a * for most spin 1 (L = 0) mesons and spin

3/2 baryons, and a ′ for some spin 1/2 baryons (where there are two states to be

distinguished, cf. Λ–Σ0). The rules for heavy baryon naming are in accordance with

the 1986 Particle Data Group conventions [PDG86]. For mesons with one unit of

orbital angular momentum, K (D, B, . . . ) is used for quark-spin 0 and K* (D*, B*,

. . . ) for quark-spin 1 mesons; the convention for ‘*’ may here deviate slightly from

the one used by the PDG.

2. Any lower indices, separated from the root by a . For heavy hadrons, this is the

additional heavy-flavour content not inherent in the root itself. For a diquark, it is

the spin.

3. The characters ‘bar’ for an antiparticle, wherever the distinction between particle

and antiparticle is not inherent in the charge information.

4. Charge information: ++, +, 0, −, or −−. Charge is not given for quarks or diquarks.

Some neutral particles which are customarily given without a 0 also here lack it, such

as neutrinos, g, γ, and flavour-diagonal mesons other than π0 and ρ0. Note that

charge is included both for the proton and the neutron. While non-standard, it is

helpful in avoiding misunderstandings when looking at an event listing.

Below follows a list of KF particle codes. The list is not complete; a more extensive one

may be obtained with CALL PYLIST(11). Particles are grouped together, and the basic

rules are described for each group. Whenever a distinct antiparticle exists, it is given the

same KF code with a minus sign (whereas KC codes are always positive).

1. Quarks and leptons, table 3.

This group contains the basic building blocks of matter, arranged according to family,

with the lower member of weak isodoublets also having the smaller code (thus d

precedes u). A fourth generation is included as part of the scenarios for exotic

physics. The quark codes are used as building blocks for the diquark, meson and

baryon codes below.

2. Gauge bosons and other fundamental bosons, table 4.

This group includes all the gauge and Higgs bosons of the Standard Model, as well

as some of the bosons appearing in various extensions of it. They correspond to

one extra U(1) and one extra SU(2) group, a further Higgs doublet, a graviton, a

horizontal gauge boson R (coupling between families), and a (scalar) leptoquark LQ.

3. Exotic particle codes.

The positions 43–80 are used as temporary sites for exotic particles that eventually

may be shifted to a separate code sequence. Currently this list only consists of the

particle codes 45 and 46, described among the Supersymmetric codes below. The

ones not in use are at your disposal, but with no guarantees that they will remain so.

4. Various special codes, table 5.

In a Monte Carlo, it is always necessary to have codes that do not correspond to any

specific particle, but are used to lump together groups of similar particles for decay
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KF Name Printed KF Name Printed

1 d d 11 e− e-

2 u u 12 νe nu e

3 s s 13 µ− mu-

4 c c 14 νµ nu mu

5 b b 15 τ− tau-

6 t t 16 ντ nu tau

7 b′ b’ 17 τ ′ tau’

8 t′ t’ 18 ν ′
τ nu’ tau

9 19

10 20

Table 3: Quark and lepton codes.

KF Name Printed KF Name Printed

21 g g 31

22 γ gamma 32 Z′0 Z’0

23 Z0 Z0 33 Z′′0 Z"0

24 W+ W+ 34 W′+ W’+

25 h0 h0 35 H0 H0

26 36 A0 A0

27 37 H+ H+

28 38

29 39 G Graviton

30 40

41 R0 R0

42 LQ LQ

Table 4: Gauge boson and other fundamental boson codes.

treatment (nowadays largely obsolete), to specify generic decay products (also obso-

lete), or generic intermediate states in external processes, or additional event record

information from jet searches. These codes, which again are non-standard, are found

between numbers 81 and 100.

The junction, code 88, is not a physical particle but marks the place in the event

record where three string pieces come together in a point, e.g. a Y-shaped topol-

ogy with a quark at each end. No distinction is made between a junction and an

antijunction, i.e. whether a baryon or an antibaryon is going to be produced in the

neighbourhood of the junction.

5. Diquark codes, table 6.

A diquark made up of a quark with code i and another with code j, where i ≥ j, and
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KF Printed Meaning

81 specflav Spectator flavour; used in decay-product listings

82 rndmflav A random u, d, or s flavour; possible decay product

83 phasespa Simple isotropic phase-space decay

84 c-hadron Information on decay of generic charm hadron

85 b-hadron Information on decay of generic bottom hadron

86

87

88 junction A junction of three string pieces

89 (internal use for unspecified resonance data)

90 system Intermediate pseudoparticle in external process

91 cluster Parton system in cluster fragmentation

92 string Parton system in string fragmentation

93 indep. Parton system in independent fragmentation

94 CMshower Four-momentum of time-like showering system

95 SPHEaxis Event axis found with PYSPHE

96 THRUaxis Event axis found with PYTHRU

97 CLUSjet Jet (cluster) found with PYCLUS

98 CELLjet Jet (cluster) found with PYCELL

99 table Tabular output from PYTABU

100

Table 5: Various special codes.

KF Name Printed KF Name Printed

1103 dd1 dd 1

2101 ud0 ud 0 2103 ud1 ud 1

2203 uu1 uu 1

3101 sd0 sd 0 3103 sd1 sd 1

3201 su0 su 0 3203 su1 su 1

3303 ss1 ss 1

Table 6: Diquark codes. For brevity, diquarks containing c or b quarks are not listed, but are

defined analogously.

with total spin s, is given the code

KF = 1000i + 100j + 2s + 1 , (5.1)

i.e. the tens position is left empty (cf. the baryon code below). Some of the most

frequently used codes are listed in the table. All the lowest-lying spin 0 and 1 diquarks

are included in the program.

6. Meson codes, tables 7 and 8.

A meson made up of a quark with code i and an antiquark with code −j, j 6= i, and
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KF Name Printed KF Name Printed

211 π+ pi+ 213 ρ+ rho+

311 K0 K0 313 K∗0 K*0

321 K+ K+ 323 K∗+ K*+

411 D+ D+ 413 D∗+ D*+

421 D0 D0 423 D∗0 D*0

431 D+
s D s+ 433 D∗+

s D* s+

511 B0 B0 513 B∗0 B*0

521 B+ B+ 523 B∗+ B*+

531 B0
s B s0 533 B∗0

s B* s0

541 B+
c B c+ 543 B∗+

c B* c+

111 π0 pi0 113 ρ0 rho0

221 η eta 223 ω omega

331 η′ eta’ 333 φ phi

441 ηc eta c 443 J/ψ J/psi

551 ηb eta b 553 Υ Upsilon

130 K0
L K L0

310 K0
S K S0

Table 7: Meson codes, part 1.

with total spin s, is given the code

KF = {100max(i, j) + 10min(i, j) + 2s + 1} sign(i − j) (−1)max(i,j) , (5.2)

assuming it is not orbitally or radially excited. Note the presence of an extra − sign

if the heaviest quark is a down-type one. This is in accordance with the particle-

antiparticle distinction adopted in the 1986 Review of Particle Properties [PDG86].

It means for example that a B meson contains a b antiquark rather than a b quark.

The flavour-diagonal states are arranged in order of ascending mass. Thus the obvious

generalization of eq. (5.2) to KF = 110i + 2s + 1 is only valid for charm and bottom.

The lighter quark states can appear mixed, e.g. the π0 (111) is an equal mixture of

dd (näıvely code 111) and uu (näıvely code 221).

The standard rule of having the last digit of the form 2s + 1 is broken for the K0
S–K

0
L

system, where it is 0, and this convention should carry over to mixed states in the B

meson system, should one choose to define such. For higher multiplets with the same

spin, ±10000, ±20000, etc., are added to provide the extra distinction needed. Some

of the most frequently used codes are given below.

The full lowest-lying pseudoscalar and vector multiplets are included in the program,

table 7.

Also the lowest-lying orbital angular momentum L = 1 mesons are included, table 8:

one pseudovector multiplet obtained for total quark-spin 0 (L = 1, S = 0 ⇒ J = 1)

and one scalar, one pseudovector and one tensor multiplet obtained for total quark-
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KF Name Printed KF Name Printed

10213 b1 b 1+ 10211 a+
0 a 0+

10313 K0
1 K 10 10311 K∗0

0 K* 00

10323 K+
1 K 1+ 10321 K∗+

0 K* 0+

10413 D+
1 D 1+ 10411 D∗+

0 D* 0+

10423 D0
1 D 10 10421 D∗0

0 D* 00

10433 D+
1s D 1s+ 10431 D∗+

0s D* 0s+

10113 b0
1 b 10 10111 a0

0 a 00

10223 h0
1 h 10 10221 f00 f 00

10333 h′0
1 h’ 10 10331 f ′00 f’ 00

10443 h0
1c h 1c0 10441 χ0

0c chi 0c0

20213 a+
1 a 1+ 215 a+

2 a 2+

20313 K∗0
1 K* 10 315 K∗0

2 K* 20

20323 K∗+
1 K* 1+ 325 K∗+

2 K* 2+

20413 D∗+
1 D* 1+ 415 D∗+

2 D* 2+

20423 D∗0
1 D* 10 425 D∗0

2 D* 20

20433 D∗+
1s D* 1s+ 435 D∗+

2s D* 2s+

20113 a0
1 a 10 115 a0

2 a 20

20223 f01 f 10 225 f02 f 20

20333 f ′01 f’ 10 335 f ′02 f’ 20

20443 χ0
1c chi 1c0 445 χ0

2c chi 2c0

100443 ψ′ psi’

100553 Υ′ Upsilon’

Table 8: Meson codes, part 2. For brevity, states with b quark are omitted from this listing, but

are defined in the program.

spin 1 (L = 1, S = 1 ⇒ J = 0, 1 or 2), where J is what is conventionally called

the spin s of the meson. Any mixing between the two pseudovector multiplets is not

taken into account. Please note that some members of these multiplets have still not

been found, and are included here only based on guesswork. Even for known ones,

the information on particles (mass, width, decay modes) is highly incomplete.

Only two radial excitations are included, the ψ′ = ψ(2S) and Υ′ = Υ(2S).

7. Baryon codes, table 9.

A baryon made up of quarks i, j and k, with i ≥ j ≥ k, and total spin s, is given the

code

KF = 1000i + 100j + 10k + 2s + 1 . (5.3)

An exception is provided by spin 1/2 baryons made up of three different types of

quarks, where the two lightest quarks form a spin-0 diquark (Λ-like baryons). Here

the order of the j and k quarks is reversed, so as to provide a simple means of

distinction to baryons with the lightest quarks in a spin-1 diquark (Σ-like baryons).

For hadrons with heavy flavours, the root names are Lambda or Sigma for hadrons
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KF Name Printed KF Name Printed

1114 ∆− Delta-

2112 n n0 2114 ∆0 Delta0

2212 p p+ 2214 ∆+ Delta+

2224 ∆++ Delta++

3112 Σ− Sigma- 3114 Σ∗− Sigma*-

3122 Λ0 Lambda0

3212 Σ0 Sigma0 3214 Σ∗0 Sigma*0

3222 Σ+ Sigma+ 3224 Σ∗+ Sigma*+

3312 Ξ− Xi- 3314 Ξ∗− Xi*-

3322 Ξ0 Xi0 3324 Ξ∗0 Xi*0

3334 Ω− Omega-

4112 Σ0
c Sigma c0 4114 Σ∗0

c Sigma* c0

4122 Λ+
c Lambda c+

4212 Σ+
c Sigma c+ 4214 Σ∗+

c Sigma* c+

4222 Σ++
c Sigma c++ 4224 Σ∗++

c Sigma* c++

4132 Ξ0
c Xi c0

4312 Ξ′0
c Xi’ c0 4314 Ξ∗0

c Xi* c0

4232 Ξ+
c Xi c+

4322 Ξ′+
c Xi’ c+ 4324 Ξ∗+

c Xi* c+

4332 Ω0
c Omega c0 4334 Ω∗0

c Omega* c0

5112 Σ−
b Sigma b- 5114 Σ∗−

b Sigma* b-

5122 Λ0
b Lambda b0

5212 Σ0
b Sigma b0 5214 Σ∗0

b Sigma* b0

5222 Σ+
b Sigma b+ 5224 Σ∗+

b Sigma* b+

Table 9: Baryon codes. For brevity, some states with b quarks or multiple c ones are omitted from

this listing, but are defined in the program.

with two u or d quarks, Xi for those with one, and Omega for those without u or d

quarks.

Some of the most frequently used codes are given in table 9. The full lowest-lying

spin 1/2 and 3/2 multiplets are included in the program.

8. QCD effective states, table 10.

We here include the pomeron IP and reggeon IR ‘particles’, which are important e.g.

in the description of diffractive scattering, but do not have a simple correspondence

with other particles in the classification scheme.

Also included are codes to be used for denoting diffractive states in Pythia, as part

of the event history. The first two digits here are 99 to denote the non-standard

character. The second, third and fourth last digits give flavour content, while the

very last one is 0, to denote the somewhat unusual character of the code. Only a few

codes have been introduced with names; depending on circumstances these also have
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KF Printed Meaning

110 reggeon reggeon IR

990 pomeron pomeron IP

9900110 rho diff0 Diffractive π0/ρ0/γ state

9900210 pi diffr+ Diffractive π+ state

9900220 omega di0 Diffractive ω state

9900330 phi diff0 Diffractive φ state

9900440 J/psi di0 Diffractive J/ψ state

9902110 n diffr Diffractive n state

9902210 p diffr+ Diffractive p state

Table 10: QCD effective states.

to double up for other diffractive states. Other diffractive codes for strange mesons

and baryon beams are also accepted by the program, but do not give nice printouts.

9. Supersymmetric codes, table 11.

SUSY doubles the number of states of the Standard Model (at least). Fermions

have separate superpartners to the left- and right-handed components. In the third

generation these are assumed to mix to nontrivial mass eigenstates, while mixing is

not included in the first two. Note that all sparticle names begin with a tilde. De-

fault masses are arbitrary and branching ratios not set at all. This is taken care of at

initialization if IMSS(1) is positive. The H0
3, A0

2 and χ̃0
5 states at the bottom of the ta-

ble only appear in the Next-to-Minimal Supersymmetric Standard Model (NMSSM),

do not have standardized codes and are not fully implemented in Pythia, but can

optionally (see IMSS(13)) be used in the context of interfaces to other programs.

10. Technicolor codes, table 12.

A set of colourless and coloured technihadrons have been included. The colour-

less technivector mesons and most of the colourless technipions are associated

with the original strawman model of technicolor. The coloured technirho mesons

(KF= 3100113, 3200113, 3300113 and 3100113), a Coloron (or V8), and additional

colour singlet (KF= 3100111) and colour octet (KF=3100111) technipions arise in the

extended model of Topcolor assisted Technicolor (TC2). Additional indices on these

technihadrons refer to two strongly interacting groups SU(3)1×SU(3)2, one for the

first two generations and a second for the third generation, which is broken down to

ordinary SU(3)C.

The ηtc belongs to an older iteration of Technicolor modelling than the rest. It was

originally given the 3000221 code, and thereby now comes to clash with the π′0
tc of

the current main scenario. Since the ηtc is one-of-a-kind, it was deemed better to

move it to make way for the π′0
tc. This leads to a slight inconsistency with the PDG

codes.

11. Excited fermion codes, table 13.

A first generation of excited fermions are included.
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KF Name Printed KF Name Printed

1000001 d̃L ∼d L 2000001 d̃R ∼d R

1000002 ũL ∼u L 2000002 ũR ∼u R

1000003 s̃L ∼s L 2000003 s̃R ∼s R

1000004 c̃L ∼c L 2000004 c̃R ∼c R

1000005 b̃1 ∼b 1 2000005 b̃2 ∼b 2

1000006 t̃1 ∼t 1 2000006 t̃2 ∼t 2

1000011 ẽL ∼e L- 2000011 ẽR ∼e R-

1000012 ν̃eL ∼nu eL 2000012 ν̃eR ∼nu eR

1000013 µ̃L ∼mu L- 2000013 µ̃R ∼mu R-

1000014 ν̃µL ∼nu muL 2000014 ν̃µR ∼nu muR

1000015 τ̃1 ∼tau L- 2000015 τ̃2 ∼tau R-

1000016 ν̃τL ∼nu tauL 2000016 ν̃τR ∼nu tauR

1000021 g̃ ∼g 1000025 χ̃0
3 ∼chi 30

1000022 χ̃0
1 ∼chi 10 1000035 χ̃0

4 ∼chi 40

1000023 χ̃0
2 ∼chi 20 1000037 χ̃+

2 ∼chi 2+

1000024 χ̃+
1 ∼chi 1+ 1000039 G̃ ∼Gravitino

45 H0
3 H 30 1000045 χ̃0

5 ∼chi 50

46 A0
2 A 20

Table 11: Supersymmetric codes.

KF Name Printed KF Name Printed

3000111 π0
tc pi tc0 3100021 V8,tc V8 tc

3000211 π+
tc pi tc+ 3100111 π0

22,1,tc pi 22 1 tc

3000221 π′0
tc pi’ tc0 3200111 π0

22,8,tc pi 22 8 tc

3000113 ρ0
tc rho tc0 3100113 ρ0

11,tc rho 11 tc

3000213 ρ+
tc rho tc+ 3200113 ρ0

12,tc rho 12 tc

3000223 ω0
tc omega tc0 3300113 ρ0

21,tc rho 21 tc

3000331 ηtc eta tc0 3400113 ρ0
22,tc rho 22 tc

Table 12: Technicolor codes.

KF Name Printed KF Name Printed

4000001 u∗ d* 4000011 e∗ e*-

4000002 d∗ u* 4000012 ν∗
e nu* e0

Table 13: Excited fermion codes.

12. Exotic particle codes, table 14.

This section includes the excited graviton, as the first (but probably not last) man-

ifestation of the possibility of large extra dimensions. Although it is not yet in the

PDG standard, we assume that such states will go in a new series of numbers.
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KF Name Printed KF Name Printed

5000039 G∗ Graviton*

9900012 νRe nu Re 9900023 Z0
R Z R0

9900014 νRµ nu Rmu 9900024 W+
R W R+

9900016 νRτ nu Rtau 9900041 H++
L H L++

9900042 H++
R H R++

Table 14: Exotic particle codes.

KF Name Printed KF Name Printed

9900443 cc[3S
(8)
1 ] cc∼[3S18] 9900553 bb[3S

(8)
1 ] bb∼[3S18]

9900441 cc[1S
(8)
0 ] cc∼[1S08] 9900551 bb[1S

(8)
0 ] bb∼[1S08]

9910443 cc[3P
(8)
0 ] cc∼[3P08] 9910553 bb[3P

(8)
0 ] bb∼[3P08]

Table 15: Colour octet state codes.

Included is also a set of particles associated with an extra SU(2) gauge group for

right-handed states, as required in order to obtain a left-right symmetric theory

at high energies. This includes right-handed (Majorana) neutrinos, right-handed Z0
R

and W±
R gauge bosons, and both left- and right-handed doubly charged Higgs bosons.

Such a scenario would also contain other Higgs states, but these do not bring any-

thing new relative to the ones already introduced, from an observational point of

view. Here the first two digits are 99 to denote the non-standard character.

13. Colour octet state codes, table 15.

Within the colour octet approach to charmonium and bottomonium production, inter-

mediate colour octet states can be produced and subsequently ‘decay’ to the normal

singlet states by soft-gluon emission. The codes have been chosen 9900000 bigger than

the respective colour-singlet state, so that they occur among the generator-specific

codes. The names are based on spectroscopic notation, with additional upper index

(8) to reflect the colour octet nature.

A hint on large particle numbers: if you want to avoid mistyping the number of zeros,

it may pay off to define a statement like

PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,

&KEXCIT=4000000,KDIMEN=5000000)

at the beginning of your program and then refer to particles as KSUSY1+1 = d̃L and so on.

This then also agrees with the internal notation (where feasible).

5.2 The event record

Each new event generated is in its entirety stored in the common block PYJETS, which

thus forms the event record. Here each parton or particle that appears at some stage

of the fragmentation or decay chain will occupy one line in the matrices. The different

components of this line will tell which parton/particle it is, from where it originates, its
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present status (fragmented/decayed or not), its momentum, energy and mass, and the

space-time position of its production vertex. Note that K(I,3)–K(I,5) and the P and V

vectors may take special meaning for some specific applications (e.g. sphericity or cluster

analysis), as described in those connections.

The event history information stored in K(I,3)–K(I,5) should not be taken too lit-

erally. In the particle decay chains, the meaning of a mother is well-defined, but the

fragmentation description is more complicated. The primary hadrons produced in string

fragmentation come from the string as a whole, rather than from an individual parton.

Even when the string is not included in the history (see MSTU(16)), the pointer from

hadron to parton is deceptive. For instance, in a qgq event, those hadrons are pointing

towards the q (q) parton that were produced by fragmentation from that end of the string,

according to the random procedure used in the fragmentation routine. No particles point

to the g. This assignment seldom agrees with the visual impression, and is not intended

to.

The common block PYJETS has expanded with time, and can now house 4000 entries.

This figure may seem ridiculously large, but actually the previous limit of 2000 was often

reached in studies of high-p⊥ processes at the LHC (and SSC). This is because the event

record contains not only the final particles, but also all intermediate partons and hadrons,

which subsequently showered, fragmented or decayed. Included are also a wealth of photons

coming from π0 decays; the simplest way of reducing the size of the event record is actually

to switch off π0 decays by MDCY(PYCOMP(111),1) = 0. Also note that some routines, such

as PYCLUS and PYCELL, use memory after the event record proper as a working area. Still,

to change the size of the common block, upwards or downwards, is easy: just do a global

substitute in the common block and change the MSTU(4) value to the new number. If more

than 10000 lines are to be used, the packing of colour information should also be changed,

see MSTU(5).

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

Purpose: to contain the event record, i.e. the complete list of all partons and particles

(initial, intermediate and final) in the current event. (By parton we here mean

the subclass of particles that carry colour, for which extra colour flow information

is then required. Normally this means quarks and gluons, which can fragment to

hadrons, but also squarks and other exotic particles fall in this category.)

N : number of lines in the K, P and V matrices occupied by the current event. N

is continuously updated as the definition of the original configuration and the

treatment of fragmentation and decay proceed. In the following, the individual

parton/particle number, running between 1 and N, is called I.

NPAD : dummy to ensure an even number of integers before the double precision reals,

as required by some compilers.

K(I,1) : status code KS, which gives the current status of the parton/particle stored in

the line. The ground rule is that codes 1–10 correspond to currently existing
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partons/particles, while larger codes contain partons/particles which no longer

exist, or other kinds of event information.

= 0 : empty line.

= 1 : an undecayed particle or an unfragmented parton, the latter being either a

single parton or the last one of a parton system.

= 2 : an unfragmented parton, which is followed by more partons in the same

colour-singlet parton system.

= 3 : an unfragmented parton with special colour flow information stored in

K(I,4) and K(I,5), such that adjacent partons along the string need not

follow each other in the event record.

= 4 : a particle which could have decayed, but did not within the allowed volume

around the original vertex.

= 5 : a particle which is to be forced to decay in the next PYEXEC call, in the vertex

position given (this code is only set by user intervention).

= 11 : a decayed particle or a fragmented parton, the latter being either a single

parton or the last one of a parton system, cf. = 1.

= 12 : a fragmented parton, which is followed by more partons in the same colour-

singlet parton system, cf. = 2. Further, a B meson which decayed as a B

one, or vice versa, because of B–B mixing, is marked with this code rather

than = 11.

= 13 : a parton which has been removed when special colour flow information has

been used to rearrange a parton system, cf. = 3.

= 14 : a parton which has branched into further partons, with special colour-flow

information provided, cf. = 3.

= 15 : a particle which has been forced to decay (by user intervention), cf. = 5.

= 21 : documentation lines used to give a compressed story of the event at the

beginning of the event record.

= 31 : lines with information on sphericity, thrust or cluster search.

= 32 : tabular output, as generated by PYTABU.

= 41 : a junction, with partons arranged in colour, except that two quark lines

may precede or follow a junction. For instance, a configuration like

q1g1 q2g2 (junction) g3q3 corresponds to having three strings q1g1, q2g2 and

q3g3 meeting in the junction. The occurence of non-matching colours eas-

ily reveal the q2 as not being a continuation of the q1g1 string. Here

each g above is shorthand for an arbitrary number of gluons, including

none. The most general topology allows two junctions in a system, i.e.

q1g1 q2g2 (junction) g0 (junction) g3q3 g4q4. The final q/q would have sta-

tus code 1, the other partons 2. Thus code = 41 occurs where = 2 would

normally have been used, had the junction been an ordinary parton.

= 42 : a junction, with special colour flow information stored in K(I,4) and K(I,5),

such that adjacent partons along the string need not follow each other in the

event record. Thus this code matches the = 3 of ordinary partons.

= 51 : a junction of strings which have been fragmented, cf. = 41. Thus this code

– 79 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

matches the = 12 of ordinary partons.

= 52 : a junction of strings which have been rearranged in colour, cf. = 42. Thus

this code matches the = 13 of ordinary partons.

< 0 : these codes are never used by the program, and are therefore usually not

affected by operations on the record, such as PYROBO, PYLIST and event-

analysis routines (the exception is some PYEDIT calls, where lines are moved

but not deleted). Such codes may therefore be useful in some connections.

K(I,2) : particle KF code, as described in section 5.1.

K(I,3) : line number of parent particle, where known, otherwise 0. Note that the assign-

ment of a particle to a given parton in a parton system is unphysical, and what

is given there is only related to the way the fragmentation was generated.

K(I,4) : normally the line number of the first daughter; it is 0 for an undecayed particle

or unfragmented parton.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information

(for internal use only) of the form

K(I,4) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,

where ICFR and ICTO give the line numbers of the partons from which the

colour comes and to where it goes, respectively; MCFR and MCTO originally

are 0 and are set to 1 when the corresponding colour connection has been traced

in the PYPREP rearrangement procedure. (The packing may be changed with

MSTU(5).) The ‘from’ colour position may indicate a parton which branched to

produce the current parton, or a parton created together with the current parton

but with matched anticolour, while the ‘to’ normally indicates a parton that the

current parton branches into. Thus, for setting up an initial colour configuration,

it is normally only the ‘from’ part that is used, while the ‘to’ part is added

by the program in a subsequent call to parton-shower evolution (for final-state

radiation; it is the other way around for initial-state radiation). Note that, when

using PYEVNW to generate events, a complementary way of storing the colour flow

information is also used, so-called Les Houches style colour tags [Boo01], cf. the

/PYCTAG/ common block.

For K(I,1) = 42 or 52, see below.

Note: normally most users never have to worry about the exact rules for colour-

flow storage, since this is used mainly for internal purposes. However, when it is

necessary to define this flow, it is recommended to use the PYJOIN routine, since

it is likely that this would reduce the chances of making a mistake.

K(I,5) : normally the line number of the last daughter; it is 0 for an undecayed particle

or unfragmented parton.

For K(I,1) = 3, 13 or 14, instead, it contains special colour-flow information

(for internal use only) of the form

K(I,5) = 200000000*MCFR + 100000000*MCTO + 10000*ICFR + ICTO,

where ICFR and ICTO give the line numbers of the partons from which the

anticolour comes and to where it goes, respectively; MCFR and MCTO originally

are 0 and are set to 1 when the corresponding colour connection has been traced
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in the PYPREP rearrangement procedure. For further discussion, see K(I,4).

For K(I,1) = 42 or 52, see below.

K(I,4), K(I,5) : For junctions with K(I,1) = 42 or 52 the colour flow information

scheme presented above has to be modified, since now three colour or anticolour

lines meet. Thus the form is

K(I,4) = 100000000*MC1 + 10000*ITP + IC1,

K(I,5) = 200000000*MC2 + 100000000*MC3 + 10000*IC2 + IC3.

The colour flow possibilities are

ITP = 1 : junction of three colours in the final state, with positions as stored in

IC1, IC2 and IC3. A typical example would be neutralino decay to three

quarks. Note that the positions need not be filled by the line numbers of

the final quark themselves, but more likely by the immediate neutralino

decay products that thereafter initiate showers and branch further.

ITP = 2 : junction of three anticolours in the final state, with positions as stored

in IC1, IC2 and IC3.

ITP = 3 : junction of one incoming anticolour to two outgoing colours, with the

anticolour position stored in IC1 and the two colour ones in IC2 and

IC3. A typical example would be an antisquark decaying to two quarks.

ITP = 4 : junction of one incoming colour to two outgoing anticolours, with the

colour position stored in IC1 and the two anticolour ones in IC2 and

IC3.

ITP = 5 : junction of a colour octet into three colours. The incoming colour is

supposed to pass through unchanged, and so is bookkept as usual for

the particle itself. IC1 is the position of the incoming anticolour, while

IC2 and IC3 are the positions of the new colours associated with the

vanishing of this anticolour. A typical example would be gluino decay

to three quarks.

ITP = 6 : junction of a colour octet into three anticolours. The incoming an-

ticolour is supposed to pass through unchanged, and so is bookkept as

usual for the particle itself. IC1 is the position of the incoming colour,

while IC2 and IC3 are the positions of the new anticolours associated

with the vanishing of this colour.

Thus odd (even) ITP code corresponds to a +1 (−1) change in baryon number

across the junction.

The MC1, MC2 and MC3 mark which colour connections have been traced in a

PYPREP rearrangement procedure, as above.

P(I,1) : px, momentum in the x direction, in GeV/c.

P(I,2) : py, momentum in the y direction, in GeV/c.

P(I,3) : pz, momentum in the z direction, in GeV/c.

P(I,4) : E, energy, in GeV.

P(I,5) : m, mass, in GeV/c2. In parton showers, with space-like virtualities, i.e. where

Q2 = −m2 > 0, one puts P(I,5)= −Q.

V(I,1) : x position of production vertex, in mm.
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V(I,2) : y position of production vertex, in mm.

V(I,3) : z position of production vertex, in mm.

V(I,4) : time of production, in mm/c (≈ 3.33 × 10−12 s).

V(I,5) : proper lifetime of particle, in mm/c (≈ 3.33 × 10−12 s). If the particle is not

expected to decay, V(I,5) = 0. A line with K(I,1) = 4, i.e. a particle that

could have decayed, but did not within the allowed region, has the proper non-

zero V(I,5).

In the absence of electric or magnetic fields, or other disturbances, the decay

vertex VP of an unstable particle may be calculated as

VP(j) = V(I,j) + V(I,5)*P(I,j)/P(I,5), j = 1–4.

5.3 How the event record works

The event record is the main repository for information about an event. In the generation

chain, it is used as a ‘scoreboard’ for what has already been done and what remains to

do. This information can be studied by you, to access information not only about the final

state, but also about what came before.

5.3.1 A simple example

The first example of section 3.5 may help to clarify what is going on. When PY2ENT is

called to generate a qq pair, the quarks are stored in lines 1 and 2 of the event record,

respectively. Colour information is set to show that they belong together as a colour singlet.

The counter N is also updated to the value of 2. At no stage is a previously generated event

removed. Lines 1 and 2 are overwritten, but lines 3 onwards still contain whatever may

have been there before. This does not matter, since N indicates where the ‘real’ record

ends.

As PYEXEC is called, explicitly by you or indirectly by PY2ENT, the first entry is con-

sidered and found to be the first parton of a system. Therefore the second entry is also

found, and these two together form a colour singlet parton system, which may be allowed

to fragment. The ‘string’ that fragments is put in line 3 and the fragmentation products

in lines 4 through 10 (in this particular case). At the same time, the q and q in the first

two lines are marked as having fragmented, and the same for the string. At this stage, N

is 10. Internally in PYEXEC there is another counter with the value 2, which indicates how

far down in the record the event has been studied.

This second counter is gradually increased by one. If the entry in the corresponding line

can fragment or decay, then fragmentation or decay is performed. The fragmentation/decay

products are added at the end of the event record, and N is updated accordingly. The entry

is then also marked as having been treated. For instance, when line 3 is considered, the

‘string’ entry of this line is seen to have been fragmented, and no action is taken. Line 4, a

ρ+, is allowed to decay to π+π0; the decay products are stored in lines 11 and 12, and line

4 is marked as having decayed. Next, entry 5 is allowed to decay. The entry in line 6, π+,

is a stable particle (by default) and is therefore passed by without any action being taken.

In the beginning of the process, entries are usually unstable, and N grows faster than

the second counter of treated entries. Later on, an increasing fraction of the entries are
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stable end products, and the rôles are now reversed, with the second counter growing faster.

When the two coincide, the end of the record has been reached, and the process can be

stopped. All unstable objects have now been allowed to fragment or decay. They are still

present in the record, so as to simplify the tracing of the history.

Notice that PYEXEC could well be called a second time. The second counter would

then start all over from the beginning, but slide through until the end without causing any

action, since all objects that can be treated already have been. Unless some of the relevant

switches were changed meanwhile, that is. For instance, if π0 decays were switched off the

first time around but on the second, all the π0’s found in the record would be allowed to

decay in the second call. A particle once decayed is not ‘undecayed’, however, so if the π0

is put back stable and PYEXEC is called a third time, nothing will happen.

5.3.2 Complete PYTHIA events

In a full-blown event generated with Pythia, the usage of PYJETS is more complicated,

although the general principles survive. PYJETS is used extensively by many of the gener-

ation routines; indeed it provides the bridge between many of them. The Pythia event

listing begins (optionally) with a few lines of event summary, specific to the hard process

simulated and thus not described in the overview above. These specific parts are covered

in the following.

In most instances, only the particles actually produced are of interest. For MSTP(125)

= 0, the event record starts off with the parton configuration existing after hard interac-

tion, initial- and final-state radiation, multiple interactions and beam remnants have been

considered. The partons are arranged in colour singlet clusters, ordered as required for

string fragmentation. Also photons and leptons produced as part of the hard interaction

(e.g. from qq → gγ or uu → Z0 → e+e−) appear in this part of the event record. These

original entries appear with pointer K(I,3) = 0, whereas the products of the subsequent

fragmentation and decay have K(I,3) numbers pointing back to the line of the parent.

The standard documentation, obtained with MSTP(125) = 1, includes a few lines at

the beginning of the event record, which contain a brief summary of the process that

has taken place. The number of lines used depends on the nature of the hard process

and is stored in MSTI(4) for the current event. These lines all have K(I,1) = 21. For

all processes, lines 1 and 2 give the two incoming particles. When listed with PYLIST,

these two lines will be separated from subsequent ones by a sequence of ‘======’ signs, to

improve readability. For diffractive and elastic events, the two outgoing states in lines 3

and 4 complete the list. Otherwise, lines 3 and 4 contain the two partons that initiate the

two initial-state parton showers, and 5 and 6 the end products of these showers, i.e. the

partons that enter the hard interaction. With initial-state radiation switched off, lines 3

and 5 and lines 4 and 6 are identical. For a simple 2 → 2 hard scattering, lines 7 and 8

give the two outgoing partons/particles from the hard interaction, before any final-state

radiation. For 2 → 2 processes proceeding via an intermediate resonance such as γ∗/Z0,

W± or h0, the resonance is found in line 7 and the two outgoing partons/particles in 8 and

9. In some cases one of these may be a resonance in its own right, or both of them, so that

further pairs of lines are added for subsequent decays. If the decay of a given resonance
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has been switched off, then no decay products are listed either in this initial summary or

in the subsequent ordinary listing. Whenever partons are listed, they are assumed to be

on the mass shell for simplicity. The fact that effective masses may be generated by initial-

and final-state radiation is taken into account in the actual parton configuration that is

allowed to fragment, however. The listing of the event documentation closes with another

line made up of ‘======’ signs.

A few examples may help clarify the picture. For a single diffractive event pp → pdiffrp,

the event record will start with

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p

2 21 -2212 0 incoming p

========================= not part of record; appears in listings

3 21 9902210 1 outgoing pdiffr

4 21 -2212 2 outgoing p

========================= again not part of record

The typical QCD 2 → 2 process would be

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 incoming p

2 21 -2212 0 incoming p

=========================

3 21 2 1 u picked from incoming p

4 21 -1 2 d picked from incoming p

5 21 21 3 u evolved to g at hard scattering

6 21 -1 4 still d at hard scattering

7 21 21 0 outgoing g from hard scattering

8 21 -1 0 outgoing d from hard scattering

=========================

Note that, where well defined, the K(I,3) code does contain information as to which

side the different partons come from, e.g. above the gluon in line 5 points back to the u in

line 3, which points back to the proton in line 1. In the example above, it would have been

possible to associate the scattered g in line 7 with the incoming one in line 5, but this is

not possible in the general case, consider e.g. gg → gg.

A special case is provided by W+W− or Z0Z0 fusion to an h0. Then the virtual W’s or

Z’s are shown in lines 7 and 8, the h0 in line 9, and the two recoiling quarks (that emitted

the bosons) in 10 and 11, followed by the Higgs decay products. Since the W’s and Z’s are

space-like, what is actually listed as the mass for them is −
√
−m2. Thus W+W− fusion to

an h0 in process 8 (not process 124, which is lengthier) might look like

I K(I,1) K(I,2) K(I,3) comment

1 21 2212 0 first incoming p

2 21 2212 0 second incoming p

=========================

3 21 2 1 u picked from first p

4 21 21 2 g picked from second p
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5 21 2 3 still u after initial-state radiation

6 21 -4 4 g evolved to c

7 21 24 5 space-like W+ emitted by u quark

8 21 -24 6 space-like W− emitted by c quark

9 21 25 0 Higgs produced by W+W− fusion

10 21 1 5 u turned into d by emission of W+

11 21 -3 6 c turned into s by emission of W−

12 21 23 9 first Z0 coming from decay of h0

13 21 23 9 second Z0 coming from decay of h0

14 21 12 12 νe from first Z0 decay

15 21 -12 12 νe from first Z0 decay

16 21 5 13 b quark from second Z0 decay

17 21 -5 13 b antiquark from second Z0 decay

=========================

Another special case is when a spectrum of virtual photons are generated inside a lepton

beam, i.e. when PYINIT is called with one or two ’gamma/lepton’ arguments. (Where lepton

could be either of e-, e+, mu-, mu+, tau- or tau+.) Then the documentation section is

expanded to reflect the new layer of administration. Positions 1 and 2 contain the original

beam particles, e.g. e and p (or e+ and e−). In position 3 (and 4 for e+e−) is (are) the

scattered outgoing lepton(s). Thereafter comes the normal documentation, but starting

from the photon rather than a lepton. For ep, this means 4 and 5 are the γ∗ and p, 6 and 7

the shower initiators, 8 and 9 the incoming partons to the hard interaction, and 10 and 11

the outgoing ones. Thus the documentation is 3 lines longer (4 for e+e−) than normally.

The documentation lines are often helpful to understand in broad outline what hap-

pened in a given event. However, they only provide the main points of the process, with

many intermediate layers of parton showers omitted. The documentation can therefore

appear internally inconsistent, if the user does not remember what could have happened in

between. For instance, the listing above would show the Higgs with the momentum it has

before radiation off the two recoiling u and c quarks is considered. When these showers are

included, the Higgs momentum may shift by the changed recoil. However, this update is

not visible in the initial summary, which thus still shows the Higgs before the showering.

When the Higgs decays, on the other hand, it is the real Higgs momentum further down

in the event record that is used, and that thus sets the momenta of the decay products

that are also copied up to the summary. Such effects will persist in further decays; e.g.

the b and b shown at the end of the example above are before showers, and may deviate

from the final parton momenta quite significantly. Similar shifts will also occur e.g. in a

t → bW+ → bqq′ decays, when the gluon radiation off the b gives a recoil to the W that is

not visible in the W itself but well in its decay products. In summary, the documentation

section should never be mistaken for the physically observable state in the main section of

the event record, and never be used as part of any realistic event analysis.

(An alternative approach would be in the spirit of the Les Houches Accord ‘parton-

level’ event record, section 9.9, where the whole chain of decays normally is carried out

before starting the parton showers. With this approach, one could have an internally
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consistent summary, but then in diverging disagreement with the ”real” particles after

each layer of shower evolution.)

After these lines with the initial information, the event record looks the same as for

MSTP(125) = 0, i.e. first comes the parton configuration to be fragmented and, after an-

other separator line ‘======’ in the output (but not the event record), the products of sub-

sequent fragmentation and decay chains. This ordinary listing begins in position MSTI(4)

+ 1. The K(I,3) pointers for the partons, as well as leptons and photons produced in the

hard interaction, are now pointing towards the documentation lines above, however. In

particular, beam remnants point to 1 or 2, depending on which side they belong to, and

partons emitted in the initial-state parton showers point to 3 or 4. In the second example

above, the partons produced by final-state radiation will be pointing back to 7 and 8; as

usual, it should be remembered that a specific assignment to 7 or 8 need not be unique.

For the third example, final-state radiation partons will come both from partons 10 and

11 and from partons 16 and 17, and additionally there will be a neutrino-antineutrino pair

pointing to 14 and 15.

A hadronic event may contain several (semi)hard interactions, when multiple interac-

tions are allowed. The hardest interaction of an event is shown in the initial section of the

event record, while further ones are not. Therefore these extra partons, documented in the

main section of the event, do not have a documentation copy to point back to, and so are

assigned K(I,3) = 0.

There exists a third documentation option, MSTP(125) = 2. Here the history of initial-

and final-state parton branchings may be traced, including all details on colour flow. This

information has not been optimized for user-friendliness, and cannot be recommended for

general usage. With this option, the initial documentation lines are the same. They are

followed by blank lines, K(I,1) = 0, up to line 100 (can be changed in MSTP(126)). From

line 101 onwards each parton with K(I,1) = 3, 13 or 14 appears with special colour-

flow information in the K(I,4) and K(I,5) positions. For an ordinary 2 → 2 scattering,

the two incoming partons at the hard scattering are stored in lines 101 and 102, and the

two outgoing in 103 and 104. The colour flow between these partons has to be chosen

according to the proper relative probabilities in cases when many alternatives are possible,

see section 8.2.1. If there is initial-state radiation, the two partons in lines 101 and 102 are

copied down to lines 105 and 106, from which the initial-state showers are reconstructed

backwards step by step. The branching history may be read by noting that, for a branching

a → bc, the K(I,3) codes of b and c point towards the line number of a. Since the showers

are reconstructed backwards, this actually means that parton b would appear in the listing

before parton a and c, and hence have a pointer to a position below itself in the list.

Associated time-like partons c may initiate time-like showers, as may the partons of the

hard scattering. Again a showering parton or pair of partons will be copied down towards

the end of the list and allowed to undergo successive branchings c → de, with d and e

pointing towards c. The mass of time-like partons is properly stored in P(I,5); for space-

like partons −
√
−m2 is stored instead. After this section, containing all the branchings,

comes the final parton configuration, properly arranged in colour, followed by all subsequent

fragmentation and decay products, as usual.
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5.4 The HEPEVT standard

A set of common blocks was developed and agreed on within the framework of the 1989

LEP physics study, see [Sjo89]. This standard defines an event record structure which

should make the interfacing of different event generators much simpler.

It would be a major work to rewrite Pythia to agree with this standard event record

structure. More importantly, the standard only covers quantities which can be defined

unambiguously, i.e. which are independent of the particular program used. There are thus

no provisions for the need for colour-flow information in models based on string fragmen-

tation, etc., so the standard common blocks would anyway have to be supplemented with

additional event information. The adopted approach is therefore to retain the PYJETS

event record, but supply a routine PYHEPC which can convert to or from the standard event

record. Owing to a somewhat different content in the two records, some ambiguities do

exist in the translation procedure. PYHEPC has therefore to be used with some judgement.

In this section, the standard event structure is first presented, i.e. the most important

points in [Sjo89] are recapitulated. Thereafter the conversion routine is described, with

particular attention to ambiguities and limitations.

The standard event record is stored in two common blocks. The second of these is

specifically intended for spin information. Since Pythia never (explicitly) makes use of

spin information, this latter common block is not addressed here. A third common block

for colour flow information has been discussed, but never formalized. Note that a CALL

PYLIST(5) can be used to obtain a simple listing of the more interesting information in

the event record.

In order to make the components of the standard more distinguishable in your pro-

grams, the three characters HEP (for High Energy Physics) have been chosen to be a part

of all names.

Originally it was not specified whether real variables should be in single or double

precision. At the time, this meant that single precision became the default choice, but

since then the trend has been towards increasing precision. In connection with the 1995

LEP 2 workshop, it was therefore agreed to adopt DOUBLE PRECISION real variables as part

of the standard, and also to extend the size from 2000 to 4000 entries [Kno96]. If, for some

reason, one would want to revert to single precision, this would only require trivial changes

to the code of the PYHEPC conversion routine described below.

PARAMETER (NMXHEP=4000)

COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

&JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)

DOUBLE PRECISION PHEP, VHEP

Purpose: to contain an event record in a Monte Carlo-independent format.

NMXHEP: maximum numbers of entries (particles) that can be stored in the common block.

The default value of 4000 can be changed via the parameter construction. In the

translation, it is checked that this value is not exceeded.
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NEVHEP: is normally the event number, but may have special meanings, according to the

description below:

> 0 : event number, sequentially increased by 1 for each call to the main event

generation routine, starting with 1 for the first event generated.

= 0 : for a program which does not keep track of event numbers, as some of the

Pythia routines.

= -1 : special initialization record; not used by Pythia.

= -2 : special final record; not used by Pythia.

NHEP: the actual number of entries stored in the current event. These are found in the

first NHEP positions of the respective arrays below. Index IHEP, 1 ≤ IHEP ≤ NHEP,

is used below to denote a given entry.

ISTHEP(IHEP): status code for entry IHEP, with the following meanings:

= 0 : null entry.

= 1 : an existing entry, which has not decayed or fragmented. This is the main

class of entries, which represents the ‘final state’ given by the generator.

= 2 : an entry which has decayed or fragmented and is therefore not appearing in

the final state, but is retained for event history information.

= 3 : a documentation line, defined separately from the event history. This could

include the two incoming reacting particles, etc.

= 4 - 10 : undefined, but reserved for future standards.

= 11 - 200 : at the disposal of each model builder for constructs specific to his

program, but equivalent to a null line in the context of any other program.

= 201 - : at the disposal of users, in particular for event tracking in the detector.

IDHEP(IHEP) : particle identity, according to the PDG standard. The four additional

codes 91–94 have been introduced to make the event history more legible, see

section 5.1 and the MSTU(16) description of how daughters can point back to

them.

JMOHEP(1,IHEP) : pointer to the position where the mother is stored. The value is 0 for

initial entries.

JMOHEP(2,IHEP) : pointer to position of second mother. Normally only one mother exists,

in which case the value 0 is to be used. In Pythia, entries with codes 91–94 are

the only ones to have two mothers. The flavour contents of these objects, as

well as details of momentum sharing, have to be found by looking at the mother

partons, i.e. the two partons in positions JMOHEP(1,IHEP) and JMOHEP(2,IHEP)

for a cluster or a shower system, and the range JMOHEP(1,IHEP)–JMOHEP(2,IHEP)

for a string or an independent fragmentation parton system.

JDAHEP(1,IHEP) : pointer to the position of the first daughter. If an entry has not de-

cayed, this is 0.

JDAHEP(2,IHEP) : pointer to the position of the last daughter. If an entry has not de-

cayed, this is 0. It is assumed that daughters are stored sequentially, so that the

whole range JDAHEP(1,IHEP)–JDAHEP(2,IHEP) contains daughters. This variable

should be set also when only one daughter is present, as in K0 → K0
S decays, so

that looping from the first daughter to the last one works transparently. Normally
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daughters are stored after mothers, but in backwards evolution of initial-state ra-

diation the opposite may appear, i.e. that mothers are found below the daughters

they branch into. Also, the two daughters then need not appear one after the

other, but may be separated in the event record.

PHEP(1,IHEP) : momentum in the x direction, in GeV/c.

PHEP(2,IHEP) : momentum in the y direction, in GeV/c.

PHEP(3,IHEP) : momentum in the z direction, in GeV/c.

PHEP(4,IHEP) : energy, in GeV.

PHEP(5,IHEP) : mass, in GeV/c2. For space-like partons, it is allowed to use a negative

mass, according to PHEP(5,IHEP)= −
√
−m2.

VHEP(1,IHEP) : production vertex x position, in mm.

VHEP(2,IHEP) : production vertex y position, in mm.

VHEP(3,IHEP) : production vertex z position, in mm.

VHEP(4,IHEP) : production time, in mm/c (≈ 3.33 × 10−12 s).

This completes the brief description of the standard. In Pythia, the routine PYHEPC

is provided as an interface.

CALL PYHEPC(MCONV)

Purpose: to convert between the PYJETS event record and the HEPEVT event record.

MCONV : direction of conversion.

= 1 : translates the current PYJETS record into the HEPEVT one, while leaving the

original PYJETS one unaffected.

= 2 : translates the current HEPEVT record into the PYJETS one, while leaving the

original HEPEVT one unaffected.

The conversion of momenta is trivial: it is just a matter of exchanging the order of the

indices. The vertex information is but little more complicated; the extra fifth component

present in PYJETS can be easily reconstructed from other information for particles which

have decayed. (Some of the advanced features made possible by this component, such as

the possibility to consider decays within expanding spatial volumes in subsequent PYEXEC

calls, cannot be used if the record is translated back and forth, however.) Also, the particle

codes K(I,2) and IDHEP(I) are identical, since they are both based on the PDG codes.

The remaining, non-trivial areas deal with the status codes and the event history. In

moving from PYJETS to HEPEVT, information on colour flow is lost. On the other hand, the

position of a second mother, if any, has to be found; this only affects lines with K(I,2) =

91–94. Also, for lines with K(I,1) = 13 or 14, the daughter pointers have to be found.

By and large, however, the translation from PYJETS to HEPEVT should cause little problem,

and there should never be any need for user intervention. (We assume that Pythia is run

with the default MSTU(16) = 1 mother pointer assignments, otherwise some discrepancies

with respect to the proposed standard event history description will be present.)

In moving from HEPEVT to PYJETS, information on a second mother is lost. Any codes
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ISTHEP(I) not equal to 1, 2 or 3 are translated into K(I,1) = 0, and so all entries with

K(I,1) ≥ 30 are effectively lost in a translation back and forth. All entries with ISTHEP(I)

= 2 are translated into K(I,1) = 11, and so entries of type K(I,1) = 12, 13, 14 or 15

are never found. There is thus no colour-flow information available for partons which have

fragmented. For partons with ISTHEP(I) = 1, i.e. which have not fragmented, an attempt

is made to subdivide the partonic system into colour singlets, as required for subsequent

string fragmentation. To this end, it is assumed that partons are stored sequentially along

strings. Normally, a string would then start at a q (q) or qq (qq) entry, cover a number of

intermediate gluons, and end at a q (q) or qq (qq) entry. Particles could be interspersed in

this list with no adverse effects, i.e. a u−g−γ−u sequence would be interpreted as a u−g−u

string plus an additional photon. A closed gluon loop would be assumed to be made up of

a sequential listing of the gluons, with the string continuing from the last gluon up back

to the first one. Contrary to the previous, open string case, the appearance of any particle

but a gluon would therefore signal the end of the gluon loop. For example, a g− g − g− g

sequence would be interpreted as one single four-gluon loop, while a g − g − γ − g − g

sequence would be seen as composed of two 2-gluon systems.

If these interpretations, which are not unique, are not to your liking, it is up to you to

correct them, e.g. by using PYJOIN to tell exactly which partons should be joined, in which

sequence, to give a string. Calls to PYJOIN (or the equivalent) are also necessary if PYSHOW

is to be used to have some partons develop a shower.

For practical applications, one should note that e+e− events, which have been allowed

to shower but not to fragment, do have partons arranged in the order assumed above, so that

a translation to HEPEVT and back does not destroy the possibility to perform fragmentation

by a simple PYEXEC call. Also the hard interactions in hadronic events fulfil this condition,

while problems may appear in the multiple interaction scenario, where several closed gg

loops may appear directly following one another, and thus would be interpreted as a single

multigluon loop after translation back and forth.
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6. The old electron-positron annihilation routines

From the Jetset package, Pythia inherits routines for the dedicated simulation of two

hard processes in e+e− annihilation. The process of main interest is e+e− → γ∗/Z0 → qq.

The description provided by the PYEEVT routine has been a main staple from PETRA days

up to the LEP1 era. Nowadays it is superseded by process 1 of the main Pythia event

generation machinery, see section 8.4.2. This latter process offers a better description of

flavour selection, resonance shape and initial-state radiation. It can also, optionally, be

used with the second-order matrix element machinery documented in this section. For

backwards compatibility, however, the old routines have still been retained here. There are

also a few features found in the routines in this section, and not in the other ones, such as

polarized incoming beams.

For the process e+e− → γ∗/Z0 → qq, higher-order QCD corrections can be obtained

either with parton showers or with second-order matrix elements. The details of the parton-

shower evolution are given in section 10, while this section contains the matrix-element

description, including a summary of the older algorithm for initial-state photon radiation

used here.

The other standalone hard process in this section is Υ decay to ggg or γgg, which is

briefly commented on.

The main sources of information for this chapter are refs. [Sjo83, Sjo86, Sjo89].

6.1 Annihilation events in the continuum

The description of e+e− annihilation into hadronic events involves a number of components:

the s dependence of the total cross section and flavour composition, multiparton matrix

elements, angular orientation of events, initial-state photon bremsstrahlung and effects

of initial-state electron polarization. Many of the published formulae have been derived

for the case of massless outgoing quarks. For each of the components described in the

following, we will begin by discussing the massless case, and then comment on what is

done to accommodate massive quarks.

6.1.1 Electroweak cross sections

In the Standard Model, fermions have the following couplings (illustrated here for the first

generation):

eν = 0, vν = 1, aν = 1,

ee = −1, ve = −1 + 4 sin2θW , ae = −1,

eu = 2/3, vu = 1 − 8 sin2θW /3, aν = 1,

ed = −1/3, vd = −1 + 4 sin2θW /3, ad = −1,

with e the electric charge, and v and a the vector and axial couplings to the Z0. The

relative energy dependence of the weak neutral current to the electromagnetic one is given

by

χ(s) =
1

16 sin2θW cos2θW

s

s − m2
Z + imZΓZ

, (6.1)
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where s = E2
cm. In this section the electroweak mixing parameter sin2θW and the Z0 mass

mZ and width ΓZ are considered as constants to be given by you (while the full Pythia

event generation machinery itself calculates an s-dependent width).

Although the incoming e+ and e− beams are normally unpolarized, we have included

the possibility of polarized beams, following the formalism of [Ols80]. Thus the incoming

e+ and e− are characterized by polarizations P± in the rest frame of the particles:

P± = P±
T ŝ± + P±

L p̂± , (6.2)

where 0 ≤ P±
T ≤ 1 and −1 ≤ P±

L ≤ 1, with the constraint

(P±)2 = (P±
T )2 + (P±

L )2 ≤ 1 . (6.3)

Here ŝ± are unit vectors perpendicular to the beam directions p̂±. To be specific, we

choose a right-handed coordinate frame with p̂± = (0, 0,∓1), and standard transverse

polarization directions (out of the machine plane for storage rings) ŝ± = (0,±1, 0), the

latter corresponding to azimuthal angles ϕ± = ±π/2. As free parameters in the program

we choose P+
L , P−

L , PT =
√

P+
T P−

T and ∆ϕ = (ϕ+ + ϕ−)/2.

In the massless QED case, the probability to produce a flavour f is proportional to

e2
f , i.e up-type quarks are four times as likely as down-type ones. In lowest-order massless

QFD (Quantum Flavour Dynamics; part of the Standard Model) the corresponding relative

probabilities are given by [Ols80]

hf(s) = e2
e (1 − P+

L P−
L ) e2

f + 2ee

{
ve(1 − P+

L P−
L ) − ae(P

−
L − P+

L )
}
<eχ(s) efvf +

+
{
(v2

e + a2
e)(1 − P+

L P−
L ) − 2veae(P

−
L − P+

L )
}
|χ(s)|2

{
v2
f + a2

f

}
, (6.4)

where <eχ(s) denotes the real part of χ(s). The hf(s) expression depends both on the s

value and on the longitudinal polarization of the e± beams in a non-trivial way.

The cross section for the process e+e− → γ∗/Z0 → ff may now be written as

σf(s) =
4πα2

em

3s
Rf(s) , (6.5)

where Rf gives the ratio to the lowest-order QED cross section for the process e+e− →
µ+µ−,

Rf(s) = NC RQCD hf(s) . (6.6)

The factor of NC = 3 counts the number of colour states available for the qq pair. The

RQCD factor takes into account QCD loop corrections to the cross section. For nf effective

flavours (normally nf = 5)

RQCD ≈ 1 +
αs

π
+ (1.986 − 0.115nf )

(αs

π

)2
+ · · · (6.7)

in the MS renormalization scheme [Din79]. Note that RQCD does not affect the relative

quark-flavour composition, and so is of peripheral interest here. (For leptons the NC and

RQCD factors would be absent, i.e. NC RQCD = 1, but leptonic final states are not generated

by this routine.)
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Neglecting higher-order QCD and QFD effects, the corrections for massive quarks are

given in terms of the velocity βf of a fermion with mass mf , βf =
√

1 − 4m2
f /s, as follows.

The vector quark current terms in hf (proportional to e2
f , efvf , or v2

f ) are multiplied by a

threshold factor βf(3 − β2
f )/2, while the axial vector quark current term (proportional to

a2
f ) is multiplied by β3

f . While inclusion of quark masses in the QFD formulae decreases

the total cross section, first-order QCD corrections tend in the opposite direction [Jer81].

Näıvely, one would expect one factor of βf to get cancelled. So far, the available options

are either to include threshold factors in full or not at all.

Given that all five quarks are light at the scale of the Z0, the issue of quark masses

is not really of interest at LEP. Here, however, purely weak corrections are important, in

particular since they change the b quark partial width differently from that of the other

ones [Kuh89]. No such effects are included in the program.

6.1.2 First-order QCD matrix elements

The Born process e+e− → qq is modified in first-order QCD by the probability for the q or

q to radiate a gluon, i.e. by the process e+e− → qqg. The matrix element is conveniently

given in terms of scaled energy variables in the c.m. frame of the event, x1 = 2Eq/Ecm,

x2 = 2Eq/Ecm, and x3 = 2Eg/Ecm, i.e. x1 + x2 + x3 = 2. For massless quarks the matrix

element reads [Ell76]

1

σ0

dσ

dx1 dx2
=

αs

2π
CF

x2
1 + x2

2

(1 − x1)(1 − x2)
, (6.8)

where σ0 is the lowest-order cross section, CF = 4/3 is the appropriate colour factor, and

the kinematically allowed region is 0 ≤ xi ≤ 1, i = 1, 2, 3. By kinematics, the xk variable

for parton k is related to the invariant mass mij of the other two partons i and j by

yij = m2
ij/E

2
cm = 1 − xk.

The strong coupling constant αs is in first order given by

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2)
. (6.9)

Conventionally Q2 = s = E2
cm; we will return to this issue below. The number of flavours

nf is 5 for LEP applications, and so the Λ value determined is Λ5 (while e.g. most Deeply

Inelastic Scattering studies refer to Λ4, the Q2 scales for these experiments historically

having been below the bottom threshold). The αs values are matched at flavour thresholds,

i.e. as nf is changed the Λ value is also changed. It is therefore the derivative of αs that

changes at a threshold, not αs itself.

In order to separate 2-jets from 3-jets, it is useful to introduce jet-resolution parameters.

This can be done in several different ways. Most famous are the y and (ε, δ) procedures.

We will only refer to the y cut, which is the one used in the program. Here a 3-parton

configuration is called a 2-jet event if

min
i,j

(yij) = min
i,j

(
m2

ij

E2
cm

)
< y . (6.10)
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The cross section in eq. (6.8) diverges for x1 → 1 or x2 → 1 but, when first-order

propagator and vertex corrections are included, a corresponding singularity with opposite

sign appears in the qq cross section, so that the total cross section is finite. In analytical

calculations, the average value of any well-behaved quantity Q can therefore be calculated

as

〈Q〉 =
1

σtot
lim
y→0

(
Q(2parton)σ2parton(y) +

∫

yij>y
Q(x1, x2)

dσ3parton

dx1 dx2
dx1 dx2

)
, (6.11)

where any explicit y dependence disappears in the limit y → 0.

In a Monte Carlo program, it is not possible to work with a negative total 2-jet rate,

and thus it is necessary to introduce a fixed non-vanishing y cut in the 3-jet phase space.

Experimentally, there is evidence for the need of a low y cut, i.e. a large 3-jet rate. For

LEP applications, the recommended value is y = 0.01, which is about as far down as one

can go and still retain a positive 2-jet rate. With αs = 0.12, in full second-order QCD (see

below), the 2 : 3 : 4 jet composition is then approximately 11% : 77% : 12%. Since αs

varies only slowly with energy, it is not possible to go much below y = 0.01 even at future

Linear Collider energies.

Note, however, that initial-state QED radiation may occasionally lower the c.m. energy

significantly, i.e. increase αs, and thereby bring the 3-jet fraction above unity if y is kept

fixed at 0.01 also in those events. Therefore, at PETRA/PEP energies, y values slightly

above 0.01 are needed. In addition to the y cut, the program contains a cut on the invariant

mass mij between any two partons, which is typically required to be larger than 2 GeV.

This cut corresponds to the actual merging of two nearby parton jets, i.e. where a treatment

with two separate partons rather than one would be superfluous in view of the smearing

arising from the subsequent fragmentation. Since the cut-off mass scale
√

yEcm normally

is much larger, this additional cut only enters for events at low energies.

For massive quarks, the amount of QCD radiation is slightly reduced [Iof78]:

1

σ0

dσ

dx1 dx2
=

αs

2π
CF

{
x2

1 + x2
2

(1 − x1)(1 − x2)
−

4m2
q

s

(
1

1 − x1
+

1

1 − x2

)

− 2m2
q

s

(
1

(1 − x1)2
+

1

(1 − x2)2

)
− 4m4

q

s2

(
1

1 − x1
+

1

1 − x2

)2
}

.(6.12)

Properly, the above expression is only valid for the vector part of the cross section, with a

slightly different expression for the axial part, but here the one above is used for it all. In

addition, the phase space for emission is reduced by the requirement

(1 − x1)(1 − x2)(1 − x3)

x2
3

≥ m2
q

s
. (6.13)

For b quarks at LEP energies, these corrections are fairly small.

6.1.3 Four-jet matrix elements

Two new event types are added in second-order QCD, e+e− → qqgg and e+e− → qqq′q′.

The 4-jet cross section has been calculated by several groups [Ali80a, Gae80, Ell81, Dan82],
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which agree on the result. The formulae are too lengthy to be quoted here. In one of the

calculations [Ali80a], quark masses were explicitly included, but here only the massless

expressions are included, as taken from [Ell81]. Here the angular orientation of the event

has been integrated out, so that five independent internal kinematical variables remain.

These may be related to the six yij and the four yijk variables, yij = m2
ij/s = (pi + pj)

2/s

and yijk = m2
ijk/s = (pi + pj + pk)

2/s, in terms of which the matrix elements are given.

The original calculations were for the pure γ-exchange case; it has been pointed out

[Kni89] that an additional contribution to the e+e− → qqq′q′ cross section arises from the

axial part of the Z0. This term is not included in the program, but fortunately it is finite

and small.

Whereas the way the string, i.e. the fragmenting colour flux tube, is stretched is

uniquely given in qqg event, for qqgg events there are two possibilities: q − g1 − g2 − q

or q − g2 − g1 − q. A knowledge of quark and gluon colours, obtained by perturbation

theory, will uniquely specify the stretching of the string, as long as the two gluons do

not have the same colour. The probability for the latter is down in magnitude by a factor

1/N2
C = 1/9. One may either choose to neglect these terms entirely, or to keep them for the

choice of kinematical setup, but then drop them at the choice of string drawing [Gus82].

We have adopted the latter procedure. Comparing the two possibilities, differences are

typically 10–20% for a given kinematical configuration, and less for the total 4-jet cross

section, so from a practical point of view this is not a major problem.

In higher orders, results depend on the renormalization scheme; we will use MS

throughout. In addition to this choice, several possible forms can be chosen for αs, all

of which are equivalent to that order but differ in higher orders. We have picked the

recommended standard [PDG88]

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2
MS

)

{
1 − 6

153 − 19nf

(33 − 2nf )2
ln(ln(Q2/Λ2

MS
))

ln(Q2/Λ2
MS

)

}
. (6.14)

6.1.4 Second-order three-jet matrix elements

As for first order, a full second-order calculation consists both of real parton emission terms

and of vertex and propagator corrections. These modify the 3-jet and 2-jet cross sections.

Although there was some initial confusion, everybody soon agreed on the size of the loop

corrections [Ell81, Ver81, Fab82]. In analytic calculations, the procedure of eq. (6.11),

suitably expanded, can therefore be used unambiguously for a well-behaved variable.

For Monte Carlo event simulation, it is again necessary to impose some finite jet-

resolution criterion. This means that four-parton events which fail the cuts should be

reassigned either to the 3-jet or to the 2-jet event class. It is this area that caused quite a

lot of confusion in the past [Kun81, Got82, Ali82, Zhu83, Gut84, Gut87, Kra88], and where

full agreement does not exist. Most likely, agreement will never be reached, since there are

indeed ambiguous points in the procedure, related to uncertainties on the theoretical side,

as follows.

For the y-cut case, any two partons with an invariant mass m2
ij < yE2

cm should be

recombined into one. If the four-momenta are simply added, the sum will correspond to
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a parton with a positive mass, namely the original mij. The loop corrections are given

in terms of final massless partons, however. In order to perform the (partial) cancellation

between the four-parton real and the 3-parton virtual contributions, it is therefore necessary

to get rid of the bothersome mass in the four-parton states. Several recombinations are

used in practice, which go under names such as ‘E’, ‘E0’, ‘p’ and ‘p0’ [OPA91]. In the

‘E’-type schemes, the energy of a recombined parton is given by Eij = Ei + Ej, and three-

momenta may have to be adjusted accordingly. In the ‘p’-type schemes, on the other hand,

three-momenta are added, pij = pi + pj , and then energies may have to be adjusted.

These procedures result in different 3-jet topologies, and therefore in different second-order

differential 3-jet cross sections.

Within each scheme, a number of lesser points remain to be dealt with, in particular

what to do if a recombination of a nearby parton pair were to give an event with a non-qqg

flavour structure.

This code contains two alternative second-order 3-jet implementations, the GKS and

the ERT(Zhu) ones. The latter is the recommended one and default. Other parameteriza-

tions have also been made available that run together with Jetset 6 (but not adopted to

the current program), see [Sjo89, Mag89].

The GKS option is based on the GKS [Gut84] calculation, where some of the original

mistakes in FKSS [Fab82] have been corrected. The GKS formulae have the advantage of

giving the second-order corrections in closed analytic form, as not-too-long functions of x1,

x2, and the y cut. However, it is today recognized, also by the authors, that important

terms are still missing, and that the matrix elements should therefore not be taken too

seriously. The option is thus kept mainly for backwards compatibility.

The ERT(Zhu) generator [Zhu83] is based on the ERT matrix elements [Ell81], with

a Monte Carlo recombination procedure suggested by Kunszt [Kun81] and developed by

Ali [Ali82]. It has the merit of giving corrections in a convenient, parameterized form. For

practical applications, the main limitation is that the corrections are only given for discrete

values of the cut-off parameter y, namely y = 0.01, 0.02, 0.03, 0.04, and 0.05. At these y

values, the full second-order 3-jet cross section is written in terms of the ‘ratio function’

R(X,Y ; y), defined by

1

σ0

dσtot
3

dX dY
=

αs

π
A0(X,Y )

{
1 +

αs

π
R(X,Y ; y)

}
, (6.15)

where X = x1 − x2 = xq − xq, Y = x3 = xg, σ0 is the lowest-order hadronic cross

section, and A0(X,Y ) the standard first-order 3-jet cross section, cf. eq. (6.8). By Monte

Carlo integration, the value of R(X,Y ; y) is evaluated in bins of (X,Y ), and the result

parameterized by a simple function F (X,Y ; y). Further details are found in [Sjo89].

6.1.5 The matrix-element event generator scheme

The program contains parameterizations, separately, of the total first-order 3-jet rate, the

total second-order 3-jet rate, and the total 4-jet rate, all as functions of y (with αs as a

separate prefactor). These parameterizations have been obtained as follows:
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• The first-order 3-jet matrix element is almost analytically integrable; some small

finite pieces were obtained by a truncated series expansion of the relevant integrand.

• The GKS second-order 3-jet matrix elements were integrated for 40 different y-cut

values, evenly distributed in ln y between a smallest value y = 0.001 and the kine-

matical limit y = 1/3. For each y value, 250 000 phase-space points were generated,

evenly in d ln(1 − xi) = dxi/(1 − xi), i = 1, 2, and the second-order 3-jet rate in

the point evaluated. The properly normalized sum of weights in each of the 40 y

points were then fitted to a polynomial in ln(y−1 − 2). For the ERT(Zhu) matrix

elements the parameterizations in eq. (6.15) were used to perform a corresponding

Monte Carlo integration for the five y values available.

• The 4-jet rate was integrated numerically, separately for qqgg and qqq′q′ events, by

generating large samples of 4-jet phase-space points within the boundary y = 0.001.

Each point was classified according to the actual minimum y between any two partons.

The same events could then be used to update the summed weights for 40 different

counters, corresponding to y values evenly distributed in ln y between y = 0.001 and

the kinematical limit y = 1/6. In fact, since the weight sums for large y values only

received contributions from few phase-space points, extra (smaller) subsamples of

events were generated with larger y cuts. The summed weights, properly normalized,

were then parameterized in terms of polynomials in ln(y−1 − 5). Since it turned out

to be difficult to obtain one single good fit over the whole range of y values, different

parameterizations are used above and below y = 0.018. As originally given, the qqq′q′

parameterization only took into account four q′ flavours, i.e. secondary bb pairs were

not generated, but this has been corrected for LEP.

In the generation stage, each event is treated on its own, which means that the αs and

y values may be allowed to vary from event to event. The main steps are the following.

1. The y value to be used in the current event is determined. If possible, this is the

value given by you, but additional constraints exist from the validity of the parame-

terizations (y ≥ 0.001 for GKS, 0.01 ≤ y ≤ 0.05 for ERT(Zhu)) and an extra (user-

modifiable) requirement of a minimum absolute invariant mass between jets (which

translates into varying y cuts due to the effects of initial-state QED radiation).

2. The αs value is calculated.

3. For the y and αs values given, the relative two/three/four-jet composition is deter-

mined. This is achieved by using the parameterized functions of y for 3- and 4-jet

rates, multiplied by the relevant number of factors of αs. In ERT(Zhu), where the

second-order 3-jet rate is available only at a few y values, intermediate results are

obtained by linear interpolation in the ratio of second-order to first-order 3-jet rates.

The 3-jet and 4-jet rates are normalized to the analytically known second-order total

event rate, i.e. divided by RQCD of eq. (6.7). Finally, the 2-jet rate is obtained by

conservation of total probability.

4. If the combination of y and αs values is such that the total 3- plus 4-jet fraction is

larger than unity, i.e. the remainder 2-jet fraction negative, the y-cut value is raised

(for that event), and the process is started over at point 3.
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5. The choice is made between generating a 2-, 3- or 4-jet event, according to the relative

probabilities.

6. For the generation of 4-jets, it is first necessary to make a choice between qqgg and

qqq′q′ events, according to the relative (parameterized) total cross sections. A phase-

space point is then selected, and the differential cross section at this point is evaluated

and compared with a parameterized maximum weight. If the phase-space point is

rejected, a new one is selected, until an acceptable 4-jet event is found.

7. For 3-jets, a phase-space point is first chosen according to the first-order cross section.

For this point, the weight

W (x1, x2; y) = 1 +
αs

π
R(x1, x2; y) (6.16)

is evaluated. Here R(x1, x2; y) is analytically given for GKS [Gut84], while it is

approximated by the parameterization F (X,Y ; y) of eq. (6.15) for ERT(Zhu). Again,

linear interpolation of F (X,Y ; y) has to be applied for intermediate y values. The

weight W is compared with a maximum weight

Wmax(y) = 1 +
αs

π
Rmax(y) , (6.17)

which has been numerically determined beforehand and suitably parameterized. If

the phase-space point is rejected, a new point is generated, etc.

8. Massive matrix elements are not implemented for second-order QCD (but are in the

first-order option). However, if a 3- or 4-jet event determined above falls outside the

phase-space region allowed for massive quarks, the event is rejected and reassigned

to be a 2-jet event. (The way the yij and yijk variables of 4-jet events should be

interpreted for massive quarks is not even unique, so some latitude has been taken

here to provide a reasonable continuity from 3-jet events.) This procedure is known

not to give the expected full mass suppression, but is a reasonable first approximation.

9. Finally, if the event is classified as a 2-jet event, either because it was initially so

assigned, or because it failed the massive phase-space cuts for 3- and 4-jets, the

generation of 2-jets is trivial.

6.1.6 Optimized perturbation theory

Theoretically, it turns out that the second-order corrections to the 3-jet rate are large. It is

therefore not unreasonable to expect large third-order corrections to the 4-jet rate. Indeed,

the experimental 4-jet rate is much larger than second order predicts (when fragmentation

effects have been included), if αs is determined based on the 3-jet rate [Sjo84a, JAD88].

The only consistent way to resolve this issue is to go ahead and calculate the full next

order. This is a tough task, however, so people have looked at possible shortcuts. For

example, one can try to minimize the higher-order contributions by a suitable choice of

the renormalization scale [Ste81] — ‘optimized perturbation theory’. This is equivalent to

a different choice for the Q2 scale in αs, a scale which is not unambiguous anyway. Indeed

the standard value Q2 = s = E2
cm is larger than the natural physical scale of gluon emission

in events, given that most gluons are fairly soft. One could therefore pick another scale,
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Q2 = fs, with f < 1. The O(αs) 3-jet rate would be increased by such a scale change, and

so would the number of 4-jet events, including those which collapse into 3-jet ones. The

loop corrections depend on the Q2 scale, however, and compensate the changes above by

giving a larger negative contribution to the 3-jet rate.

The possibility of picking an optimized scale f is implemented as follows [Sjo89]. As-

sume that the differential 3-jet rate at scale Q2 = s is given by the expression

R3 = r1αs + r2α
2
s , (6.18)

where R3, r1 and r2 are functions of the kinematical variables x1 and x2 and the y cut,

as implied by the second-order formulae above, see e.g. eq. (6.15). When the coupling is

chosen at a different scale, Q′2 = fs, the 3-jet rate has to be changed to

R′
3 = r′1α

′
s + r′2α

′2
s , (6.19)

where r′1 = r1,

r′2 = r2 + r1
33 − 2nf

12π
ln f , (6.20)

and α′
s = αs(fs). Since we only have the Born term for 4-jets, here the effects of a scale

change come only from the change in the coupling constant. Finally, the 2-jet cross section

can still be calculated from the difference between the total cross section and the 3- and

4-jet cross sections.

If an optimized scale is used in the program, the default value is f = 0.002, which is

favoured by the studies in ref. [Bet89]. (In fact, it is also possible to use a correspondingly

optimized RQCD factor, eq. (6.7), but then the corresponding f is chosen independently

and much closer to unity.) The success of describing the jet rates should not hide the fact

that one is dabbling in (educated, hopefully) guesswork, and that any conclusions based

on this method have to be taken with a pinch of salt.

One special problem associated with the use of optimized perturbation theory is that

the differential 3-jet rate may become negative over large regions of the (x1, x2) phase

space. This problem already exists, at least in principle, even for a scale f = 1, since r2 is

not guaranteed to be positive definite. Indeed, depending on the choice of y cut, αs value,

and recombination scheme, one may observe a small region of negative differential 3-jet

rate for the full second-order expression. This region is centred around qqg configurations,

where the q and q are close together in one hemisphere and the g is alone in the other, i.e.

x1 ≈ x2 ≈ 1/2. It is well understood why second-order corrections should be negative in

this region [Dok89]: the q and q of a qqg state are in a relative colour octet state, and thus

the colour force between them is repulsive, which translates into a negative second-order

term.

However, as f is decreased below unity, r′2 receives a negative contribution from the ln f

term, and the region of negative differential cross section has a tendency to become larger,

also after taking into account related changes in αs. In an event-generator framework,

where all events are supposed to come with unit weight, it is clearly not possible to simulate

negative cross sections. What happens in the program is therefore that no 3-jet events at

– 99 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

all are generated in the regions of negative differential cross section, and that the 3-jet

rate in regions of positive cross sections is reduced by a constant factor, chosen so that the

total number of 3-jet events comes out as it should. This is a consequence of the way the

program works, where it is first decided what kind of event to generate, based on integrated

3-jet rates in which positive and negative contributions are added up with sign, and only

thereafter the kinematics is chosen.

Based on our physics understanding of the origin of this negative cross section, the

approach adopted is as sensible as any, at least to that order in perturbation theory (what

one might strive for is a properly exponentiated description of the relevant region). It can

give rise to funny results for low f values, however, as observed by OPAL [OPA92] for the

energy–energy correlation asymmetry.

6.1.7 Angular orientation

While pure γ exchange gives a simple 1 + cos2 θ distribution for the q (and q) direction in

qq events, Z0 exchange and γ∗/Z0 interference results in a forward–backward asymmetry.

If one introduces

h′
f(s) = 2ee

{
ae(1 − P+

L P−
L ) − ve(P

−
L − P+

L )
}
<eχ(s)efaf

+
{
2veae(1 − P+

L P−
L ) − (v2

e + a2
e)(P

−
L − P+

L )
}
|χ(s)|2 vfaf , (6.21)

then the angular distribution of the quark is given by

dσ

d(cos θf)
∝ hf(s)(1 + cos2 θf) + 2h′

f(s) cos θf . (6.22)

The angular orientation of a 3- or 4-jet event may be described in terms of three angles

χ, θ and ϕ; for 2-jet events only θ and ϕ are necessary. From a standard orientation, with

the q along the +z axis and the q in the xz plane with px > 0, an arbitrary orientation may

be reached by the rotations +χ in azimuthal angle, +θ in polar angle, and +ϕ in azimuthal

angle, in that order. Differential cross sections, including QFD effects and arbitrary beam

polarizations have been given for 2- and 3-jet events in refs. [Ols80, Sch80]. We use the

formalism of ref. [Ols80], with translation from their terminology according to χ → π − χ

and ϕ− → −(ϕ + π/2). The resulting formulae are tedious, but straightforward to apply,

once the internal jet configuration has been chosen. 4-jet events are approximated by 3-jet

ones, by joining the two gluons of a qqgg event and the q′ and q′ of a qqq′q′ event into one

effective jet. This means that some angular asymmetries are neglected [Ali80a], but that

weak effects are automatically included. It is assumed that the second-order 3-jet events

have the same angular orientation as the first-order ones, some studies on this issue may

be found in [Kor85]. Further, the formulae normally refer to the massless case; only for

the QED 2- and 3-jet cases are mass corrections available.

The main effect of the angular distribution of multijet events is to smear the lowest-

order result, i.e. to reduce any anisotropies present in 2-jet systems. In the parton-shower

option of the program, only the initial qq axis is determined. The subsequent shower

evolution then de facto leads to a smearing of the jet axis, although not necessarily in full

agreement with the expectations from multijet matrix-element treatments.
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6.1.8 Initial-state radiation

Initial-state photon radiation has been included using the formalism of ref. [Ber82]. Here

each event contains either no photon or one, i.e. it is a first-order non-exponentiated de-

scription. The main formula for the hard radiative photon cross section is

dσ

dxγ
=

αem

π

(
ln

s

m2
e

− 1

)
1 + (1 − xγ)2

xγ
σ0(ŝ) , (6.23)

where xγ is the photon energy fraction of the beam energy, ŝ = (1 − xγ)s is the squared

reduced hadronic c.m. energy, and σ0 is the ordinary annihilation cross section at the

reduced energy. In particular, the selection of jet flavours should be done according to

expectations at the reduced energy. The cross section is divergent both for xγ → 1 and

xγ → 0. The former is related to the fact that σ0 has a 1/ŝ singularity (the real photon

pole) for ŝ → 0. An upper cut on xγ can here be chosen to fit the experimental setup.

The latter is a soft photon singularity, which is to be compensated in the no-radiation

cross section. A requirement xγ > 0.01 has therefore been chosen so that the hard-photon

fraction is smaller than unity. In the total cross section, effects from photons with xγ < 0.01

are taken into account, together with vertex and vacuum polarization corrections (hadronic

vacuum polarizations using a simple parameterization of the more complicated formulae of

ref. [Ber82]).

The hard photon spectrum can be integrated analytically, for the full γ∗/Z0 structure

including interference terms, provided that no new flavour thresholds are crossed and that

the RQCD term in the cross section can be approximated by a constant over the range of

allowed ŝ values. In fact, threshold effects can be taken into account by standard rejection

techniques, at the price of not obtaining the exact cross section analytically, but only

by an effective Monte Carlo integration taking place in parallel with the ordinary event

generation. In addition to xγ , the polar angle θγ and azimuthal angle ϕγ of the photons

are also to be chosen. Further, for the orientation of the hadronic system, a choice has to

be made whether the photon is to be considered as having been radiated from the e+ or

from the e−.

Final-state photon radiation, as well as interference between initial- and final-state

radiation, has been left out of this treatment. The formulae for e+e− → µ+µ− cannot

be simply taken over for the case of outgoing quarks, since the quarks as such only live

for a short while before turning into hadrons. Another simplification in our treatment is

that effects of incoming polarized e± beams have been completely neglected, i.e. neither

the effective shift in azimuthal distribution of photons nor the reduction in polarization is

included. The polarization parameters of the program are to be thought of as the effective

polarization surviving after initial-state radiation.

6.1.9 Alternative matrix elements

The program contains two sets of ‘toy model’ matrix elements, one for an Abelian vector

gluon model and one for a scalar gluon model. Clearly both of these alternatives are

already excluded by data, and are anyway not viable alternatives for a consistent theory of
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strong interactions. They are therefore included more as references to show how well the

characteristic features of QCD can be measured experimentally.

Second-order matrix elements are available for the Abelian vector gluon model. These

are easily obtained from the standard QCD matrix elements by a substitution of the Casimir

group factors: CF = 4/3 → 1, NC = 3 → 0, and TR = nf/2 → 3nf . First-order matrix

elements contain only CF ; therefore the standard first-order QCD results may be recovered

by a rescaling of αs by a factor 4/3. In second order the change of NC to 0 means that

g → gg couplings are absent from the Abelian model, while the change of TR corresponds

to an enhancement of the g → q′q′ coupling, i.e. to an enhancement of the qqq′q′ 4-jet

event rate.

The second-order corrections to the 3-jet rate turn out to be strongly negative — if

αs is fitted to get about the right rate of 4-jet events, the predicted differential 3-jet rate

is negative almost everywhere in the (x1, x2) plane. Whether this unphysical behaviour

would be saved by higher orders is unclear. It has been pointed out that the rate can

be made positive by a suitable choice of scale, since αs runs in opposite directions in an

Abelian model and in QCD [Bet89]. This may be seen directly from eq. (6.20), where the

term 33 = 11NC is absent in the Abelian model, and therefore the scale-dependent term

changes sign. In the program, optimized scales have not been implemented for this toy

model. Therefore the alternatives provided for you are either to generate only 4-jet events,

or to neglect second-order corrections to the 3-jet rate, or to have the total 3-jet rate set

vanishing (so that only 2- and 4-jet events are generated). Normally we would expect the

former to be the one of most interest, since it is in angular (and flavour) distributions of

4-jet events that the structure of QCD can be tested. Also note that the ‘correct’ running

of αs is not included; you are expected to use the option where αs is just given as a constant

number.

The scalar gluon model is even more excluded than the Abelian vector one, since

differences appear already in the 3-jet matrix element [Lae80]:

dσ

dx1 dx2
∝ x2

3

(1 − x1)(1 − x2)
(6.24)

when only γ exchange is included. The axial part of the Z0 gives a slightly different

shape; this is included in the program but does not make much difference. The angular

orientation does include the full γ∗/Z0 interference [Lae80], but the main interest is in the

3-jet topology as such [Ell79]. No higher-order corrections are included. It is recommended

to use the option of a fixed αs also here, since the correct running is not available.

6.2 Decays of onia resonances

Many different possibilities are open for the decay of heavy JPC = 1−− onia resonances.

Of special interest are the decays into three gluons or two gluons plus a photon, since

these offer unique possibilities to study a ‘pure sample’ of gluon jets. A routine for this

purpose is included in the program. It was written at a time where the expectations were

to find toponium at PETRA energies. Given the large value of the top mass, weak decays

dominate, to the extent that the top quark decays weakly even before a bound toponium
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state is formed, and thus the routine will be of no use for top. The charm system, on the

other hand, is far too low in mass for a jet language to be of any use. The only application

is therefore likely to be for Υ, which unfortunately also is on the low side in mass.

The matrix element for qq → ggg is (in lowest order) [Kol78]

1

σggg

dσggg

dx1 dx2
=

1

π2 − 9

{(
1 − x1

x2x3

)2

+

(
1 − x2

x1x3

)2

+

(
1 − x3

x1x2

)2
}

, (6.25)

where, as before, xi = 2Ei/Ecm in the c.m. frame of the event. This is a well-defined

expression, without the kind of singularities encountered in the qqg matrix elements. In

principle, no cuts at all would be necessary, but for reasons of numerical simplicity we

implement a y cut as for continuum jet production, with all events not fulfilling this cut

considered as (effective) gg events. For ggg events, each gg invariant mass is required to

be at least 2 GeV.

Another process is qq → γgg, obtained by replacing a gluon in qq → ggg by a photon.

This process has the same normalized cross section as the one above, if e.g. x1 is taken to

refer to the photon. The relative rate is [Kol78]

σγgg

σggg
=

36

5

e2
q αem

αs(Q2)
. (6.26)

Here eq is the charge of the heavy quark, and the scale in αs has been chosen as the mass

of the onium state. If the mass of the recoiling gg system is lower than some cut-off (by

default 2 GeV), the event is rejected.

In the present implementation the angular orientation of the ggg and γgg events is

given for the e+e− → γ∗ → onium case [Kol78] (optionally with beam polarization effects

included), i.e. weak effects have not been included, since they are negligible at around

10 GeV.

It is possible to start a perturbative shower evolution from either of the two states

above. However, for Υ the phase space for additional evolution is so constrained that not

much is to be gained from that. We therefore do not recommend this possibility. The shower

generation machinery, when starting up from a γgg configuration, is constructed such that

the photon energy is not changed. This means that there is currently no possibility to use

showers to bring the theoretical photon spectrum in better agreement with the experimental

one.

In string fragmentation language, a ggg state corresponds to a closed string triangle

with the three gluons at the corners. As the partons move apart from a common origin,

the string triangle expands. Since the photon does not take part in the fragmentation, the

γgg state corresponds to a double string running between the two gluons.

6.3 Routines and common-block variables

6.3.1 e+e− continuum event generation

The only routine a normal user will call to generate e+e− continuum events is PYEEVT. The

other routines listed below, as well as PYSHOW (see section 10.4), are called by PYEEVT.
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CALL PYEEVT(KFL,ECM)

Purpose: to generate a complete event e+e− → γ∗/Z0 → qq → parton shower → hadrons

according to QFD and QCD cross sections. As an alternative to parton showers,

second-order matrix elements are available for qq+qqg+qqgg+qqq′q′ production.

KFL : flavour of events generated.

= 0 : mixture of all allowed flavours according to relevant probabilities.

= 1 - 8 : primary quarks are only of the specified flavour KFL.

ECM : total c.m. energy of system.

Remark: Each call generates one event, which is independent of preceding ones, with one

exception, as follows. If radiative corrections are included, the shape of the hard

photon spectrum is recalculated only with each PYXTEE call, which normally is

done only if KFL, ECM or MSTJ(102) is changed. A change of e.g. the Z0 mass in

mid-run has to be followed either by a user call to PYXTEE or by an internal call

forced e.g. by putting MSTJ(116) = 3.

SUBROUTINE PYXTEE(KFL,ECM,XTOT) : to calculate the total hadronic cross section, in-

cluding quark thresholds, weak, beam polarization, and QCD effects and radiative

corrections. In the process, variables necessary for the treatment of hard photon

radiation are calculated and stored.

KFL, ECM : as for PYEEVT.

XTOT : the calculated total cross section in nb.

SUBROUTINE PYRADK(ECM,MK,PAK,THEK,PHIK,ALPK) : to describe initial-state hard γ ra-

diation.

SUBROUTINE PYXKFL(KFL,ECM,ECMC,KFLC) : to generate the primary quark flavour in

case this is not specified by you.

SUBROUTINE PYXJET(ECM,NJET,CUT) : to determine the number of jets (2, 3 or 4) to be

generated within the kinematically allowed region (characterized by CUT = ycut) in

the matrix-element approach; to be chosen such that all probabilities are between

0 and 1.

SUBROUTINE PYX3JT(NJET,CUT,KFL,ECM,X1,X2) : to generate the internal momentum

variables of a 3-jet event, qqg, according to first- or second-order QCD matrix

elements.

SUBROUTINE PYX4JT(NJET,CUT,KFL,ECM,KFLN,X1,X2,X4,X12,X14) : to generate the in-

ternal momentum variables for a 4-jet event, qqgg or qqq′q′, according to second-

order QCD matrix elements.

SUBROUTINE PYXDIF(NC,NJET,KFL,ECM,CHI,THE,PHI) : to describe the angular orienta-

tion of the jets. In first-order QCD the complete QED or QFD formulae are used;

in second order 3-jets are assumed to have the same orientation as in first, and

4-jets are approximated by 3-jets.

6.3.2 A routine for onium decay

In PYONIA we have implemented the decays of heavy onia resonances into three gluons or
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two gluons plus a photon, which are the dominant non-background-like decays of Υ.

CALL PYONIA(KFL,ECM)

Purpose: to simulate the process e+e− → γ∗ → 1−− onium resonance → (ggg or ggγ) →
shower → hadrons.

KFL : the flavour of the quark giving rise to the resonance.

= 0 : generate ggg events alone.

= 1 - 8 : generate ggg and ggγ events in mixture determined by the squared charge

of flavour KFL, see eq. (6.26). Normally KFL = 5.

ECM : total c.m. energy of system.

6.3.3 Common-block variables

The status codes and parameters relevant for the e+e− routines are found in the common

block PYDAT1. This common block also contains more general status codes and parameters,

described elsewhere.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters regulating the per-

formance of the e+e− event generation routines.

MSTJ(101) : (D = 5) gives the type of QCD corrections used for continuum events.

= 0 : only qq events are generated.

= 1 : qq + qqg events are generated according to first-order QCD.

= 2 : qq + qqg + qqgg + qqq′q′ events are generated according to second-order

QCD.

= 3 : qq + qqg + qqgg + qqq′q′ events are generated, but without second-order

corrections to the 3-jet rate.

= 5 : a parton shower is allowed to develop from an original qq pair, see MSTJ(38)

- MSTJ(50) for details.

= -1 : only qqg events are generated (within same matrix-element cuts as for = 1).

Since the change in flavour composition from mass cuts or radiative correc-

tions is not taken into account, this option is not intended for quantitative

studies.

= -2 : only qqgg and qqq′q′ events are generated (as for = 2). The same warning

as for = -1 applies.

= -3 : only qqgg events are generated (as for = 2). The same warning as for = -1

applies.

= -4 : only qqq′q′ events are generated (as for = 2). The same warning as for = -1

applies.

Note 1: MSTJ(101) is also used in PYONIA, with

≤ 4 : ggg + γgg events are generated according to lowest-order matrix elements.
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≥ 5 : a parton shower is allowed to develop from the original ggg or ggγ configu-

ration, see MSTJ(38) - MSTJ(50) for details.

Note 2: the default values of fragmentation parameters have been chosen to work

well with the default parton-shower approach above. If any of the other

options are used, or if the parton shower is used in non-default mode, it

is normally necessary to retune fragmentation parameters. As an example,

we note that the second-order matrix-element approach (MSTJ(101) = 2)

at PETRA/PEP energies gives a better description when the a and b pa-

rameters of the symmetric fragmentation function are set to a =PARJ(41)

= 1, b =PARJ(42) = 0.7, and the width of the transverse momentum dis-

tribution to σ =PARJ(21) = 0.40. In principle, one also ought to change

the joining parameter to PARJ(33) = PARJ(35) = 1.1 to preserve a flat ra-

pidity plateau, but if this should be forgotten, it does not make too much

difference. For applications at TRISTAN or LEP, one has to change the

matrix-element approach parameters even more, to make up for additional

soft gluon effects not covered in this approach.

MSTJ(102) : (D = 2) inclusion of weak effects (Z0 exchange) for flavour production, an-

gular orientation, cross sections and initial-state photon radiation in continuum

events.

= 1 : QED, i.e. no weak effects are included.

= 2 : QFD, i.e. including weak effects.

= 3 : as = 2, but at initialization in PYXTEE the Z0 width is calculated from sin2θW ,

αem and Z0 and quark masses (including bottom and top threshold factors

for MSTJ(103) odd), assuming three full generations, and the result is stored

in PARJ(124).

MSTJ(103) : (D = 7) mass effects in continuum matrix elements, in the form MSTJ(103)

= M1 + 2M2 + 4M3, where Mi = 0 if no mass effects and Mi = 1 if mass effects

should be included. Here;

M1 : threshold factor for new flavour production according to QFD result;

M2 : gluon emission probability (only applies for |MSTJ(101)|≤ 1, otherwise no

mass effects anyhow);

M3 : angular orientation of event (only applies for |MSTJ(101)|≤ 1 and

MSTJ(102) = 1, otherwise no mass effects anyhow).

MSTJ(104) : (D = 5) number of allowed flavours, i.e. flavours that can be produced in a

continuum event if the energy is enough. A change to 6 makes top production

allowed above the threshold, etc. Note that in qqq′q′ events only the first five

flavours are allowed in the secondary pair, produced by a gluon breakup.

MSTJ(105) : (D = 1) fragmentation and decay in PYEEVT and PYONIA calls.

= 0 : no PYEXEC calls, i.e. only matrix-element and/or parton-shower treatment,

and collapse of small jet systems into one or two particles (in PYPREP).

= 1 : PYEXEC calls are made to generate fragmentation and decay chain.

= -1 : no PYEXEC calls and no collapse of small jet systems into one or two particles

(in PYPREP).

– 106 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

MSTJ(106) : (D = 1) angular orientation in PYEEVT and PYONIA.

= 0 : standard orientation of events, i.e. q along +z axis and q along −z axis or in

xz plane with px > 0 for continuum events, and g1g2g3 or γg2g3 in xz plane

with g1 or γ along the +z axis for onium events.

= 1 : random orientation according to matrix elements.

MSTJ(107) : (D = 0) radiative corrections to continuum events.

= 0 : no radiative corrections.

= 1 : initial-state radiative corrections (including weak effects for MSTJ(102) = 2

or 3).

MSTJ(108) : (D = 2) calculation of αs for matrix-element alternatives. The MSTU(111)

and PARU(112) values are automatically overwritten in PYEEVT or PYONIA calls

accordingly.

= 0 : fixed αs value as given in PARU(111).

= 1 : first-order formula is always used, with ΛQCD given by PARJ(121).

= 2 : first- or second-order formula is used, depending on value of MSTJ(101), with

ΛQCD given by PARJ(121) or PARJ(122).

MSTJ(109) : (D = 0) gives a possibility to switch from QCD matrix elements to some

alternative toy models. Is not relevant for shower evolution, MSTJ(101) = 5,

where one can use MSTJ(49) instead.

= 0 : standard QCD scenario.

= 1 : a scalar gluon model. Since no second-order corrections are available in this

scenario, one can only use this with MSTJ(101) = 1 or -1. Also note that

the event-as-a-whole angular distribution is for photon exchange only (i.e. no

weak effects), and that no higher-order corrections to the total cross section

are included.

= 2 : an Abelian vector gluon theory, with the colour factors CF = 1 (= 4/3 in

QCD), NC = 0 (= 3 in QCD) and TR = 3nf (= nf/2 in QCD). If one selects

αAbelian = (4/3)αQCD, the 3-jet cross section will agree with the QCD one,

and differences are to be found only in 4-jets. The MSTJ(109) = 2 option

has to be run with MSTJ(110) = 1 and MSTJ(111) = 0; if need be, the latter

variables will be overwritten by the program.

Warning: second-order corrections give a large negative contribution to the

3-jet cross section, so large that the whole scenario is of doubtful use. In

order to make the second-order options work at all, the 3-jet cross section

is here by hand set exactly equal to zero for MSTJ(101) = 2. It is here

probably better to use the option MSTJ(101) = 3, although this is not a

consistent procedure either.

MSTJ(110) : (D = 2) choice of second-order contributions to the 3-jet rate.

= 1 : the GKS second-order matrix elements.

= 2 : the Zhu parameterization of the ERT matrix elements, based on the program

of Kunszt and Ali, i.e. in historical sequence ERT/Kunszt/Ali/Zhu. The

parameterization is available for y = 0.01, 0.02, 0.03, 0.04 and 0.05. Values

outside this range are put at the nearest border, while those inside it are

– 107 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

given by a linear interpolation between the two nearest points. Since this

procedure is rather primitive, one should try to work at one of the values

given above. Note that no Abelian QCD parameterization is available for

this option.

MSTJ(111) : (D = 0) use of optimized perturbation theory for second-order matrix el-

ements (it can also be used for first-order matrix elements, but here it only

corresponds to a trivial rescaling of the αs argument).

= 0 : no optimization procedure; i.e. Q2 = E2
cm.

= 1 : an optimized Q2 scale is chosen as Q2 = fE2
cm, where f =PARJ(128) for the

total cross section R factor, while f =PARJ(129) for the 3- and 4-jet rates.

This f value enters via the αs, and also via a term proportional to α2
s ln f .

Some constraints are imposed; thus the optimized ‘3-jet’ contribution to

R is assumed to be positive (for PARJ(128)), the total 3-jet rate is not

allowed to be negative (for PARJ(129)), etc. However, there is no guarantee

that the differential 3-jet cross section is not negative (and truncated to 0)

somewhere (this can also happen with f = 1, but is then less frequent).

The actually obtained f values are stored in PARJ(168) and PARJ(169),

respectively. If an optimized Q2 scale is used, then the ΛQCD (and αs) should

also be changed. With the value f = 0.002, it has been shown [Bet89] that

a ΛQCD = 0.100 GeV gives a reasonable agreement; the parameter to be

changed is PARJ(122) for a second-order running αs. Note that, since the

optimized Q2 scale is sometimes below the charm threshold, the effective

number of flavours used in αs may well be 4 only. If one feels that it is still

appropriate to use 5 flavours (one choice might be as good as the other), it

is necessary to put MSTU(113) = 5.

MSTJ(115) : (D = 1) documentation of continuum or onium events, in increasing order

of completeness.

= 0 : only the parton shower, the fragmenting partons and the generated hadronic

system are stored in the PYJETS common block.

= 1 : also a radiative photon is stored (for continuum events).

= 2 : also the original e+e− are stored (with K(I,1) = 21).

= 3 : also the γ or γ∗/Z0 exchanged for continuum events, the onium state for

resonance events is stored (with K(I,1) = 21).

MSTJ(116) : (D = 1) initialization of total cross section and radiative photon spectrum

in PYEEVT calls.

= 0 : never; cannot be used together with radiative corrections.

= 1 : calculated at first call and then whenever KFL or MSTJ(102) is changed or

ECM is changed by more than PARJ(139).

= 2 : calculated at each call.

= 3 : everything is re-initialized in the next call, but MSTJ(116) is afterwards

automatically put = 1 for use in subsequent calls.

MSTJ(119) : (I) check on need to re-initialize PYXTEE.

MSTJ(120) : (R) type of continuum event generated with the matrix-element option (with
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the shower one, the result is always = 1).

= 1 : qq.

= 2 : qqg.

= 3 : qqgg from Abelian (QED-like) graphs in matrix element.

= 4 : qqgg from non-Abelian (i.e. containing triple-gluon coupling) graphs in ma-

trix element.

= 5 : qqq′q′.

MSTJ(121) : (R) flag set if a negative differential cross section was encountered in the

latest PYX3JT call. Events are still generated, but maybe not quite according to

the distribution one would like (the rate is set to zero in the regions of negative

cross section, and the differential rate in the regions of positive cross section is

rescaled to give the ‘correct’ total 3-jet rate).

PARJ(121) : (D = 1.0 GeV) Λ value used in first-order calculation of αs in the matrix-

element alternative.

PARJ(122) : (D = 0.25 GeV) Λ values used in second-order calculation of αs in the matrix-

element alternative.

PARJ(123) : (D = 91.187 GeV) mass of Z0 as used in propagators for the QFD case.

PARJ(124) : (D = 2.489 GeV) width of Z0 as used in propagators for the QFD case.

Overwritten at initialization if MSTJ(102) = 3.

PARJ(125) : (D = 0.01) ycut, minimum squared scaled invariant mass of any two partons

in 3- or 4-jet events; the main user-controlled matrix-element cut. PARJ(126)

provides an additional constraint. For each new event, it is additionally checked

that the total 3- plus 4-jet fraction does not exceed unity; if so the effective y cut

will be dynamically increased. The actual y-cut value is stored in PARJ(150),

event by event.

PARJ(126) : (D = 2. GeV) minimum invariant mass of any two partons in 3- or 4-jet

events; a cut in addition to the one above, mainly for the case of a radiative

photon lowering the hadronic c.m. energy significantly.

PARJ(127) : (D = 1. GeV) is used as a safety margin for small colour-singlet jet systems,

cf. PARJ(32), specifically qq′ masses in qqq′q′ 4-jet events and gg mass in onium

γgg events.

PARJ(128) : (D = 0.25) optimized Q2 scale for the QCD R (total rate) factor for the

MSTJ(111) = 1 option is given by Q2 = fE2
cm, where f =PARJ(128). For various

reasons the actually used f value may be increased compared with the nominal

one; while PARJ(128) gives the nominal value, PARJ(168) gives the actual one

for the current event.

PARJ(129) : (D = 0.002) optimized Q2 scale for the 3- and 4-jet rate for the MSTJ(111)

= 1 option is given by Q2 = fE2
cm, where f =PARJ(129). For various reasons

the actually used f value may be increased compared with the nominal one;

while PARJ(129) gives the nominal value, PARJ(169) gives the actual one for

the current event. The default value is in agreement with the studies of Bethke

[Bet89].
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PARJ(131), PARJ(132) : (D = 2*0.) longitudinal polarizations P+
L and P−

L of incoming

e+ and e−.

PARJ(133) : (D = 0.) transverse polarization PT =
√

P+
T P−

T , with P+
T and P−

T transverse

polarizations of incoming e+ and e−.

PARJ(134) : (D = 0.) mean of transverse polarization directions of incoming e+ and e−,

∆ϕ = (ϕ+ +ϕ−)/2, with ϕ the azimuthal angle of polarization, leading to a shift

in the ϕ distribution of jets by ∆ϕ.

PARJ(135) : (D = 0.01) minimum photon energy fraction (of beam energy) in initial-state

radiation; should normally never be changed (if lowered too much, the fraction

of events containing a radiative photon will exceed unity, leading to problems).

PARJ(136) : (D = 0.99) maximum photon energy fraction (of beam energy) in initial-

state radiation; may be changed to reflect actual trigger conditions of a detector

(but must always be larger than PARJ(135)).

PARJ(139) : (D = 0.2 GeV) maximum deviation of Ecm from the corresponding value at

last PYXTEE call, above which a new call is made if MSTJ(116) = 1.

PARJ(141) : (R) value of R, the ratio of continuum cross section to the lowest-order muon

pair production cross section, as given in massless QED (i.e. three times the sum

of active quark squared charges, possibly modified for polarization).

PARJ(142) : (R) value of R including quark-mass effects (for MSTJ(102) = 1) and/or

weak propagator effects (for MSTJ(102) = 2).

PARJ(143) : (R) value of R as PARJ(142), but including QCD corrections as given by

MSTJ(101).

PARJ(144) : (R) value of R as PARJ(143), but additionally including corrections from

initial-state photon radiation (if MSTJ(107) = 1). Since the effects of heavy

flavour thresholds are not simply integrable, the initial value of PARJ(144) is

updated during the course of the run to improve accuracy.

PARJ(145) - PARJ(148) : (R) absolute cross sections in nb as for the cases PARJ(141)

- PARJ(144) above.

PARJ(150) : (R) current effective matrix element cut-off ycut, as given by PARJ(125),

PARJ(126) and the requirements of having non-negative cross sections for 2-, 3-

and 4-jet events. Not used in parton showers.

PARJ(151) : (R) value of c.m. energy ECM at last PYXTEE call.

PARJ(152) : (R) current first-order contribution to the 3-jet fraction; modified by mass

effects. Not used in parton showers.

PARJ(153) : (R) current second-order contribution to the 3-jet fraction; modified by mass

effects. Not used in parton showers.

PARJ(154) : (R) current second-order contribution to the 4-jet fraction; modified by mass

effects. Not used in parton showers.

PARJ(155) : (R) current fraction of 4-jet rate attributable to qqq′q′ events rather than

qqgg ones; modified by mass effects. Not used in parton showers.

PARJ(156) : (R) has two functions when using second-order QCD. For a 3-jet event, it

gives the ratio of the second-order to the total 3-jet cross section in the given
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kinematical point. For a 4-jet event, it gives the ratio of the modified 4-jet cross

section, obtained when neglecting interference terms whose colour flow is not well

defined, to the full unmodified one, all evaluated in the given kinematical point.

Not used in parton showers.

PARJ(157) - PARJ(159) : (I) used for cross-section calculations to include mass thresh-

old effects to radiative photon cross section. What is stored is basic cross section,

number of events generated and number that passed cuts.

PARJ(160) : (R) nominal fraction of events that should contain a radiative photon.

PARJ(161) - PARJ(164) : (I) give shape of radiative photon spectrum including weak

effects.

PARJ(168) : (R) actual f value of current event in optimized perturbation theory for R;

see MSTJ(111) and PARJ(128).

PARJ(169) : (R) actual f value of current event in optimized perturbation theory for 3-

and 4-jet rate; see MSTJ(111) and PARJ(129).

PARJ(171) : (R) fraction of cross section corresponding to the axial coupling of quark

pair to the intermediate γ∗/Z0 state; needed for the Abelian gluon model 3-jet

matrix element.

6.4 Examples

An ordinary e+e− annihilation event in the continuum, at a c.m. energy of 91 GeV, may

be generated with

CALL PYEEVT(0,91D0)

In this case a qq event is generated, including weak effects, followed by parton-shower

evolution and fragmentation/decay treatment. Before a call to PYEEVT, however, a number

of default values may be changed, e.g. MSTJ(101) = 2 to use second-order QCD matrix

elements, giving a mixture of qq, qqg, qqgg, and qqq′q′ events, MSTJ(102) = 1 to have

QED only, MSTJ(104) = 6 to allow tt production as well, MSTJ(107) = 1 to include initial-

state photon radiation (including a treatment of the Z0 pole), PARJ(123) = 92.0 to change

the Z0 mass, PARJ(81) = 0.3 to change the parton-shower Λ value, or PARJ(82) = 1.5 to

change the parton-shower cut-off. If initial-state photon radiation is used, some restrictions

apply to how one can alternate the generation of events at different energies or with different

Z0 mass, etc. These restrictions are not there for efficiency reasons (the extra time for

recalculating the extra constants every time is small), but because it ties in with the cross-

section calculations (see PARJ(144)).

Most parameters can be changed independently of each other. However, if just one

or a few parameters/switches are changed, one should not be surprised to find a rather

bad agreement with the data, like e.g. a too low or high average hadron multiplicity. It

is therefore usually necessary to retune one parameter related to the perturbative QCD

description, like αs or Λ, one of the two parameters a and b of the Lund symmetric frag-

mentation function (since they are so strongly correlated, it is often not necessary to retune

both of them), and the average fragmentation transverse momentum — see Note 2 of the
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MSTJ(101) description for an example. For very detailed studies it may be necessary to

retune even more parameters.

The three-gluon and gluon–gluon–photon decays of Υ may be simulated by a call

CALL PYONIA(5,9.46D0)

A typical program for analysis of e+e− annihilation events at 200 GeV might look

something like

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

MDCY(PYCOMP(111),1)=0 ! put pi0 stable

MSTJ(107)=1 ! include initial-state radiation

PARU(41)=1D0 ! use linear sphericity

..... ! other desired changes

CALL PYTABU(10) ! initialize analysis statistics

DO 100 IEV=1,1000 ! loop over events

CALL PYEEVT(0,200D0) ! generate new event

IF(IEV.EQ.1) CALL PYLIST(2) ! list first event

CALL PYTABU(11) ! save particle composition

! statistics

CALL PYEDIT(2) ! remove decayed particles

CALL PYSPHE(SPH,APL) ! linear sphericity analysis

IF(SPH.LT.0D0) GOTO 100 ! too few particles in event for

! PYSPHE to work on it (unusual)

CALL PYEDIT(31) ! orient event along axes above

IF(IEV.EQ.1) CALL PYLIST(2) ! list first treated event

..... ! fill analysis statistics

CALL PYTHRU(THR,OBL) ! now do thrust analysis

..... ! more analysis statistics

100 CONTINUE !

CALL PYTABU(12) ! print particle composition

! statistics

..... ! print analysis statistics

END

– 112 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

7. Process generation

Much can be said about the processes in Pythia and the way they are generated. Therefore

the material has been split into three sections. In the current one the philosophy underlying

the event generation scheme is presented. Here we provide a generic description, where

some special cases are swept under the carpet. In the next section, the existing processes

are enumerated, with some comments about applications and limitations. Finally, in the

third section the generation routines and common-block switches are described.

The section starts with a survey of parton distributions, followed by a detailed descrip-

tion of the simple 2 → 2 and 2 → 1 hard subprocess generation schemes, including pairs of

resonances. This is followed by a few comments on more complicated configurations, and

on nonperturbative processes.

7.1 Parton distributions

The parton distribution function fa
i (x,Q2) parameterizes the probability to find a parton

i with a fraction x of the beam energy when the beam particle a is probed by a hard

scattering at virtuality scale Q2. Usually the momentum-weighted combination xfa
i (x,Q2)

is used, for which the normalization condition
∑

i

∫ 1
0 dxxfa

i (x,Q2) ≡ 1 normally applies.

The Q2 dependence of parton distributions is perturbatively calculable, see section 10.3.1.

The parton distributions in Pythia come in many shapes, as shown in the following.

7.1.1 Baryons

For protons, many sets exist on the market. These are obtained by fits to experimental

data, constrained so that the Q2 dependence is in accordance with the standard QCD

evolution equations. The current default in Pythia is CTEQ 5L [Lai00], a leading-order

fit. Several other sets are found in Pythia. The complete list is:

• EHLQ sets 1 and 2 [Eic84];

• DO sets 1 and 2 [Duk82];

• the GRV 92L (updated version) fit [Glu92];

• the CTEQ 3L, CTEQ 3M and CTEQ 3D fits [Lai95];

• the GRV 94L, GRV 94M and GRV 94D fits [Glu95]; and

• the CTEQ 5L and CTEQ 5M1 fits [Lai00].

Of these, EHLQ, DO, GRV 92L, CTEQ 3L, GRV94L and CTEQ5L are leading-order parton

distributions, while CTEQ 3D and GRV94D are in the next-to-leading-order DIS scheme

and the rest in the next-to-leading order MS scheme. The EHLQ and DO sets are by now

rather old, and are kept mainly for backwards compatibility. Since only Born-level matrix

elements are included in the program, there is no particular reason to use higher-order

parton distributions — the resulting combination is anyway only good to leading-order

accuracy. (Some higher-order corrections are effectively included by the parton-shower

treatment, but there is no exact match.)

There is a steady flow of new parton-distribution sets on the market. To keep track

of all of them is a major work on its own. Therefore Pythia contains an interface to an

– 113 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

external library of parton distribution functions, Pdflib [Plo93]. This is an encyclopedic

collection of almost all proton, pion and photon parton distributions proposed from the

late 70’s to the late 90’s. Three dummy routines come with the Pythia package, so as to

avoid problems with unresolved external references if Pdflib is not linked. One should

also note that Pythia does not check the results, but assumes that sensible answers will

be returned, also outside the nominal (x,Q2) range of a set. Only the sets that come with

Pythia have been suitably modified to provide reasonable answers outside their nominal

domain of validity.

Pdflib has been frozen in recent years. Instead a new project has taken over the same

rôle, LHAPDF, the Les Houches Accord PDF interface [Gie02], containing all new sets of

the last five years or so. While LHAPDF has a native input/output format different from

the Pdflib one, the LHAGLUE subpackage allows LHAPDF to be called in exactly the

same way as Pdflib is. Therefore the Pythia external-PFD-interface works for Pdflib

and LHAPDF alike.

From the proton parton distributions, those of the neutron are obtained by isospin

conjugation, i.e. fn
u = fp

d and fn
d = fp

u .

The program does allow for incoming beams of a number of hyperons: Λ0, Σ−,0,+,

Ξ−,0 and Ω−. Here one has essentially no experimental information. One could imagine

to construct models in which valence s quarks are found at larger average x values than

valence u and d ones, because of the larger s-quark mass. However, hyperon beams is a

little-used part of the program, included only for a few specific studies. Therefore a simple

approach has been taken, in which an average valence quark distribution is constructed as

fval = (fp
u,val + fp

d,val)/3, according to which each valence quark in a hyperon is assumed to

be distributed. Sea-quark and gluon distributions are taken as in the proton. Any proton

parton distribution set may be used with this procedure.

7.1.2 Mesons and photons

Data on meson parton distributions are scarce, so only very few sets have been constructed,

and only for the π±. Pythia contains the Owens set 1 and 2 parton distributions [Owe84],

which for a long time were essentially the only sets on the market, and the more recent

dynamically generated GRV LO (updated version) [Glu92a]. The latter one is the default

in Pythia. Further sets are found in Pdflib and LHAPDF and can therefore be used by

Pythia, just as described above for protons.

Like the proton was used as a template for simple hyperon sets, so also the pion is

used to derive a crude ansatz for K±/K0
S/K0

L. The procedure is the same, except that now

fval = (fπ+

u,val + fπ+

d,val
)/2.

Sets of photon parton distributions have been obtained as for hadrons; an additional

complication comes from the necessity to handle the matching of the vector meson dom-

inance (VMD) and the perturbative pieces in a consistent manner. New sets have been

produced where this division is explicit and therefore especially well suited for applications

to event generation[Sch95]. The Schuler and Sjöstand set 1D is the default. Although the

vector-meson philosophy is at the base, the details of the fits do not rely on pion data, but

only on F γ
2 data. Here follows a brief summary of relevant details.
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Real photons obey a set of inhomogeneous evolution equations, where the inhomoge-

neous term is induced by γ → qq branchings. The solution can be written as the sum of

two terms,

fγ
a (x,Q2) = fγ,NP

a (x,Q2;Q2
0) + fγ,PT

a (x,Q2;Q2
0) , (7.1)

where the former term is a solution to the homogeneous evolution with a (nonperturbative)

input at Q = Q0 and the latter is a solution to the full inhomogeneous equation with

boundary condition fγ,PT
a (x,Q2

0;Q
2
0) ≡ 0. One possible physics interpretation is to let

fγ,NP
a correspond to γ ↔ V fluctuations, where V = ρ0, ω, φ, . . . is a set of vector mesons,

and let fγ,PT
a correspond to perturbative (‘anomalous’) γ ↔ qq fluctuations. The discrete

spectrum of vector mesons can be combined with the continuous (in virtuality k2) spectrum

of qq fluctuations, to give

fγ
a (x,Q2) =

∑

V

4παem

f2
V

fγ,V
a (x,Q2) +

αem

2π

∑

q

2e2
q

∫ Q2

Q2
0

dk2

k2
fγ,qq

a (x,Q2; k2) , (7.2)

where each component fγ,V and fγ,qq obeys a unit momentum sum rule.

In sets 1 the Q0 scale is picked at a low value, 0.6 GeV, where an identification of the

nonperturbative component with a set of low-lying mesons appear natural, while sets 2 use

a higher value, 2 GeV, where the validity of perturbation theory is better established. The

data are not good enough to allow a precise determination of ΛQCD. Therefore we use a

fixed value Λ(4) = 200 MeV, in agreement with conventional results for proton distributions.

In the VMD component the ρ0 and ω have been added coherently, so that uu : dd = 4 : 1

at Q0.

Unlike the p, the γ has a direct component where the photon acts as an unresolved

probe. In the definition of F γ
2 this adds a component Cγ , symbolically

F γ
2 (x,Q2) =

∑

q

e2
q

[
fγ
q + fγ

q

]
⊗ Cq + fγ

g ⊗ Cg + Cγ . (7.3)

Since Cγ ≡ 0 in leading order, and since we stay with leading-order fits, it is permissible to

neglect this complication. Numerically, however, it makes a non-negligible difference. We

therefore make two kinds of fits, one DIS type with Cγ = 0 and one ms type including the

universal part of Cγ .

When jet production is studied for real incoming photons, the standard evolution

approach is reasonable also for heavy flavours, i.e. predominantly the c, but with a lower

cut-off Q0 ≈ mc for γ → cc. Moving to Deeply Inelastic Scattering, eγ → eX, there is

an extra kinematical constraint: W 2 = Q2(1 − x)/x > 4m2
c . It is here better to use the

‘Bethe-Heitler’ cross section for γ∗γ → cc. Therefore each distribution appears in two

variants. For applications to real γ’s the parton distributions are calculated as the sum of

a vector-meson part and an anomalous part including all five flavours. For applications to

DIS, the sum runs over the same vector-meson part, an anomalous part and possibly a Cγ

part for the three light flavours, and a Bethe-Heitler part for c and b.

In version 2 of the SaS distributions, which are the ones found here, the extension

from real to virtual photons was improved, and further options made available [Sch96].
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The resolved components of the photon are dampened by phenomenologically motivated

virtuality-dependent dipole factors, while the direct ones are explicitly calculable. Thus

eq. (7.2) generalizes to

fγ?

a (x,Q2, P 2) =
∑

V

4παem

f2
V

(
m2

V

m2
V + P 2

)2

fγ,V
a (x,Q2; Q̃2

0)

+
αem

2π

∑

q

2e2
q

∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2

fγ,qq
a (x,Q2; k2) , (7.4)

with P 2 the photon virtuality and Q2 the hard-process scale. In addition to the introduction

of the dipole form factors, note that the lower input scale for the VMD states is here shifted

from Q2
0 to some Q̃2

0 ≥ Q2
0. This is based on a study of the evolution equation [Bor93] that

shows that the evolution effectively starts ‘later’ in Q2 for a virtual photon. Equation (7.4)

is one possible answer. It depends on both Q2 and P 2 in a non-trivial way, however, so

that results are only obtained by a time-consuming numerical integration rather than as a

simple parametrization. Therefore several other alternatives are offered, that are in some

sense equivalent, but can be given in simpler form.

In addition to the SaS sets, Pythia also contains the Drees–Grassie set of parton

distributions [Dre85] and, as for the proton, there is an interface to Pdflib and LHAPDF.

These calls are made with photon virtuality P 2 below the hard-process scale Q2. Further

author-recommended constrains are implemented in the interface to the GRS set [Glu99]

which, along with SaS, is among the few also to define parton distributions of virtual

photons. However, these sets do not allow a subdivision of the photon parton distributions

into one VMD part and one anomalous part. This subdivision is necessary a sophisticated

modelling of γp and γγ events, see above and section 7.7.2. As an alternative, for the VMD

part alone, the ρ0 parton distribution can be found from the assumed equality

fρ0

i = fπ0

i =
1

2
(fπ+

i + fπ−

i ) . (7.5)

Thus any π+ parton distribution set, from any library, can be turned into a VMD ρ0 set.

The ω parton distribution is assumed the same, while the φ and J/ψ ones are handled in

the very crude approximation fφ
s,val = fπ+

u,val and fφ
sea = fπ+

sea . The VMD part needs to be

complemented by an anomalous part to make up a full photon distribution. The latter is

fully perturbatively calculable, given the lower cut-off scale Q0. The SaS parameterization

of the anomalous part is therefore used throughout for this purpose. The Q0 scale can be

set freely in the PARP(15) parameter.

The fγ,anom
i distribution can be further decomposed, by the flavour and the p⊥ of

the original branching γ → qq. The flavour is distributed according to squared charge

(plus flavour thresholds for heavy flavours) and the p⊥ according to dp2
⊥/p2

⊥ in the range

Q0 < p⊥ < Q. At the branching scale, the photon only consists of a qq pair, with x

distribution ∝ x2 + (1 − x)2. A component fγ,qq
a (x,Q2; k2), characterized by its k ≈ p⊥

and flavour, then is evolved homogeneously from p⊥ to Q. For theoretical studies it is

convenient to be able to access a specific component of this kind. Therefore also leading-

order parameterizations of these decomposed distributions are available [Sch95].
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7.1.3 Leptons

Contrary to the hadron case, there is no necessity to introduce the parton-distribution

function concept for leptons. A lepton can be considered as a point-like particle, with initial-

state radiation handled by higher-order matrix elements. However, the parton distribution

function approach offers a slightly simplified but very economical description of initial-state

radiation effects for any hard process, also those for which higher-order corrections are not

yet calculated.

Parton distributions for electrons have been introduced in Pythia, and are used also

for muons and taus, with a trivial substitution of masses. Alternatively, one is free to use a

simple ‘unresolved’ e, f e
e (x,Q2) = δ(x−1), where the e retains the full original momentum.

Electron parton distributions are calculable entirely from first principles, but different

levels of approximation may be used. The parton-distribution formulae in Pythia are

based on a next-to-leading-order exponentiated description, see ref. [Kle89], p. 34. The

approximate behaviour is

f e
e (x,Q2) ≈ β

2
(1 − x)β/2−1 ;

β =
2αem

π

(
ln

Q2

m2
e

− 1

)
. (7.6)

The form is divergent but integrable for x → 1, i.e. the electron likes to keep most of the

energy. To handle the numerical precision problems for x very close to unity, the parton

distribution is set, by hand, to zero for x > 1− 10−10, and is rescaled upwards in the range

1 − 10−7 < x < 1 − 10−10, in such a way that the total area under the parton distribution

is preserved:

(
f e
e (x,Q2)

)
mod

=





f e
e (x,Q2) 0 ≤ x ≤ 1 − 10−7

1000β/2

1000β/2 − 1
f e
e (x,Q2) 1 − 10−7 < x < 1 − 10−10

0 x > 1 − 10−10 .

(7.7)

A separate issue is that electron beams may not be monochromatic, more so than for

other particles because of the small electron mass. In storage rings the main mechanism is

synchrotron radiation. For future high-luminosity linear colliders, the beam–beam interac-

tions at the collision vertex may induce a quite significant energy loss — ‘beamstrahlung’.

Note that neither of these are associated with any off-shellness of the electrons, i.e. the

resulting spectrum only depends on x and not Q2. Examples of beamstrahlung spectra are

provided by the Circe program [Ohl97], with a sample interface on the Pythia webpages.

The branchings e → eγ, which are responsible for the softening of the f e
e parton

distribution, also gives rise to a flow of photons. In photon-induced hard processes, the

f e
γ parton distribution can be used to describe the equivalent flow of photons. In the next

section, a complete differential photon flux machinery is introduced. Here some simpler

first-order expressions are introduced, for the flux integrated up to a hard interaction scale

Q2. There is some ambiguity in the choice of Q2 range over which emissions should be
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included. The näıve (default) choice is

f e
γ(x,Q2) =

αem

2π

1 + (1 − x)2

x
ln

(
Q2

m2
e

)
. (7.8)

Here it is assumed that only one scale enters the problem, namely that of the hard inter-

action, and that the scale of the branching e → eγ is bounded from above by the hard

interaction scale. For a pure QCD or pure QED shower this is an appropriate procedure, cf.

section 10.1.3, but in other cases it may not be optimal. In particular, for photoproduction

the alternative that is probably most appropriate is [Ali88]:

f e
γ(x,Q2) =

αem

2π

1 + (1 − x)2

x
ln

(
Q2

max(1 − x)

m2
e x2

)
. (7.9)

Here Q2
max is a user-defined cut for the range of scattered electron kinematics that is counted

as photoproduction. Note that we now deal with two different Q2 scales, one related to

the hard subprocess itself, which appears as the argument of the parton distribution, and

the other related to the scattering of the electron, which is reflected in Q2
max.

Also other sources of photons should be mentioned. One is the beamstrahlung pho-

tons mentioned above, where again Circe provides sample parameterizations. Another,

particularly interesting one, is laser backscattering, wherein an intense laser pulse is shot

at an incoming high-energy electron bunch. By Compton backscattering this gives rise to a

photon energy spectrum with a peak at a significant fraction of the original electron energy

[Gin82]. Both of these sources produce real photons, which can be considered as photon

beams of variable energy (see section 9.8), decoupled from the production process proper.

In resolved photoproduction or resolved γγ interactions, one has to include the parton

distributions for quarks and gluons inside the photon inside the electron. This is best done

with the machinery of the next section. However, as an older and simpler alternative, f e
q,g

can be obtained by a numerical convolution according to

f e
q,g(x,Q2) =

∫ 1

x

dxγ

xγ
f e

γ(xγ , Q2) fγ
q,g

(
x

xγ
, Q2

)
, (7.10)

with f e
γ as discussed above. The necessity for numerical convolution makes this parton

distribution evaluation rather slow compared with the others; one should therefore only

have it switched on for resolved photoproduction studies.

One can obtain the positron distribution inside an electron, which is also the electron

sea parton distribution, by a convolution of the two branchings e → eγ and γ → e+e−; the

result is [Che75]

f e−

e+ (x,Q2) =
1

2

{
αem

2π

(
ln

Q2

m2
e

− 1

)}2
1

x

(
4

3
− x2 − 4

3
x3 + 2x(1 + x) ln x

)
. (7.11)

Finally, the program also contains the distribution of a transverse W− inside an electron

f e
W(x,Q2) =

αem

2π

1

4 sin2θW

1 + (1 − x)2

x
ln

(
1 +

Q2

m2
W

)
. (7.12)
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7.1.4 Equivalent photon flux in leptons

With the ’gamma/lepton’ option of a PYINIT call, an ep or e+e− event (or corresponding

processes with muons) is factorized into the flux of virtual photons and the subsequent

interactions of such photons. While real photons always are transverse (T), the virtual

photons also allow a longitudinal (L) component. This corresponds to cross sections

dσ(ep → eX) =
∑

ξ=T,L

∫ ∫
dy dQ2 f ξ

γ/e(y,Q2) dσ(γ∗
ξ p → X) (7.13)

and

dσ(ee → eeX) =
∑

ξ1,ξ2=T,L

∫ ∫ ∫
dy1 dQ2

1 dy2 dQ2
2 f ξ1

γ/e(y1, Q
2
1)f

ξ2
γ/e(y2, Q

2
2) dσ(γ∗

ξ1γ
∗
ξ2 → X) .

(7.14)

For ep events, this factorized ansatz is perfectly general, so long as azimuthal distributions

in the final state are not studied in detail. In e+e− events, it is not a good approximation

when the virtualities Q2
1 and Q2

2 of both photons become of the order of the squared invari-

ant mass W 2 of the colliding photons [Sch98]. In this region the cross section have terms

that depend on the relative azimuthal angle of the scattered leptons, and the transverse

and longitudinal polarizations are non-trivially mixed. However, these terms are of order

Q2
1Q

2
2/W

2 and can be neglected whenever at least one of the photons has low virtuality

compared to W 2.

When Q2/W 2 is small, one can derive [Bon73, Bud75, Sch98]

fT
γ/l(y,Q2) =

αem

2π

(
(1 + (1 − y)2

y

1

Q2
− 2m2

l y

Q4

)
, (7.15)

fL
γ/l(y,Q2) =

αem

2π

2(1 − y)

y

1

Q2
, (7.16)

where l = e±, µ± or τ±. In fT
γ/l the second term, proportional to m2

l /Q
4, is not leading

log and is therefore often omitted. Clearly it is irrelevant at large Q2, but around the lower

cut-off Q2
min it significantly dampens the small-y rise of the first term. (Note that Q2

min is

y-dependent, so properly the dampening is in a region of the (y,Q2) plane.) Overall, under

realistic conditions, it reduces event rates by 5–10% [Sch98, Fri93].

The y variable is defined as the light-cone fraction the photon takes of the incoming

lepton momentum. For instance, for l+l− events,

yi =
qikj

kikj
, j = 2(1) for i = 1(2) , (7.17)

where the ki are the incoming lepton four-momenta and the qi the four-momenta of the

virtual photons.

Alternatively, the energy fraction the photon takes in the rest frame of the collision

can be used,

xi =
qi(k1 + k2)

ki(k1 + k2)
, i = 1, 2 . (7.18)
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The two are simply related,

yi = xi +
Q2

i

s
, (7.19)

with s = (k1 + k2)
2. (Here and in the following formulae we have omitted the lepton and

hadron mass terms when it is not of importance for the argumentation.) Since the Jacobian

d(yi, Q
2
i )/d(xi, Q

2
i ) = 1, either variable would be an equally valid choice for covering the

phase space. Small xi values will be of less interest for us, since they lead to small W 2,

so yi/xi ≈ 1 except in the high-Q2 tail, and often the two are used interchangeably.

Unless special Q2 cuts are imposed, cross sections obtained with fT,L
γ/l (x,Q2) dx rather

than fT,L
γ/l (y,Q2) dy differ only at the per mil level. For comparisons with experimental

cuts, it is sometimes relevant to know which of the two is being used in an analysis.

In the ep kinematics, the x and y definitions give that

W 2 = xs = ys − Q2 . (7.20)

The W 2 expression for l+l− is more complicated, especially because of the dependence on

the relative azimuthal angle of the scattered leptons, ϕ12 = ϕ1 − ϕ2:

W 2 = x1x2s +
2Q2

1Q
2
2

s
− 2

√
1 − x1 −

Q2
1

s

√
1 − x2 −

Q2
2

s
Q1Q2 cos ϕ12

= y1y2s − Q2
1 − Q2

2 +
Q2

1Q
2
2

s
− 2

√
1 − y1

√
1 − y2Q1Q2 cos ϕ12 . (7.21)

The lepton scattering angle θi is related to Q2
i as

Q2
i =

x2
i

1 − xi
m2

i + (1 − xi)

(
s − 2

(1 − xi)2
m2

i − 2m2
j

)
sin2(θi/2) , (7.22)

with m2
i = k2

i = k′2
i and terms of O(m4) neglected. The kinematical limits thus are

(Q2
i )min ≈ x2

i

1 − xi
m2

i , (7.23)

(Q2
i )max ≈ (1 − xi)s , (7.24)

unless experimental conditions reduce the θi ranges.

In summary, we will allow the possibility of experimental cuts in the xi, yi, Q2
i , θi

and W 2 variables. Within the allowed region, the phase space is Monte Carlo sampled

according to
∏

i(dQ2
i /Q

2
i ) (dxi/xi) dϕi, with the remaining flux factors combined with the

cross section factors to give the event weight used for eventual acceptance or rejection.

This cross section in its turn can contain the parton densities of a resolved virtual photon,

thus offering an effective convolution that gives partons inside photons inside electrons.

7.2 Kinematics and cross section for a two-body process

In this section we begin the description of kinematics selection and cross-section calculation.

The example is for the case of a 2 → 2 process, with final-state masses assumed to be

vanishing. Later on we will expand to finite fixed masses, and to resonances.
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Consider two incoming beam particles in their c.m. frame, each with energy Ebeam.

The total squared c.m. energy is then s = 4E2
beam. The two partons that enter the hard

interaction do not carry the total beam momentum, but only fractions x1 and x2, respec-

tively, i.e. they have four-momenta

p1 = Ebeam(x1; 0, 0, x1) ,

p2 = Ebeam(x2; 0, 0,−x2) . (7.25)

There is no reason to put the incoming partons on the mass shell, i.e. to have time-like

incoming four-vectors, since partons inside a particle are always virtual and thus space-

like. These space-like virtualities are introduced as part of the initial-state parton-shower

description, see section 10.3.3, but do not affect the formalism of this section, wherefore

massless incoming partons is a sensible ansatz. The one example where it would be ap-

propriate to put a parton on the mass shell is for an incoming lepton beam, but even

here the massless kinematics description is adequate as long as the c.m. energy is correctly

calculated with masses.

The squared invariant mass of the two partons is defined as

ŝ = (p1 + p2)
2 = x1 x2 s . (7.26)

Instead of x1 and x2, it is often customary to use τ and either y or xF:

τ = x1x2 =
ŝ

s
; (7.27)

y =
1

2
ln

x1

x2
; (7.28)

xF = x1 − x2 . (7.29)

In addition to x1 and x2, two additional variables are needed to describe the kinematics

of a scattering 1 + 2 → 3 + 4. One corresponds to the azimuthal angle ϕ of the scattering

plane around the beam axis. This angle is always isotropically distributed for unpolarized

incoming beam particles, and so need not be considered further. The other variable can

be picked as θ̂, the polar angle of parton 3 in the c.m. frame of the hard scattering. The

conventional choice is to use the variable

t̂ = (p1 − p3)
2 = (p2 − p4)

2 = − ŝ

2
(1 − cos θ̂) , (7.30)

with θ̂ defined as above. In the following, we will make use of both t̂ and θ̂. It is also

customary to define û,

û = (p1 − p4)
2 = (p2 − p3)

2 = − ŝ

2
(1 + cos θ̂) , (7.31)

but û is not an independent variable since

ŝ + t̂ + û = 0 . (7.32)
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If the two outgoing particles have masses m3 and m4, respectively, then the four-

momenta in the c.m. frame of the hard interaction are given by

p̂3,4 =

(
ŝ ± (m2

3 − m2
4)

2
√

ŝ
,±

√
ŝ

2
β34 sin θ̂, 0,±

√
ŝ

2
β34 cos θ̂

)
, (7.33)

where

β34 =

√(
1 − m2

3

ŝ
− m2

4

ŝ

)2

− 4
m2

3

ŝ

m2
4

ŝ
. (7.34)

Then t̂ and û are modified to

t̂, û = −1

2

{
(ŝ − m2

3 − m2
4) ∓ ŝ β34 cos θ̂

}
, (7.35)

with

ŝ + t̂ + û = m2
3 + m2

4 . (7.36)

The cross section for the process 1 + 2 → 3 + 4 may be written as

σ =

∫ ∫ ∫
dx1 dx2 dt̂ f1(x1, Q

2) f2(x2, Q
2)

dσ̂

dt̂

=

∫ ∫ ∫
dτ

τ
dy dt̂ x1f1(x1, Q

2)x2f2(x2, Q
2)

dσ̂

dt̂
. (7.37)

The choice of Q2 scale is ambiguous, and several alternatives are available in the

program. For massless outgoing particles the default is the squared transverse momentum

Q2 = p̂2
⊥ =

ŝ

4
sin2 θ̂ =

t̂û

ŝ
, (7.38)

which is modified to

Q2 =
1

2
(m2

⊥3 + m2
⊥4) =

1

2
(m2

3 + m2
4) + p̂2

⊥ =
1

2
(m2

3 + m2
4) +

t̂û − m2
3m

2
4

ŝ
(7.39)

when masses are introduced in the final state. The mass term is selected such that, for

m3 = m4 = m, the expression reduces to the squared transverse mass, Q2 = m̂2
⊥ = m2+p̂2

⊥.

For cases with space-like virtual incoming photons, of virtuality Q2
i = −m2

i = |p2
i |, a further

generalization to

Q2 =
1

2
(Q2

1 + Q2
2 + m2

3 + m2
4) + p̂2

⊥ (7.40)

is offered.

The dσ̂/dt̂ expresses the differential cross section for a scattering, as a function of the

kinematical quantities ŝ, t̂ and û, and of the relevant masses. It is in this function that the

physics of a given process resides.

The performance of a machine is measured in terms of its luminosity L, which is

directly proportional to the number of particles in each bunch and to the bunch crossing

frequency, and inversely proportional to the area of the bunches at the collision point. For

a process with a σ as given by eq. (7.37), the differential event rate is given by σL, and

the number of events collected over a given period of time

N = σ

∫
L dt . (7.41)

The program does not calculate the number of events, but only the integrated cross sections.
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7.3 Resonance production

The simplest way to produce a resonance is by a 2 → 1 process. If the decay of the

resonance is not considered, the cross-section formula does not depend on t̂, but takes the

form

σ =

∫ ∫
dτ

τ
dy x1f1(x1, Q

2)x2f2(x2, Q
2) σ̂(ŝ) . (7.42)

Here the physics is contained in the cross section σ̂(ŝ). The Q2 scale is usually taken to be

Q2 = ŝ.

In published formulae, cross sections are often given in the zero-width approximation,

i.e. σ̂(ŝ) ∝ δ(ŝ−m2
R), where mR is the mass of the resonance. Introducing the scaled mass

τR = m2
R/s, this corresponds to a delta function δ(τ − τR), which can be used to eliminate

the integral over τ .

However, what we normally want to do is replace the δ function by the appropriate

Breit-Wigner shape. For a resonance width ΓR this is achieved by the replacement

δ(τ − τR) → s

π

mRΓR

(sτ − m2
R)2 + m2

RΓ2
R

. (7.43)

In this formula the resonance width ΓR is a constant.

An improved description of resonance shapes is obtained if the width is made ŝ-

dependent (occasionally also referred to as mass-dependent width, since ŝ is not always

the resonance mass), see e.g. [Ber89]. To first approximation, this means that the expres-

sion mRΓR is to be replaced by ŝΓR/mR, both in the numerator and the denominator. An

intermediate step is to perform this replacement only in the numerator. This is convenient

when not only s-channel resonance production is simulated but also non-resonance t- or

u-channel graphs are involved, since mass-dependent widths in the denominator here may

give an imperfect cancellation of divergences. (More about this below.)

To be more precise, in the program the quantity HR(ŝ) is introduced, and the Breit-

Wigner is written as

δ(τ − τR) → s

π

HR(sτ)

(sτ − m2
R)2 + H2

R(sτ)
. (7.44)

The HR factor is evaluated as a sum over all possible final-state channels, HR =
∑

f H
(f)
R .

Each decay channel may have its own ŝ dependence, as follows.

A decay to a fermion pair, R → ff, gives no contribution below threshold, i.e. for

ŝ < 4m2
f . Above threshold, H

(f)
R is proportional to ŝ, multiplied by a threshold factor

β(3 − β2)/2 for the vector part of a spin 1 resonance, by β3 for the axial vector part,

by β3 for a scalar resonance and by β for a pseudoscalar one. Here β =
√

1 − 4m2
f /ŝ.

For the decay into unequal masses, e.g. of the W+, corresponding but more complicated

expressions are used.

For decays into a quark pair, a first-order strong correction factor 1+αs(ŝ)/π is included

in H
(f)
R . This is the correct choice for all spin 1 colourless resonances, but is here used for

all resonances where no better knowledge is available. Currently the major exception is

top decay, where the factor 1− 2.5αs(ŝ)/π is used to approximate loop corrections [Jez89].
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The second-order corrections are often known, but then are specific to each resonance, and

are not included. An option exists for the γ/Z0/Z′0 resonances, where threshold effects due

to qq bound-state formation are taken into account in a smeared-out, average sense, see

eq. (8.6).

For other decay channels, not into fermion pairs, the ŝ dependence is typically more

complicated. An example would be the decay h0 → W+W−, with a nontrivial threshold and

a subtle energy dependence above that [Sey95a]. Since a Higgs with mh < 2mW could still

decay in this channel, it is in fact necessary to perform a two-dimensional integral over the

W± Breit-Wigner mass distributions to obtain the correct result (and this has to be done

numerically, at least in part). Fortunately, a Higgs particle lighter than 2mW is sufficiently

narrow that the integral only needs to be performed once and for all at initialization

(whereas most other partial widths are recalculated whenever needed). Channels that

proceed via loops, such as h → gg, also display complicated threshold behaviours.

The coupling structure within the electroweak sector is usually (re)expressed in terms

of gauge boson masses, αem and sin2θW , i.e. factors of GF are replaced according to
√

2GF =
π αem

sin2θW m2
W

. (7.45)

Having done that, αem is allowed to run [Kle89], and is evaluated at the ŝ scale. Thereby the

relevant electroweak loop correction factors are recovered at the mW/mZ scale. However,

the option exists to go the other way and eliminate αem in favour of GF. Currently sin2θW

is not allowed to run.

For Higgs particles and technipions, fermion masses enter not only in the kinematics

but also as couplings. The latter kind of quark masses (but not the former, at least not in

the program) are running with the scale of the process, i.e. normally the resonance mass.

The expression used is [Car96]

m(Q2) = m0

(
ln(k2m2

0/Λ
2)

ln(Q2/Λ2)

)12/(33−2nf )

. (7.46)

Here m0 is the input mass at a reference scale km0, defined in the ms scheme. Typical

choices are either k = 1 or k = 2; the latter would be relevant if the reference scale is

chosen at the QQ threshold. Both Λ and nf are as given in αs.

In summary, we see that an ŝ dependence may enter several different ways into the

H
(f)
R expressions from which the total HR is built up.

When only decays to a specific final state f are considered, the HR in the denominator

remains the sum over all allowed decay channels, but the numerator only contains the H
(f)
R

term of the final state considered.

If the combined production and decay process i → R → f is considered, the same ŝ

dependence is implicit in the coupling structure of i → R as one would have had in R → i,

i.e. to first approximation there is a symmetry between couplings of a resonance to the

initial and to the final state. The cross section σ̂ is therefore, in the program, written in

the form

σ̂i→R→f (ŝ) ∝ π

ŝ

H
(i)
R (ŝ)H

(f)
R (ŝ)

(ŝ − m2
R)2 + H2

R(ŝ)
. (7.47)
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As a simple example, the cross section for the process e−νe → W− → µ−νµ can be written

as

σ̂(ŝ) = 12
π

ŝ

H
(i)
W (ŝ)H

(f)
W (ŝ)

(ŝ − m2
W)2 + H2

W(ŝ)
, (7.48)

where

H
(i)
W (ŝ) = H

(f)
W (ŝ) =

αem(ŝ)

24 sin2θW
ŝ . (7.49)

If the effects of several initial and/or final states are studied, it is straightforward to intro-

duce an appropriate summation in the numerator.

The analogy between the H
(f)
R and H

(i)
R cannot be pushed too far, however. The

two differ in several important aspects. Firstly, colour factors appear reversed: the decay

R → qq contains a colour factor NC = 3 enhancement, while qq → R is instead suppressed

by a factor 1/NC = 1/3. Secondly, the 1 + αs(ŝ)/π first-order correction factor for the

final state has to be replaced by a more complicated K factor for the initial state. This

factor is not known usually, or it is known (to first non-trivial order) but too lengthy to

be included in the program. Thirdly, incoming partons as a rule are space-like. All the

threshold suppression factors of the final-state expressions are therefore irrelevant when

production is considered. In sum, the analogy between H
(f)
R and H

(i)
R is mainly useful

as a consistency cross-check, while the two usually are calculated separately. Exceptions

include the rather messy loop structure involved in gg → h0 and h0 → gg, which is only

coded once.

It is of some interest to consider the observable resonance shape when the effects of

parton distributions are included. In a hadron collider, to first approximation, parton dis-

tributions tend to have a behaviour roughly like f(x) ∝ 1/x for small x — this is why

f(x) is replaced by xf(x) in eq. (7.37). Instead, the basic parton-distribution behaviour

is shifted into the factor of 1/τ in the integration phase space dτ/τ , cf. eq. (7.42). When

convoluted with the Breit-Wigner shape, two effects appear. One is that the overall res-

onance is tilted: the low-mass tail is enhanced and the high-mass one suppressed. The

other is that an extremely long tail develops on the low-mass side of the resonance: when

τ → 0, eq. (7.47) with HR(ŝ) ∝ ŝ gives a σ̂(ŝ) ∝ ŝ ∝ τ , which exactly cancels the 1/τ

factor mentioned above. Näıvely, the integral over y,
∫

dy = − ln τ , therefore gives a net

logarithmic divergence of the resonance shape when τ → 0. Clearly, it is then necessary

to consider the shape of the parton distributions in more detail. At not-too-small Q2, the

evolution equations in fact lead to parton distributions more strongly peaked than 1/x,

typically with xf(x) ∝ x−0.3, and therefore a divergence like τ−0.3 in the cross-section ex-

pression. Eventually this divergence is regularized by a closing of the phase space, i.e. that

HR(ŝ) vanishes faster than ŝ, and by a less drastic small-x parton-distribution behaviour

when Q2 ≈ ŝ → 0.

The secondary peak at small τ may give a rather high cross section, which can even

rival that of the ordinary peak around the nominal mass. This is the case, for instance,

with W production. Such a peak has never been observed experimentally, but this is not

surprising, since the background from other processes is overwhelming at low ŝ. Thus a

lepton of one or a few GeV of transverse momentum is far more likely to come from the
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decay of a charm or bottom hadron than from an extremely off-shell W of a mass of a

few GeV. When resonance production is studied, it is therefore important to set limits

on the mass of the resonance, so as to agree with the experimental definition, at least to

first approximation. If not, cross-section information given by the program may be very

confusing.

Another problem is that often the matrix elements really are valid only in the resonance

region. The reason is that one usually includes only the simplest s-channel graph in the

calculation. It is this ‘signal’ graph that has a peak at the position of the resonance, where

it (usually) gives much larger cross sections than the other ‘background’ graphs. Away

from the resonance position, ‘signal’ and ‘background’ may be of comparable order, or

the ‘background’ may even dominate. There is a quantum mechanical interference when

some of the ‘signal’ and ‘background’ graphs have the same initial and final state, and this

interference may be destructive or constructive. When the interference is non-negligible,

it is no longer meaningful to speak of a ‘signal’ cross section. As an example, consider the

scattering of longitudinal W’s, W+
L W−

L → W+
L W−

L , where the ‘signal’ process is s-channel

exchange of a Higgs. This graph by itself is ill-behaved away from the resonance region.

Destructive interference with ‘background’ graphs such as t-channel exchange of a Higgs

and s- and t-channel exchange of a γ/Z is required to save unitarity at large energies.

In e+e− colliders, the f e
e parton distribution is peaked at x = 1 rather than at x = 0.

The situation therefore is the opposite, if one considers e.g. Z0 production in a machine

running at energies above mZ: the resonance-peak tail towards lower masses is suppressed

and the one towards higher masses enhanced, with a sharp secondary peak at around the

nominal energy of the machine. Also in this case, an appropriate definition of cross sections

therefore is necessary — with additional complications due to the interference between γ∗

and Z0. When other processes are considered, problems of interference with background

appears also here. Numerically the problems may be less pressing, however, since the

secondary peak is occurring in a high-mass region, rather than in a more complicated

low-mass one. Further, in e+e− there is little uncertainty from the shape of the parton

distributions.

In 2 → 2 processes where a pair of resonances are produced, e.g. e+e− → Z0h0, cross

section are almost always given in the zero-width approximation for the resonances. Here

two substitutions of the type

1 =

∫
δ(m2 − m2

R) dm2 →
∫

1

π

mRΓR

(m2 − m2
R)2 + m2

RΓ2
R

dm2 (7.50)

are used to introduce mass distributions for the two resonance masses, i.e. m2
3 and m2

4.

In the formula, mR is the nominal mass and m the actually selected one. The phase-

space integral over x1, x1 and t̂ in eq. (7.37) is then extended to involve also m2
3 and m2

4.

The effects of the mass-dependent width is only partly taken into account, by replacing the

nominal masses m2
3 and m2

4 in the dσ̂/dt̂ expression by the actually generated ones (also e.g.

in the relation between t̂ and cos θ̂), while the widths are evaluated at the nominal masses.

This is the equivalent of a simple replacement of mRΓR by ŝΓR/mR in the numerator of
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eq. (7.43), but not in the denominator. In addition, the full threshold dependence of the

widths, i.e. the velocity-dependent factors, is not reproduced.

There is no particular reason why the full mass-dependence could not be introduced,

except for the extra work and time consumption needed for each process. In fact, the matrix

elements for several γ∗/Z0 and W± production processes do contain the full expressions.

On the other hand, the matrix elements given in the literature are often valid only when

the resonances are almost on the mass shell, since some graphs have been omitted. As an

example, the process qq → e−νeµ
+νµ is dominated by qq → W−W+ when each of the two

lepton pairs is close to mW in mass, but in general also receives contributions e.g. from

qq → Z0 → e+e−, followed by e+ → νeW
+ and W+ → µ+νµ. The latter contributions are

neglected in cross sections given in the zero-width approximation.

Widths may induce gauge invariance problems, in particular when the s-channel graph

interferes with t- or u-channel ones. Then there may be an imperfect cancellation of con-

tributions at high energies, leading to an incorrect cross section behaviour. The underlying

reason is that a Breit-Wigner corresponds to a resummation of terms of different orders

in coupling constants, and that therefore effectively the s-channel contributions are calcu-

lated to higher orders than the t- or u-channel ones, including interference contributions.

A specific example is e+e− → W+W−, where s-channel γ∗/Z∗ exchange interferes with

t-channel νe exchange. In such cases, a fixed width is used in the denominator. One could

also introduce procedures whereby the width is made to vanish completely at high energies,

and theoretically this is the cleanest, but the fixed-width approach appears good enough

in practice.

Another gauge invariance issue is when two particles of the same kind are produced in a

pair, e.g. gg → tt. Matrix elements are then often calculated for one common mt mass, even

though in real life the masses m3 6= m4. The proper gauge invariant procedure to handle

this would be to study the full six-fermion state obtained after the two t → bW → bfifj
decays, but that may be overkill if indeed the t’s are close to mass shell. Even when only

equal-mass matrix elements are available, Breit-Wigners are therefore used to select two

separate masses m3 and m4. From these two masses, an average mass m is constructed so

that the β34 velocity factor of eq. (7.34) is retained,

β34(ŝ,m
2,m2) = β34(ŝ,m

2
3,m

2
4) ⇒ m2 =

m2
3 + m2

4

2
− (m2

3 − m2
4)

2

4ŝ
. (7.51)

This choice certainly is not unique, but normally should provide a sensible behaviour,

also around threshold. Of course, the differential cross section is no longer guaranteed

to be gauge invariant when gauge bosons are involved, or positive definite. The program

automatically flags the latter situation as unphysical. The approach may well break down

when either or both particles are far away from mass shell. Furthermore, the preliminary

choice of scattering angle θ̂ is also retained. Instead of the correct t̂ and û of eq. (7.35),

modified

t̂, û = −1

2

{
(ŝ − 2m2) ∓ ŝ β34 cos θ̂

}
= (t̂, û) − (m2

3 − m2
4)

2

4ŝ
(7.52)

can then be obtained. The m2, t̂ and û are now used in the matrix elements to decide

whether to retain the event or not.
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Processes with one final-state resonance and another ordinary final-state product, e.g.

qg → W+q′, are treated in the same spirit as the 2 → 2 processes with two resonances,

except that only one mass need be selected according to a Breit-Wigner.

7.4 Cross-section calculations

In the program, the variables used in the generation of a 2 → 2 process are τ , y and

z = cos θ̂. For a 2 → 1 process, the z variable can be integrated out, and need therefore

not be generated as part of the hard process, except when the allowed angular range of

decays is restricted. In unresolved lepton beams, i.e. when f e
e (x) = δ(x − 1), the variables

τ and/or y may be integrated out. We will cover all these special cases towards the end of

the section, and here concentrate on ‘standard’ 2 → 2 and 2 → 1 processes.

7.4.1 The simple two-body processes

In the spirit of section 4.1, we want to select simple functions such that the true τ , y and

z dependence of the cross sections is approximately modelled. In particular, (almost) all

conceivable kinematical peaks should be represented by separate terms in the approximate

formulae. If this can be achieved, the ratio of the correct to the approximate cross sections

will not fluctuate too much, but allow reasonable Monte Carlo efficiency.

Therefore the variables are generated according to the distributions hτ (τ), hy(y) and

hz(z), where normally

hτ (τ) =
c1

I1

1

τ
+

c2

I2

1

τ2
+

c3

I3

1

τ(τ + τR)
+

c4

I4

1

(sτ − m2
R)2 + m2

RΓ2
R

+
c5

I5

1

τ(τ + τR′)
+

c6

I6

1

(sτ − m2
R′)2 + m2

R′Γ2
R′

, (7.53)

hy(y) =
c1

I1
(y − ymin) +

c2

I2
(ymax − y) +

c3

I3

1

cosh y
, (7.54)

hz(z) =
c1

I1
+

c2

I2

1

a − z
+

c3

I3

1

a + z
+

c4

I4

1

(a − z)2
+

c5

I5

1

(a + z)2
. (7.55)

Here each term is separately integrable, with an invertible primitive function, such that

generation of τ , y and z separately is a standard task, as described in section 4.1. In the

following we describe the details of the scheme, including the meaning of the coefficients

ci and Ii, which are separate for τ , y and z.

The first variable to be selected is τ . The range of allowed values, τmin ≤ τ ≤ τmax,

is generally constrained by a number of user-defined requirements. A cut on the allowed

mass range is directly reflected in τ , a cut on the p⊥ range indirectly. The first two terms

of hτ are intended to represent a smooth τ dependence, as generally obtained in processes

which do not receive contributions from s-channel resonances. Also s-channel exchange of

essentially massless particles (γ, g, light quarks and leptons) are accounted for, since these

do not produce any separate peaks at non-vanishing τ . The last four terms of hτ are there

to catch the peaks in the cross section from resonance production. These terms are only

included when needed. Each resonance is represented by two pieces, a first to cover the

interference with graphs which peak at τ = 0, plus the variation of parton distributions, and
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a second to approximate the Breit-Wigner shape of the resonance itself. The subscripts

R and R′ denote values pertaining to the two resonances, with τR = m2
R/s. Currently

there is only one process where the full structure with two resonances is used, namely

ff → γ∗/Z0/Z′0. Otherwise either one or no resonance peak is taken into account.

The kinematically allowed range of y values is constrained by τ , |y| ≤ −1
2 ln τ , and

you may impose additional cuts. Therefore the allowed range ymin ≤ y ≤ ymax is only con-

structed after τ has been selected. The first two terms of hy give a fairly flat y dependence

— for processes which are symmetric in y ↔ −y, they will add to give a completely flat

y spectrum between the allowed limits. In principle, the natural subdivision would have

been one term flat in y and one forward–backward asymmetric, i.e. proportional to y. The

latter is disallowed by the requirement of positivity, however. The y − ymin and ymax − y

terms actually used give the same amount of freedom, but respect positivity. The third

term is peaked at around y = 0, and represents the bias of parton distributions towards

this region.

The allowed z = cos θ̂ range is näıvely −1 ≤ z ≤ 1. However, most cross sections are

divergent for z → ±1, so some kind of regularization is necessary. Normally one requires

p⊥ ≥ p⊥min, which translates into z2 ≤ 1 − 4p2
⊥min/(τs) for massless outgoing particles.

Since again the limits depend on τ , the selection of z is done after that of τ . Additional

requirements may constrain the range further. In particular, a p⊥max constraint may split

the allowed z range into two, i.e. z−min ≤ z ≤ z−max or z+min ≤ z ≤ z+max. An un-split

range is represented by z−max = z+min = 0. For massless outgoing particles the parameter

a = 1 in hz, such that the five terms represent a piece flat in angle and pieces peaked as 1/t̂,

1/û, 1/t̂2, and 1/û2, respectively. For non-vanishing masses one has a = 1+2m2
3m

2
4/ŝ

2. In

this case, the full range −1 ≤ z ≤ 1 is therefore available — physically, the standard t̂ and

û singularities are regularized by the masses m3 and m4.

For each of the terms, the Ii coefficients represent the integral over the quantity mul-

tiplying the coefficient ci; thus, for instance:

hτ : I1 =

∫
dτ

τ
= ln

(
τmax

τmin

)
,

I2 =

∫
dτ

τ2
=

1

τmin
− 1

τmax
;

hy : I1 =

∫
(y − ymin) dy =

1

2
(ymax − ymin)

2 ;

hz : I1 =

∫
dz = (z−max − z−min) + (z+max − z+min),

I2 =

∫
dz

a − z
= ln

(
(a − z−min)(a − z+min)

(a − z−max)(a − z−min)

)
. (7.56)

The ci coefficients are normalized to unit sum for hτ , hy and hz separately. They

have a simple interpretation, as the probability for each of the terms to be used in the

preliminary selection of τ , y and z, respectively. The variation of the cross section over the

allowed phase space is explored in the initialization procedure of a Pythia run, and based

on this knowledge the ci are optimized so as to give functions hτ , hy and hz that closely
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follow the general behaviour of the true cross section. For instance, the coefficient c4 in hτ

is to be made larger the more the total cross section is dominated by the region around

the resonance mass.

The phase-space points tested at initialization are put on a grid, with the number of

points in each dimension given by the number of terms in the respective h expression, and

with the position of each point given by the median value of the distribution of one of the

terms. For instance, the dτ/τ distribution gives a median point at
√

τminτmax, and dτ/τ2

has the median 2τminτmax/(τmin + τmax). Since the allowed y and z ranges depend on the

τ value selected, then so do the median points defined for these two variables.

With only a limited set of phase-space points studied at the initialization, the ‘optimal’

set of coefficients is not uniquely defined. To be on the safe side, 40% of the total weight is

therefore assigned evenly between all allowed ci, whereas the remaining 60% are assigned

according to the relative importance surmised, under the constraint that no coefficient is

allowed to receive a negative contribution from this second piece.

After a preliminary choice has been made of τ , y and z, it is necessary to find the weight

of the event, which is to be used to determine whether to keep it or generate another one.

Using the relation dt̂ = ŝ β34 dz/2, eq. (7.37) may be rewritten as

σ =

∫ ∫ ∫
dτ

τ
dy

ŝβ34

2
dz x1f1(x1, Q

2)x2f2(x2, Q
2)

dσ̂

dt̂

=
π

s

∫
hτ (τ) dτ

∫
hy(y) dy

∫
hz(z) dz β34

x1f1(x1, Q
2)x2f2(x2, Q

2)

τ2hτ (τ)hy(y) 2hz(z)

ŝ2

π

dσ̂

dt̂

=

〈
π

s

β34

τ2hτ (τ)hy(y) 2hz(z)
x1f1(x1, Q

2)x2f2(x2, Q
2)

ŝ2

π

dσ̂

dt̂

〉
. (7.57)

In the middle line, a factor of 1 = hτ/hτ has been introduced to rewrite the τ integral in

terms of a phase space of unit volume:
∫

hτ (τ) dτ = 1 according to the relations above.

Correspondingly for the y and z integrals. In addition, factors of 1 = ŝ/(τs) and 1 = π/π

are used to isolate the dimensionless cross section (ŝ2/π) dσ̂/dt̂. The content of the last

line is that, with τ , y and z selected according to the expressions hτ (τ), hy(y) and hz(z),

respectively, the cross section is obtained as the average of the final expression over all

events. Since the h’s have been picked to give unit volume, there is no need to multiply by

the total phase-space volume.

As can be seen, the cross section for a given Monte Carlo event is given as the product

of four factors, as follows:

1. The π/s factor, which is common to all events, gives the overall dimensions of the

cross section, in GeV−2. Since the final cross section is given in units of mb, the

conversion factor of 1 GeV−2 = 0.3894 mb is also included here.

2. Next comes the Jacobian, which compensates for the change from the original to the

final phase-space volume.

3. The parton-distribution function weight is obtained by making use of the parton

distribution libraries in Pythia or externally. The x1 and x2 values are obtained

from τ and y via the relations x1,2 =
√

τ exp(±y).
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4. Finally, the dimensionless cross section (ŝ2/π) dσ̂/dt̂ is the quantity that has to be

coded for each process separately, and where the physics content is found.

Of course, the expression in the last line is not strictly necessary to obtain the cross

section by Monte Carlo integration. One could also have used eq. (7.37) directly, selecting

phase-space points evenly in τ , y and t̂, and averaging over those Monte Carlo weights.

Clearly this would be much simpler, but the price to be paid is that the weights of individual

events could fluctuate wildly. For instance, if the cross section contains a narrow resonance,

the few phase-space points that are generated in the resonance region obtain large weights,

while the rest do not. With our procedure, a resonance would be included in the hτ (τ)

factor, so that more events would be generated at around the appropriate τR value (owing

to the hτ numerator in the phase-space expression), but with these events assigned a lower,

more normal weight (owing to the factor 1/hτ in the weight expression). Since the weights

fluctuate less, fewer phase-space points need be selected to get a reasonable cross-section

estimate.

In the program, the cross section is obtained as the average over all phase-space points

generated. The events actually handed on to you should have unit weight, however (an

option with weighted events exists, but does not represent the mainstream usage). At

initialization, after the ci coefficients have been determined, a search inside the allowed

phase-space volume is therefore made to find the maximum of the weight expression in the

last line of eq. (7.57). In the subsequent generation of events, a selected phase-space point is

then retained with a probability equal to the weight in the point divided by the maximum

weight. Only the retained phase-space points are considered further, and generated as

complete events.

The search for the maximum is begun by evaluating the weight in the same grid of

points as used to determine the ci coefficients. The point with highest weight is used as

starting point for a search towards the maximum. In unfortunate cases, the convergence

could be towards a local maximum which is not the global one. To somewhat reduce

this risk, also the grid point with second-highest weight is used for another search. After

initialization, when events are generated, a warning message will be given by default at

any time a phase-space point is selected where the weight is larger than the maximum,

and thereafter the maximum weight is adjusted to reflect the new knowledge. This means

that events generated before this time have a somewhat erroneous distribution in phase

space, but if the maximum violation is rather modest the effects should be negligible. The

estimation of the cross section is not affected by any of these considerations, since the

maximum weight does not enter into eq. (7.57).

For 2 → 2 processes with identical final-state particles, the symmetrization factor of

1/2 is explicitly included at the end of the dσ̂/dt̂ calculation. In the final cross section, a

factor of 2 is retrieved because of integration over the full phase space (rather than only half

of it). That way, no special provisions are needed in the phase-space integration machinery.

7.4.2 Resonance production

We have now covered the simple 2 → 2 case. In a 2 → 1 process, the t̂ integral is absent,

and the differential cross section dσ̂/dt̂ is replaced by σ̂(ŝ). The cross section may now be
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written as

σ =

∫ ∫
dτ

τ
dy x1f1(x1, Q

2)x2f2(x2, Q
2) σ̂(ŝ)

=
π

s

∫
hτ (τ) dτ

∫
hy(y) dy

x1f1(x1, Q
2)x2f2(x2, Q

2)

τ2hτ (τ)hy(y)

ŝ

π
σ̂(ŝ)

=

〈
π

s

1

τ2hτ (τ)hy(y)
x1f1(x1, Q

2)x2f2(x2, Q
2)

ŝ

π
σ̂(ŝ)

〉
. (7.58)

The structure is thus exactly the same, but the z-related pieces are absent, and the rôle of

the dimensionless cross section is played by (ŝ/π)σ̂(ŝ).

If the range of allowed decay angles of the resonance is restricted, e.g. by requiring the

decay products to have a minimum transverse momentum, effectively this translates into

constraints on the z = cos θ̂ variable of the 2 → 2 process. The difference is that the angular

dependence of a resonance decay is trivial, and that therefore the z-dependent factor can be

easily evaluated. For a spin-0 resonance, which decays isotropically, the relevant weight is

simply (z−max−z−min)/2+(z+max−z+min)/2. For a transversely polarized spin-1 resonance

the expression is, instead,

3

8
(z−max − z−min) +

3

8
(z+max − z+min) +

1

8
(z−max − z−min)

3 +
1

8
(z+max − z+min)

3 . (7.59)

Since the allowed z range could depend on τ and/or y (it does for a p⊥ cut), the factor has

to be evaluated for each individual phase-space point and included in the expression of eq.

(7.58).

For 2 → 2 processes where either of the final-state particles is a resonance, or both,

an additional choice has to be made for each resonance mass, eq. (7.50). Since the allowed

τ , y and z ranges depend on m2
3 and m2

4, the selection of masses have to precede the

choice of the other phase-space variables. Just as for the other variables, masses are not

selected uniformly over the allowed range, but are rather distributed according to a function

hm(m2) dm2, with a compensating factor 1/hm(m2) in the Jacobian. The functional form

picked is normally

hm(m2) =
c1

I1

1

π

mRΓR

(m2 − m2
R)2 + m2

RΓ2
R

+
c2

I2
+

c3

I3

1

m2
+

c4

I4

1

m4
. (7.60)

The definition of the Ii integrals is analogous to the one before. The ci coefficients are not

found by optimization, but predetermined, normally to c1 = 0.8, c2 = c3 = 0.1, c4 = 0.

Clearly, had the phase space and the cross section been independent of m2
3 and m2

4, the

optimal choice would have been to put c1 = 1 and have all other ci vanishing — then the

1/hm factor of the Jacobian would exactly have cancelled the Breit-Wigner of eq. (7.50) in

the cross section. The second and the third terms are there to cover the possibility that

the cross section does not die away quite as fast as given by the näıve Breit-Wigner shape.

In particular, the third term covers the possibility of a secondary peak at small m2, in a

spirit slightly similar to the one discussed for resonance production in 2 → 1 processes.

The fourth term is only used for processes involving γ∗/Z0 production, where the γ

propagator guarantees that the cross section does have a significant secondary peak for

m2 → 0. Therefore here the choice is c1 = 0.4, c2 = 0.05, c3 = 0.3 and c4 = 0.25.
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A few special tricks have been included to improve efficiency when the allowed mass

range of resonances is constrained by kinematics or by user cuts. For instance, if a pair

of equal or charge-conjugate resonances are produced, such as in e+e− → W+W−, use is

made of the constraint that the lighter of the two has to have a mass smaller than half the

c.m. energy.

7.4.3 Lepton beams

Lepton beams have to be handled slightly differently from what has been described so far.

One also has to distinguish between a lepton for which parton distributions are included

and one which is treated as an unresolved point-like particle. The necessary modifications

are the same for 2 → 2 and 2 → 1 processes, however, since the t̂ degree of freedom is

unaffected.

If one incoming beam is an unresolved lepton, the corresponding parton-distribution

piece collapses to a δ function. This function can be used to integrate out the y variable:

δ(x1,2 − 1) = δ(y ± (1/2) ln τ). It is therefore only necessary to select the τ and the z

variables according to the proper distributions, with compensating weight factors, and

only one set of parton distributions has to be evaluated explicitly.

If both incoming beams are unresolved leptons, both the τ and the y variables are

trivially given: τ = 1 and y = 0. Parton-distribution weights disappear completely. For

a 2 → 2 process, only the z selection remains to be performed, while a 2 → 1 process is

completely specified, i.e. the cross section is a simple number that only depends on the

c.m. energy.

For a resolved electron, the f e
e parton distribution is strongly peaked towards x = 1.

This affects both the τ and the y distributions, which are not well described by either of

the pieces in hτ (τ) or hy(y) in processes with interacting e±. (Processes which involve e.g.

the γ content of the e are still well simulated, since f e
γ is peaked at small x.)

If both parton distributions are peaked close to 1, the hτ (τ) expression in eq. (7.55) is

therefore increased with one additional term of the form hτ (τ) ∝ 1/(1−τ), with coefficients

c7 and I7 determined as before. The divergence when τ → 1 is cut off by our regularization

procedure for the f e
e parton distribution; therefore we only need consider τ < 1−2×10−10.

Correspondingly, the hy(y) expression is expanded with a term 1/(1−exp(y−y0)) when

incoming beam number 1 consists of a resolved e±, and with a term 1/(1 − exp(−y − y0))

when incoming beam number 2 consists of a resolved e±. Both terms are present for

an e+e− collider, only one for an ep one. The coefficient y0 = −(1/2) ln τ is the näıve

kinematical limit of the y range, |y| < y0. From the definitions of y and y0 it is easy to see

that the two terms above correspond to 1/(1 − x1) and 1/(1 − x2), respectively, and thus

are again regularized by our parton-distribution function cut-off. Therefore the integration

ranges are y < y0 − 10−10 for the first term and y > −y0 + 10−10 for the second one.

7.4.4 Mixing processes

In the cross-section formulae given so far, we have deliberately suppressed a summation

over the allowed incoming flavours. For instance, the process ff → Z0 in a hadron collider

receives contributions from uu → Z0, dd → Z0, ss → Z0, and so on. These contributions
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share the same basic form, but differ in the parton-distribution weights and (usually) in a

few coupling constants in the hard matrix elements. It is therefore convenient to generate

the terms together, as follows:

1. A phase-space point is picked, and all common factors related to this choice are

evaluated, i.e. the Jacobian and the common pieces of the matrix elements (e.g. for

a Z0 the basic Breit-Wigner shape, excluding couplings to the initial flavour).

2. The parton-distribution-function library is called to produce all the parton distribu-

tions, at the relevant x and Q2 values, for the two incoming beams.

3. A loop is made over the two incoming flavours, one from each beam particle. For each

allowed set of incoming flavours, the full matrix-element expression is constructed,

using the common pieces and the flavour-dependent couplings. This is multiplied

by the common factors and the parton-distribution weights to obtain a cross-section

weight.

4. Each allowed flavour combination is stored as a separate entry in a table, together

with its weight. In addition, a summed weight is calculated.

5. The phase-space point is kept or rejected, according to a comparison of the summed

weight with the maximum weight obtained at initialization. Also the cross-section

Monte Carlo integration is based on the summed weight.

6. If the point is retained, one of the allowed flavour combinations is picked according

to the relative weights stored in the full table.

Generally, the flavours of the final state are either completely specified by those of the

initial state, e.g. as in qg → qg, or completely decoupled from them, e.g. as in ff → Z0 →
f ′f

′
. In neither case need therefore the final-state flavours be specified in the cross-section

calculation. It is only necessary, in the latter case, to include an overall weight factor, which

takes into account the summed contribution of all final states that are to be simulated.

For instance, if only the process Z0 → e+e− is studied, the relevant weight factor is simply

Γee/Γtot. Once the kinematics and the incoming flavours have been selected, the outgoing

flavours can be picked according to the appropriate relative probabilities.

In some processes, such as gg → gg, several different colour flows are allowed, each

with its own kinematical dependence of the matrix-element weight, see section 8.2.1. Each

colour flow is then given as a separate entry in the table mentioned above, i.e. in total an

entry is characterized by the two incoming flavours, a colour-flow index, and the weight.

For an accepted phase-space point, the colour flow is selected in the same way as the

incoming flavours.

The program can also allow the mixed generation of two or more completely different

processes, such as ff → Z0 and qq → gg. In that case, each process is initialized separately,

with its own set of coefficients ci and so on. The maxima obtained for the individual cross

sections are all expressed in the same units, even when the dimensionality of the phase

space is different. (This is because we always transform to a phase space of unit volume,∫
hτ (τ) dτ ≡ 1, etc.) The above generation scheme need therefore only be generalized as

follows:

1. One process is selected among the allowed ones, with a relative probability given by
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the maximum weight for this process.

2. A phase-space point is found, using the distributions hτ (τ) and so on, optimized for

this particular process.

3. The total weight for the phase-space point is evaluated, again with Jacobians, matrix

elements and allowed incoming flavour combinations that are specific to the process.

4. The point is retained with a probability given by the ratio of the actual to the

maximum weight of the process. If the point is rejected, one has to go back to step

1 and pick a new process.

5. Once a phase-space point has been accepted, flavours may be selected, and the event

generated in full.

It is clear why this works: although phase-space points are selected among the allowed

processes according to relative probabilities given by the maximum weights, the probability

that a point is accepted is proportional to the ratio of actual to maximum weight. In total,

the probability for a given process to be retained is therefore only proportional to the

average of the actual weights, and any dependence on the maximum weight is gone.

In γp and γγ physics, the different components of the photon give different final states,

see section 7.7.2. Technically, this introduces a further level of administration, since each

event class contains a set of (partly overlapping) processes. From an ideological point of

view, however, it just represents one more choice to be made, that of event class, before

the selection of process in step 1 above. When a weighting fails, both class and process

have to be picked anew.

7.5 Three- and four-body processes

The Pythia machinery to handle 2 → 1 and 2 → 2 processes is fairly sophisticated and

generic. The same cannot be said about the generation of hard-scattering processes with

more than two final-state particles. The number of phase-space variables is larger, and it

is therefore more difficult to find and transform away all possible peaks in the cross section

by a suitably biased choice of phase-space points. In addition, matrix-element expressions

for 2 → 3 processes are typically fairly lengthy. Therefore Pythia only contains a very

limited number of 2 → 3 and 2 → 4 processes, and almost each process is a special case of

its own. It is therefore less interesting to discuss details, and we only give a very generic

overview.

If the Higgs mass is not light, interactions among longitudinal W and Z gauge bosons

are of interest. In the program, 2 → 1 processes such as W+
L W−

L → h0 and 2 → 2 ones such

as W+
L W−

L → Z0
LZ0

L are included. The former are for use when the h0 still is reasonably

narrow, such that a resonance description is applicable, while the latter are intended for

high energies, where different contributions have to be added up. Since the program does

not contain WL or ZL distributions inside hadrons, the basic hard scattering has to be

convoluted with the q → q′WL and q → qZL branchings, to yield effective 2 → 3 and

2 → 4 processes. However, it is possible to integrate out the scattering angles of the quarks

analytically, as well as one energy-sharing variable [Cha85]. Only after an event has been
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accepted are these other kinematical variables selected. This involves further choices of

random variables, according to a separate selection loop.

In total, it is therefore only necessary to introduce one additional variable in the basic

phase-space selection, which is chosen to be ŝ′, the squared invariant mass of the full 2 → 3

or 2 → 4 process, while ŝ is used for the squared invariant mass of the inner 2 → 1 or 2 → 2

process. The y variable is coupled to the full process, since parton-distribution weights have

to be given for the original quarks at x1,2 =
√

τ ′ exp (±y). The t̂ variable is related to the

inner process, and thus not needed for the 2 → 3 processes. The selection of the τ ′ = ŝ′/s

variable is done after τ , but before y has been chosen. To improve the efficiency, the

selection is made according to a weighted phase space of the form
∫

hτ ′(τ ′) dτ ′, where

hτ ′(τ ′) =
c1

I1

1

τ ′
+

c2

I2

(1 − τ/τ ′)3

τ ′2
+

c3

I3

1

τ ′(1 − τ ′)
, (7.61)

in conventional notation. The ci coefficients are optimized at initialization. The c3 term,

peaked at τ ′ ≈ 1, is only used for e+e− collisions. The choice of hτ ′ is roughly matched to

the longitudinal gauge-boson flux factor, which is of the form
(
1 +

τ

τ ′

)
ln

( τ

τ ′

)
− 2

(
1 − τ

τ ′

)
. (7.62)

For a light h the effective W approximation above breaks down, and it is necessary to

include the full structure of the qq′ → qq′h0 (i.e. ZZ fusion) and qq′ → q′′q′′′h0 (i.e. WW

fusion) matrix elements. The τ ′, τ and y variables are here retained, and selected according

to standard procedures. The Higgs mass is represented by the τ choice; normally the h0

is so narrow that the τ distribution effectively collapses to a δ function. In addition, the

three-body final-state phase space is rewritten as
(

5∏

i=3

1

(2π)3
d3pi

2Ei

)
(2π)4δ(4)(p3+p4+p5−p1−p2) =

1

(2π)5
π2

4
√

λ⊥34
dp2

⊥3

dϕ3

2π
dp2

⊥4

dϕ4

2π
dy5 ,

(7.63)

where λ⊥34 = (m2
⊥34−m2

⊥3−m2
⊥4)

2−4m2
⊥3m

2
⊥4. The outgoing quarks are labelled 3 and 4,

and the outgoing Higgs 5. The ϕ angles are selected isotropically, while the two transverse

momenta are picked, with some foreknowledge of the shape of the W/Z propagators in the

cross sections, according to h⊥(p2
⊥) dp2

⊥, where

h⊥(p2
⊥) =

c1

I1
+

c2

I2

1

m2
R + p2

⊥

+
c3

I3

1

(m2
R + p2

⊥)2
, (7.64)

with mR the W or Z mass, depending on process, and c1 = c2 = 0.05, c3 = 0.9. Within the

limits given by the other variable choices, the rapidity y5 is chosen uniformly. A final choice

remains to be made, which comes from a twofold ambiguity of exchanging the longitudinal

momenta of partons 3 and 4 (with minor modifications if they are massive). Here the

relative weight can be obtained exactly from the form of the matrix element itself.

7.6 Resonance decays

Resonances (see section 2.1.2) can be made to decay in two different routines. One is

the standard decay treatment (in PYDECY) that can be used for any unstable particle,

– 136 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

where decay channels are chosen according to fixed probabilities, and decay angles usually

are picked isotropically in the rest frame of the resonance, see section 13.3. The more

sophisticated treatment (in PYRESD) is the default one for resonances produced in Pythia,

and is described here. The ground rule is that everything in mass up to and including b

hadrons is decayed with the simpler PYDECY routine, while heavier particles are handled

with PYRESD. This also includes the γ∗/Z0, even though here the mass in principle could

be below the b threshold. Other resonances include, e.g., t, W±, h0, Z′0, W′±, H0, A0, H±,

and technicolor and supersymmetric particles.

7.6.1 The decay scheme

In the beginning of the decay treatment, either one or two resonances may be present,

the former represented by processes such as qq′ → W+ and qg → W+q′, the latter by

qq → W+W−. If the latter is the case, the decay of the two resonances is considered in

parallel (unlike PYDECY, where one particle at a time is made to decay).

First the decay channel of each resonance is selected according to the relative weights

H
(f)
R , as described above, evaluated at the actual mass of the resonance, rather than at

the nominal one. Threshold factors are therefore fully taken into account, with channels

automatically switched off below the threshold. Normally the masses of the decay products

are well-defined, but e.g. in decays like h0 → W+W− it is also necessary to select the decay

product masses. This is done according to two Breit-Wigners of the type in eq. (7.50),

multiplied by the threshold factor, which depends on both masses.

Next the decay angles of the resonance are selected isotropically in its rest frame.

Normally the full range of decay angles is available, but in 2 → 1 processes the decay

angles of the original resonance may be restrained by user cuts, e.g. on the p⊥ of the decay

products. Based on the angles, the four-momenta of the decay products are constructed

and boosted to the correct frame. As a rule, matrix elements are given with quark and

lepton masses assumed vanishing. Therefore the four-momentum vectors constructed at

this stage are actually massless for all quarks and leptons.

The matrix elements may now be evaluated. For a process such as qq → W+W− →
e+νeµ

−νµ, the matrix element is a function of the four-momenta of the two incoming

fermions and of the four outgoing ones. An upper limit for the event weight can be

constructed from the cross section for the basic process qq → W+W−, as already used to

select the two W momenta. If the weighting fails, new resonance decay angles are picked

and the procedure is iterated until acceptance.

Based on the accepted set of angles, the correct decay product four-momenta are con-

structed, including previously neglected fermion masses. Quarks and, optionally, leptons

are allowed to radiate, using the standard final-state showering machinery, with maximum

virtuality given by the resonance mass.

In some decays new resonances are produced, and these are then subsequently allowed

to decay. Normally only one resonance pair is considered at a time, with the possibility of

full correlations. In a few cases triplets can also appear, but such configurations currently

are considered without inclusion of correlations. Also note that, in a process like qq →
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Z0h0 → Z0W+W− → 6 fermions, the spinless nature of the h0 ensures that the W± decays

are decoupled from that of the Z0 (but not from each other).

7.6.2 Cross-section considerations

The cross section for a process which involves the production of one or several resonances

is always reduced to take into account channels not allowed by user flags. This is trivial

for a single s-channel resonance, cf. eq. (7.47), but can also be included approximately

if several layers of resonance decays are involved. At initialization, the ratio between the

user-allowed width and the nominally possible one is evaluated and stored, starting from

the lightest resonances and moving upwards. As an example, one first finds the reduction

factors for W+ and for W− decays, which need not be the same if e.g. W+ is allowed to

decay only to quarks and W− only to leptons. These factors enter together as a weight

for the h0 → W+W− channel, which is thus reduced in importance compared with other

possible Higgs decay channels. This is also reflected in the weight factor of the h0 itself,

where some channels are open in full, others completely closed, and finally some (like the

one above) open but with reduced weight. Finally, the weight for the process qq → Z0h0

is evaluated as the product of the Z0 weight factor and the h0 one. The standard cross

section of the process is multiplied with this weight.

Since the restriction on allowed decay modes is already included in the hard-process

cross section, mixing of different event types is greatly simplified, and the selection of decay

channel chains is straightforward. There is a price to be paid, however. The reduction

factors evaluated at initialization all refer to resonances at their nominal masses. For

instance, the W reduction factor is evaluated at the nominal W mass, even when that

factor is used, later on, in the description of the decay of a 120 GeV Higgs, where at least

one W would be produced below this mass. We know of no case where this approximation

has any serious consequences, however.

The weighting procedure works because the number of resonances to be produced,

directly or in subsequent decays, can be derived recursively already from the start. It does

not work for particles which could also be produced at later stages, such as the parton-

shower evolution and the fragmentation. For instance, D0 mesons can be produced fairly

late in the event generation chain, in unknown numbers, and so weights could not be

introduced to compensate, e.g. for the forcing of decays only into π+K−.

One should note that this reduction factor is separate from the description of the

resonance shape itself, where the full width of the resonance has to be used. This width

is based on the sum of all possible decay modes, not just the simulated ones. Pythia

does allow the possibility to change also the underlying physics scenario, e.g. to include

the decay of a Z0 into a fourth-generation neutrino.

Normally the evaluation of the reduction factors is straightforward. However, for

decays into a pair of equal or charge-conjugate resonances, such as Z0Z0 or W+W−, it is

possible to pick combinations in such a way that the weight of the pair does not factorize

into a product of the weight of each resonance itself. To be precise, any decay channel can

be given seven different status codes:

• −1: a non-existent decay mode, completely switched off and of no concern to us;
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• 0: an existing decay channel, which is switched off;

• 1: a channel which is switched on;

• 2: a channel switched on for particles, but off for antiparticles;

• 3: a channel switched on for antiparticles, but off for particles;

• 4: a channel switched on for one of the particles or antiparticles, but not for both;

• 5: a channel switched on for the other of the particles or antiparticles, but not for

both.

The meaning of possibilities 4 and 5 is exemplified by the statement ‘in a W+W− pair,

one W decays hadronically and the other leptonically’, which thus covers the cases where

either W+ or W− decays hadronically.

Neglecting non-existing channels, each channel belongs to either of the classes above.

If we denote the total branching ratio into channels of type i by ri, this then translates

into the requirement r0 + r1 + r2 + r3 + r4 + r5 = 1. For a single particle the weight factor

is r1 + r2 + r4, and for a single antiparticle r1 + r3 + r4. For a pair of identical resonances,

the joint weight is instead

(r1 + r2)
2 + 2(r1 + r2)(r4 + r5) + 2r4r5 , (7.65)

and for a resonance–antiresonance pair

(r1 + r2)(r1 + r3) + (2r1 + r2 + r3)(r4 + r5) + 2r4r5 . (7.66)

If some channels come with a reduced weight because of restrictions on subsequent decay

chains, this may be described in terms of properly reduced ri, so that the sum is less than

unity. For instance, in a tt → bW+ bW− process, the W decay modes may be restricted

to W+ → qq and W− → e−ν̄e, in which case (
∑

ri)t ≈ 2/3 and (
∑

ri)t ≈ 1/9. With index

± denoting resonance/antiresonance, eq. (7.66) then generalizes to

(r1 + r2)
+(r1 + r3)

− + (r1 + r2)
+(r4 + r5)

− + (r4 + r5)
+(r1 + r3)

− + r+
4 r−5 + r+

5 r−4 . (7.67)

7.7 Nonperturbative processes

A few processes are not covered by the discussion so far. These are the ones that depend

on the details of hadronic wave functions, and therefore are not strictly calculable pertur-

batively (although perturbation theory may often provide some guidance). What we have

primarily in mind is elastic scattering, diffractive scattering and low-p⊥ ‘minimum-bias’

events in hadron-hadron collisions, but one can also find corresponding processes in γp

and γγ interactions. The description of these processes is rather differently structured

from that of the other ones, as is explained below. Models for ‘minimum-bias’ events are

discussed in detail in sections 11.2–11.4, to which we refer for details on this part of the

program.

7.7.1 Hadron-hadron interactions

In hadron-hadron interactions, the total hadronic cross section for AB → anything, σAB
tot ,

is calculated using the parameterization of Donnachie and Landshoff [Don92]. In this
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approach, each cross section appears as the sum of one pomeron term and one reggeon one

σAB
tot (s) = XAB sε + Y AB s−η , (7.68)

where s = E2
cm. The powers ε = 0.0808 and η = 0.4525 are expected to be universal,

whereas the coefficients XAB and Y AB are specific to each initial state. (In fact, the high-

energy behaviour given by the pomeron term is expected to be the same for particle and

antiparticle interactions, i.e. XAB = XAB .) Parameterizations not provided in [Don92]

have been calculated in the same spirit, making use of quark counting rules [Sch93a].

The total cross section is subdivided according to

σAB
tot (s) = σAB

el (s) + σAB
sd(XB)(s) + σAB

sd(AX)(s) + σAB
dd (s) + σAB

nd (s) . (7.69)

Here ‘el’ is the elastic process AB → AB, ‘sd(XB)’ the single diffractive AB → XB,

‘sd(AX)’ the single diffractive AB → AX, ‘dd’ the double diffractive AB → X1X2, and

‘nd’ the non-diffractive ones. Higher diffractive topologies, such as central diffraction,

are currently neglected. In the following, the elastic and diffractive cross sections and

event characteristics are described, as given in the model by Schuler and Sjöstrand [Sch94,

Sch93a]. The non-diffractive component is identified with the ‘minimum bias’ physics

already mentioned, a practical but not unambiguous choice. Its cross section is given by

‘whatever is left’ according to eq. (7.69), and its properties are discussed in section 11.2.

At not too large squared momentum transfers t, the elastic cross section can be ap-

proximated by a simple exponential fall-off. If one neglects the small real part of the cross

section, the optical theorem then gives

dσel

dt
=

σ2
tot

16π
exp(Belt) , (7.70)

and σel = σ2
tot/16πBel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4sε − 4.2 , (7.71)

with s given in units of GeV and Bel in GeV−2. The constants bA,B are bp = 2.3, bπ,ρ,ω,φ =

1.4, bJ/ψ = 0.23. The increase of the slope parameter with c.m. energy is faster than

the logarithmically one conventionally assumed; that way the ratio σel/σtot remains well-

behaved at large energies.

The diffractive cross sections are given by

dσsd(XB)(s)

dt dM2
=

g3IP

16π
βAIP β2

BIP

1

M2
exp(Bsd(XB)t)Fsd ,

dσsd(AX)(s)

dt dM2
=

g3IP

16π
β2

AIP βBIP
1

M2
exp(Bsd(AX)t)Fsd ,

dσdd(s)

dt dM2
1 dM2

2

=
g2
3IP

16π
βAIP βBIP

1

M2
1

1

M2
2

exp(Bddt)Fdd . (7.72)

The couplings βAIP are related to the pomeron term XABsε of the total cross section

parameterization, eq. (7.68). Picking a reference scale
√

sref = 20 GeV, the couplings are
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given by βAIPβBIP = XAB sε
ref . The triple-pomeron coupling is determined from single-

diffractive data to be g3IP ≈ 0.318 mb1/2; within the context of the formulae in this section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the

mass of the respective incoming particle and extend to the kinematical limit. The simple

dM2/M2 form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors (see below).

The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α′ ln
( s

M2

)
,

Bsd(AX)(s) = 2bA + 2α′ ln
( s

M2

)
,

Bdd(s) = 2α′ ln

(
e4 +

ss0

M2
1 M2

2

)
. (7.73)

Here α′ = 0.25 GeV−2 and conventionally s0 is picked as s0 = 1/α′. The term e4 in Bdd is

added by hand to avoid a breakdown of the standard expression for large values of M2
1 M2

2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV−2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a

VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of

the scaled variables µ1 = m2
A/s, µ2 = m2

B/s, µ3 = M2
(1)/s (= m2

A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1 − (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =
√

(1 − µ1 − µ2)2 − 4µ1µ2

√
(1 − µ3 − µ4)2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (7.74)

one has tmin < t < tmax with

tmin = −s

2
(C1 + C2) ,

tmax = −s

2
(C1 − C2) = −s

2

4C3

C1 + C2
=

s2C3

tmin
. (7.75)

The Regge formulae above for single- and double-diffractive events are supposed to hold

in certain asymptotic regions of the total phase space. Of course, there will be diffraction

also outside these restrictive regions. Lacking a theory which predicts differential cross

sections at arbitrary t and M2 values, the Regge formulae are used everywhere, but fudge

factors are introduced in order to obtain ‘sensible’ behaviour in the full phase space. These

factors are:

Fsd =

(
1 − M2

s

)(
1 +

cres M2
res

M2
res + M2

)
,

Fdd =

(
1 − (M1 + M2)

2

s

)(
s m2

p

s m2
p + M2

1 M2
2

)

×
(

1 +
cres M2

res

M2
res + M2

1

)(
1 +

cres M2
res

M2
res + M2

2

)
. (7.76)

– 141 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

The first factor in either expression suppresses production close to the kinematical limit.

The second factor in Fdd suppresses configurations where the two diffractive systems overlap

in rapidity space. The final factors give an enhancement of the low-mass region, where a

resonance structure is observed in the data. Clearly a more detailed modelling would

have to be based on a set of exclusive states rather than on this smeared-out averaging

procedure. A reasonable fit to pp/pp data is obtained for cres = 2 and Mres = 2 GeV, for

an arbitrary particle A which is diffractively excited we use MA
res = mA − mp + 2 GeV.

The diffractive cross-section formulae above have been integrated for a set of c.m. en-

ergies, starting at 10 GeV, and the results have been parameterized. The form of these pa-

rameterizations is given in ref. [Sch94], with explicit numbers for the pp/pp case. Pythia

also contains similar parameterizations for πp (assumed to be same as ρp and ωp), φp,

J/ψp, ρρ (ππ etc.), ρφ, ρJ/ψ, φφ, φJ/ψ and J/ψJ/ψ.

The processes above do not obey the ordinary event mixing strategy. First of all, since

their total cross sections are known, it is possible to pick the appropriate process from the

start, and then remain with that choice. In other words, if the selection of kinematical

variables fails, one would not go back and pick a new process, the way it was done in

section 7.4.4. Second, it is not possible to impose any cuts or restrain allowed incoming or

outgoing flavours; especially for minimum-bias events the production at different transverse

momenta is interrelated by the underlying formalism. Third, it is not recommended to

mix generation of these processes with that of any of the other ones: normally the other

processes have so small cross sections that they would almost never be generated anyway.

(We here exclude the cases of ‘underlying events’ and ‘pile-up events’, where mixing is

provided for, and even is a central part of the formalism, see sections 11.2 and 11.5.)

Once the cross-section parameterizations has been used to pick one of the processes,

the variables t and M are selected according to the formulae given above.

A ρ0 formed by γ → ρ0 in elastic or diffractive scattering is polarized, and therefore

its decay angular distribution in ρ0 → π+π− is taken to be proportional to sin2 θ, where

the reference axis is given by the ρ0 direction of motion.

A light diffractive system, with a mass less than 1 GeV above the mass of the incoming

particle, is allowed to decay isotropically into a two-body state. Single-resonance diffractive

states, such as a ∆+, are therefore not explicitly generated, but are assumed described in

an average, smeared-out sense.

A more massive diffractive system is subsequently treated as a string with the quantum

numbers of the original hadron. Since the exact nature of the pomeron exchanged between

the hadrons is unknown, two alternatives are included. In the first, the pomeron is assumed

to couple to (valence) quarks, so that the string is stretched directly between the struck

quark and the remnant diquark (antiquark) of the diffractive state. In the second, the

interaction is rather with a gluon, giving rise to a ‘hairpin’ configuration in which the

string is stretched from a quark to a gluon and then back to a diquark (antiquark). Both

of these scenarios could be present in the data; the default choice is to mix them in equal

proportions.

There is experimental support for more complicated scenarios [Ing85], wherein the

pomeron has a partonic substructure, which e.g. can lead to high-p⊥ jet production in
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the diffractive system. The full machinery, wherein a pomeron spectrum is convoluted

with a pomeron-proton hard interaction, is not available in Pythia. (But is found in the

PomPyt program [Bru96].)

7.7.2 Photoproduction and γγ physics

The photon physics machinery in Pythia has been largely expanded in recent years. His-

torically, the model was first developed for photoproduction, i.e. a real photon on a hadron

target [Sch93, Sch93a]. Thereafter γγ physics was added in the same spirit [Sch94a, Sch97].

More recently also virtual photons have been added to the description [Fri00], including the

nontrivial transition region between real photons and Deeply Inelastic Scattering (DIS). In

this section we partly trace this evolution towards more complex configurations.

The total γp and γγ cross sections can again be parameterized in a form like eq. (7.68),

which is not so obvious since the photon has more complicated structure than an ordinary

hadron. In fact, the structure is still not so well understood. The model we outline is the

one studied by Schuler and Sjöstrand [Sch93, Sch93a], and further updated in [Fri00]. In

this model the physical photon is represented by

|γ〉 =
√

Z3 |γB〉 +
∑

V =ρ0,ω,φ,J/ψ

e

fV
|V 〉 +

∑

q

e

fqq
|qq〉 +

∑

`=e,µ,τ

e

f``
|`+`−〉 . (7.77)

By virtue of this superposition, one is led to a model of γp interactions, where three

different kinds of events may be distinguished:

• Direct events, wherein the bare photon |γB〉 interacts directly with a parton from the

proton. The process is perturbatively calculable, and no parton distributions of the

photon are involved. The typical event structure is two high-p⊥ jets and a proton

remnant, while the photon does not leave behind any remnant.

• VMD events, in which the photon fluctuates into a vector meson, predominantly a

ρ0. All the event classes known from ordinary hadron-hadron interactions may thus

occur here, such as elastic, diffractive, low-p⊥ and high-p⊥ events. For the latter, one

may define (VMD) parton distributions of the photon, and the photon also leaves

behind a beam remnant. This remnant is smeared in transverse momentum by a

typical ‘primordial k⊥’ of a few hundred MeV.

• Anomalous or GVMD (Generalized VMD) events, in which the photon fluctuates into

a qq pair of larger virtuality than in the VMD class. The initial parton distribution

is perturbatively calculable, as is the subsequent QCD evolution. It gives rise to the

so-called anomalous part of the parton distributions of the photon, whence one name

for the class. As long as only real photons were considered, it made sense to define the

cross section of this event class to be completely perturbatively calculable, given some

lower p⊥ cut-off. Thus only high-p⊥ events could occur. However, alternatively, one

may view these states as excited higher resonances (ρ′ etc.), thus the GVMD name. In

this case one is lead to a picture which also allows a low-p⊥ cross section, uncalculable

in perturbation theory. The reality may well interpolate between these two extreme

alternatives, but the current framework more leans towards the latter point of view.
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Either the q or the q plays the rôle of a beam remnant, but this remnant has a larger

p⊥ than in the VMD case, related to the virtuality of the γ ↔ qq fluctuation.

The |`+`−〉 states can only interact strongly with partons inside the hadron at higher

orders, and can therefore be neglected in the study of hadronic final states.

In order that the above classification is smooth and free of double counting, one has

to introduce scales that separate the three components. The main one is k0, which sep-

arates the low-mass vector meson region from the high-mass |qq〉 one, k0 ≈ mφ/2 ≈ 0.5

GeV. Given this dividing line to VMD states, the anomalous parton distributions are

perturbatively calculable. The total cross section of a state is not, however, since this

involves aspects of soft physics and eikonalization of jet rates. Therefore an ansatz is

chosen where the total cross section of a state scales like k2
V /k2

⊥, where the adjustable

parameter kV ≈ mρ/2 for light quarks. The k⊥ scale is roughly equated with half the

mass of the GVMD state. The spectrum of GVMD states is taken to extend over a range

k0 < k⊥ < k1, where k1 is identified with the p⊥min(s) cut-off of the perturbative jet

spectrum in hadronic interactions, p⊥min(s) ≈ 1.5 GeV at typical energies, see section

11.2 and especially eq. (11.5). Above that range, the states are assumed to be sufficiently

weakly interacting that no eikonalization procedure is required, so that cross sections can

be calculated perturbatively without any recourse to pomeron phenomenology. There is

some arbitrariness in that choice, and some simplifications are required in order to obtain

a manageable description.

The VMD and GVMD/anomalous events are together called resolved ones. In terms

of high-p⊥ jet production, the VMD and anomalous contributions can be combined into

a total resolved one, and the same for parton-distribution functions. However, the two

classes differ in the structure of the underlying event and possibly in the appearance of soft

processes.

In terms of cross sections, eq. (7.77) corresponds to

σγp
tot(s) = σγp

dir(s) + σγp
VMD(s) + σγp

anom(s) . (7.78)

The direct cross section is, to lowest order, the perturbative cross section for the two

processes γq → qg and γg → qq, with a lower cut-off p⊥ > k1, in order to avoid double-

counting with the interactions of the GVMD states. Properly speaking, this should be

multiplied by the Z3 coefficient,

Z3 = 1 −
∑

V =ρ0,ω,φ,J/ψ

(
e

fV

)2

−
∑

q

(
e

fqq

)2

−
∑

`=e,µ,τ

(
e

f``

)2

, (7.79)

but normally Z3 is so close to unity as to make no difference.

The VMD factor (e/fV )2 = 4παem/f2
V gives the probability for the transition γ → V .

The coefficients f2
V /4π are determined from data to be (with a non-negligible amount of

uncertainty) 2.20 for ρ0, 23.6 for ω, 18.4 for φ and 11.5 for J/ψ. Together these numbers

imply that the photon can be found in a VMD state about 0.4% of the time, dominated

by the ρ0 contribution. All the properties of the VMD interactions can be obtained by

appropriately scaling down V p physics predictions. Thus the whole machinery developed
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in the previous section for hadron-hadron interactions is directly applicable. Also parton

distributions of the VMD component inside the photon are obtained by suitable rescaling.

The contribution from the ‘anomalous’ high-mass fluctuations to the total cross section

is obtained by a convolution of the fluctuation rate

∑

q

(
e

fqq

)2

≈ αem

2π

(
2
∑

q

e2
q

)∫ k1

k0

dk2
⊥

k2
⊥

, (7.80)

which is to be multiplied by the abovementioned reduction factor k2
V /k2

⊥ for the total cross

section, and all scaled by the assumed real vector meson cross section.

As an illustration of this scenario, the phase space of γp events may be represented by a

(k⊥, p⊥) plane. Two transverse momentum scales are distinguished: the photon resolution

scale k⊥ and the hard interaction scale p⊥. Here k⊥ is a measure of the virtuality of a

fluctuation of the photon and p⊥ corresponds to the most virtual rung of the ladder, possibly

apart from k⊥. As we have discussed above, the low-k⊥ region corresponds to VMD and

GVMD states that encompasses both perturbative high-p⊥ and nonperturbative low-p⊥
interactions. Above k1, the region is split along the line k⊥ = p⊥. When p⊥ > k⊥ the

photon is resolved by the hard interaction, as described by the anomalous part of the photon

distribution function. This is as in the GVMD sector, except that we should (probably) not

worry about multiple parton-parton interactions. In the complementary region k⊥ > p⊥,

the p⊥ scale is just part of the traditional evolution of the parton distributions of the proton

up to the scale of k⊥, and thus there is no need to introduce an internal structure of the

photon. One could imagine the direct class of events as extending below k1 and there being

the low-p⊥ part of the GVMD class, only appearing when a hard interaction at a larger

p⊥ scale would not preempt it. This possibility is implicit in the standard cross section

framework.

In γγ physics [Sch94a, Sch97], the superposition in eq. (7.77) applies separately for

each of the two incoming photons. In total there are therefore 3 × 3 = 9 combinations.

However, trivial symmetry reduces this to six distinct classes, written in terms of the total

cross section (cf. eq. (7.78)) as

σγγ
tot(s) = σγγ

dir×dir(s) + σγγ
VMD×VMD(s) + σγγ

GVMD×GVMD(s)

+2σγγ
dir×VMD(s) + 2σγγ

dir×GVMD(s) + 2σγγ
VMD×GVMD(s) . (7.81)

A parameterization of the total γγ cross section is found in [Sch94a, Sch97].

The six different kinds of γγ events are thus:

• The direct×direct events, which correspond to the subprocess γγ → qq (or `+`−).

The typical event structure is two high-p⊥ jets and no beam remnants.

• The VMD×VMD events, which have the same properties as the VMD γp events.

There are four by four combinations of the two incoming vector mesons, with one

VMD factor for each meson.

• The GVMD×GVMD events, wherein each photon fluctuates into a qq pair of larger

virtuality than in the VMD class. The ‘anomalous’ classification assumes that one
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parton of each pair gives a beam remnant, whereas the other (or a daughter par-

ton thereof) participates in a high-p⊥ scattering. The GVMD concept implies the

presence also of low-p⊥ events, like for VMD.

• The direct×VMD events, which have the same properties as the direct γp events.

• The direct×GVMD events, in which a bare photon interacts with a parton from

the anomalous photon. The typical structure is then two high-p⊥ jets and a beam

remnant.

• The VMD×GVMD events, which have the same properties as the GVMD γp events.

Like for photoproduction events, this can be illustrated in a parameter space, but

now three-dimensional, with axes given by the k⊥1, k⊥2 and p⊥ scales. Here each k⊥i

is a measure of the virtuality of a fluctuation of a photon, and p⊥ corresponds to the

most virtual rung on the ladder between the two photons, possibly excepting the endpoint

k⊥i ones. So, to first approximation, the coordinates along the k⊥i axes determine the

characters of the interacting photons while p⊥ determines the character of the interaction

process. Double-counting should be avoided by trying to impose a consistent classification.

Thus, for instance, p⊥ > k⊥i with k⊥1 < k0 and k0 < k⊥2 < k1 gives a hard interaction

between a VMD and a GVMD photon, while k⊥1 > p⊥ > k⊥2 with k⊥1 > k1 and k⊥2 < k0 is

a single-resolved process (direct×VMD; with p⊥ now in the parton distribution evolution).

In much of the literature, where a coarser classification is used, our direct×direct is

called direct, our direct×VMD and direct×GVMD is called single-resolved since they both

involve one resolved photon which gives a beam remnant, and the rest are called double-

resolved since both photons are resolved and give beam remnants.

If the photon is virtual, it has a reduced probability to fluctuate into a vector meson

state, and this state has a reduced interaction probability. This can be modelled by a

traditional dipole factor (m2
V /(m2

V +Q2))2 for a photon of virtuality Q2, where mV → 2k⊥
for a GVMD state. Putting it all together, the cross section of the GVMD sector of

photoproduction then scales like

∫ k2
1

k2
0

dk2
⊥

k2
⊥

k2
V

k2
⊥

(
4k2

⊥

4k2
⊥ + Q2

)2

. (7.82)

For a virtual photon the DIS process γ∗q → q is also possible, but by gauge invariance

its cross section must vanish in the limit Q2 → 0. At large Q2, the direct processes can

be considered as the O(αs) correction to the lowest-order DIS process, but the direct ones

survive for Q2 → 0. There is no unique prescription for a proper combination at all Q2, but

we have attempted an approach that gives the proper limits and minimizes double-counting.

For large Q2, the DIS γ∗p cross section is proportional to the structure function F2(x,Q2)

with the Bjorken x = Q2/(Q2 + W 2). Since normal parton distribution parameterizations

are frozen below some Q0 scale and therefore do not obey the gauge invariance condition,

an ad hoc factor (Q2/(Q2 + m2
ρ))

2 is introduced for the conversion from the parameterized
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F2(x,Q2) to a σγ∗p
DIS:

σγ∗p
DIS '

(
Q2

Q2 + m2
ρ

)2
4π2αem

Q2
F2(x,Q2) =

4π2αemQ2

(Q2 + m2
ρ)

2

∑

q

e2
q

{
xq(x,Q2) + xq(x,Q2)

}
.

(7.83)

Here mρ is some nonperturbative hadronic mass parameter, for simplicity identified with

the ρ mass. One of the Q2/(Q2 + m2
ρ) factors is required already to give finite σγp

tot for

conventional parton distributions, and could be viewed as a screening of the individual

partons at small Q2. The second factor is chosen to give not only a finite but actually a

vanishing σγ∗p
DIS for Q2 → 0 in order to retain the pure photoproduction description there.

This latter factor thus is more a matter of convenience, and other approaches could have

been pursued.

In order to avoid double-counting between DIS and direct events, a requirement p⊥ >

max(k1, Q) is imposed on direct events. In the remaining DIS ones, denoted lowest order

(LO) DIS, thus p⊥ < Q. This would suggest a subdivision σγ∗p
LO DIS = σγ∗p

DIS − σγ∗p
direct, with

σγ∗p
DIS given by eq. (7.83) and σγ∗p

direct by the perturbative matrix elements. In the limit

Q2 → 0, the DIS cross section is now constructed to vanish while the direct is not, so this

would give σγ∗p
LODIS < 0. However, here we expect the correct answer not to be a negative

number but an exponentially suppressed one, by a Sudakov form factor. This modifies the

cross section:

σγ∗p
LODIS = σγ∗p

DIS − σγ∗p
direct −→ σγ∗p

DIS exp

(
−σγ∗p

direct

σγ∗p
DIS

)
. (7.84)

Since we here are in a region where the DIS cross section is no longer the dominant one,

this change of the total DIS cross section is not essential.

The overall picture, from a DIS perspective, now requires three scales to be kept

track of. The traditional DIS region is the strongly ordered one, Q2 À k2
⊥ À p2

⊥, where

DGLAP-style evolution [Alt77, Gri72] is responsible for the event structure. As always,

ideology wants strong ordering, while the actual classification is based on ordinary ordering

Q2 > k2
⊥ > p2

⊥. The region k2
⊥ > max(Q2, p2

⊥) is also DIS, but of the O(αs) direct kind. The

region where k⊥ is the smallest scale corresponds to non-ordered emissions, that then go

beyond DGLAP validity, while the region p2
⊥ > k2

⊥ > Q2 cover the interactions of a resolved

virtual photon. Comparing with the plane of real photoproduction, we conclude that the

whole region p⊥ > k⊥ involves no double-counting, since we have made no attempt at a non-

DGLAP DIS description but can choose to cover this region entirely by the VMD/GVMD

descriptions. Actually, it is only in the corner p⊥ < k⊥ < min(k1, Q) that an overlap can

occur between the resolved and the DIS descriptions. Some further considerations show

that usually either of the two is strongly suppressed in this region, except in the range of

intermediate Q2 and rather small W 2. Typically, this is the region where x ≈ Q2/(Q2+W 2)

is not close to zero, and where F2 is dominated by the valence-quark contribution. The

latter behaves roughly ∝ (1 − x)n, with an n of the order of 3 or 4. Therefore we will

introduce a corresponding damping factor to the VMD/GVMD terms.
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In total, we have now arrived at our ansatz for all Q2:

σγ∗p
tot = σγ∗p

DIS exp

(
−σγ∗p

direct

σγ∗p
DIS

)
+ σγ∗p

direct +

(
W 2

Q2 + W 2

)n (
σγ∗p

VMD + σγ∗p
GVMD

)
, (7.85)

with four main components. Most of these in their turn have a complicated internal

structure, as we have seen.

Turning to γ∗γ∗ processes, finally, the parameter space is now five-dimensional: Q1,

Q2, k⊥1, k⊥2 and p⊥. As before, an effort is made to avoid double-counting, by having

a unique classification of each region in the five-dimensional space. Remaining double-

counting is dealt with as above. In total, our ansatz for γ∗γ∗ interactions at all Q2 contains

13 components: 9 when two VMD, GVMD or direct photons interact, as is already allowed

for real photons, plus a further 4 where a ‘DIS photon’ from either side interacts with a

VMD or GVMD one. With the label resolved used to denote VMD and GVMD, one can

write

σγ∗γ∗

tot (W 2, Q2
1, Q

2
2) = σγ∗γ∗

DIS×res exp

(
−

σγ∗γ∗

dir×res

σγ∗γ∗

DIS×res

)
+ σγ∗γ∗

dir×res

+σγ∗γ∗

res×DIS exp

(
−

σγ∗γ∗

res×dir

σγ∗γ∗

res×DIS

)
+ σγ∗γ∗

res×dir (7.86)

+σγ∗γ∗

dir×dir +

(
W 2

Q2
1 + Q2

2 + W 2

)3

σγ∗γ∗

res×res

Most of the 13 components in their turn have a complicated internal structure, as we have

seen.

An important note is that the Q2 dependence of the DIS and direct photon interac-

tions is implemented in the matrix element expressions, i.e. in processes such as γ∗γ∗ → qq

or γ∗q → qg the photon virtuality explicitly enters. This is different from VMD/GVMD,

where dipole factors are used to reduce the total cross sections and the assumed flux of

partons inside a virtual photon relative to those of a real one, but the matrix elements

themselves contain no dependence on the virtuality either of the partons or of the photon

itself. Typically results are obtained with the SaS 1D parton distributions for the virtual

transverse photons [Sch95, Sch96], since these are well matched to our framework, e.g. al-

lowing a separation of the VMD and GVMD/anomalous components. Parton distributions

of virtual longitudinal photons are by default given by some Q2-dependent factor times

the transverse ones. The set by Chýla [Chy00] allows more precise modelling here, but

indications are that many studies will not be sensitive to the detailed shape.

The photon physics machinery is of considerable complexity, and so the above is only

a brief summary. Further details can be found in the literature quoted above. Some topics

are also covered in other places in this manual, e.g. the flux of transverse and longitudinal

photons in section 7.1.4, scale choices for parton density evaluation in section 7.2, and

further aspects of the generation machinery and switches in section 8.3.
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In No. Subprocess Reference

+ 1 fifi → γ∗/Z0 [Eic84]

+ 2 fifj → W+ [Eic84]

+ 3 fifi → h0 [Eic84]

4 γW+ → W+

+ 5 Z0Z0 → h0 [Eic84, Cha85]

6 Z0W+ → W+

7 W+W− → Z0

+ 8 W+W− → h0 [Eic84, Cha85]

+ 10 fifj → fkfl (QFD) [Ing87a]

+ 11 fifj → fifj (QCD) [Com77, Ben84, Eic84]

+ 12 fifi → fkfk [Com77, Ben84, Eic84]

+ 13 fifi → gg [Com77, Ben84]

+ 14 fifi → gγ [Hal78, Ben84]

+ 15 fifi → gZ0 [Eic84]

+ 16 fifj → gW+ [Eic84]

17 fifi → gh0

+ 18 fifi → γγ [Ber84]

+ 19 fifi → γZ0 [Eic84]

+ 20 fifj → γW+ [Eic84, Sam91]

21 fifi → γh0

+ 22 fifi → Z0Z0 [Eic84, Gun86]

+ 23 fifj → Z0W+ [Eic84, Gun86]

+ 24 fifi → Z0h0 [Ber85]

+ 25 fifi → W+W− [Bar94, Gun86]

+ 26 fifj → W+h0 [Eic84]

27 fifi → h0h0

+ 28 fig → fig [Com77, Ben84]

+ 29 fig → fiγ [Hal78, Ben84]

+ 30 fig → fiZ
0 [Eic84]

+ 31 fig → fkW
+ [Eic84]

+ 32 fig → fih
0 [Bar88]

+ 33 fiγ → fig [Duk82]

+ 34 fiγ → fiγ [Duk82]

+ 35 fiγ → fiZ
0 [Gab86]

+ 36 fiγ → fkW
+ [Gab86]

37 fiγ → fih
0

Table 16: Subprocess codes, part 1. First column is ‘+’ for processes implemented and blank for

those that are/were only foreseen. Second is the subprocess number ISUB, and third the description

of the process. The final column gives references from which the cross sections have been obtained.

See text for further information.
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In No. Subprocess Reference

38 fiZ
0 → fig

39 fiZ
0 → fiγ

40 fiZ
0 → fiZ

0

41 fiZ
0 → fkW

+

42 fiZ
0 → fih

0

43 fiW
+ → fkg

44 fiW
+ → fkγ

45 fiW
+ → fkZ

0

46 fiW
+ → fkW

+

47 fiW
+ → fkh

0

48 fih
0 → fig

49 fih
0 → fiγ

50 fih
0 → fiZ

0

51 fih
0 → fkW

+

52 fih
0 → fih

0

+ 53 gg → fkfk [Com77, Ben84]

+ 54 gγ → fkfk [Duk82]

55 gZ0 → fkfk
56 gW+ → fkf l
57 gh0 → fkfk

+ 58 γγ → fkfk [Bar90]

59 γZ0 → fkfk
60 γW+ → fkfl
61 γh0 → fkfk
62 Z0Z0 → fkfk
63 Z0W+ → fkf l
64 Z0h0 → fkfk
65 W+W− → fkfk
66 W+h0 → fkf l
67 h0h0 → fkfk

+ 68 gg → gg [Com77, Ben84]

+ 69 γγ → W+W− [Kat83]

+ 70 γW+ → Z0W+ [Kun87]

+ 71 Z0Z0 → Z0Z0 (longitudinal) [Abb87]

+ 72 Z0Z0 → W+W− (longitudinal) [Abb87]

+ 73 Z0W+ → Z0W+ (longitudinal) [Dob91]

74 Z0h0 → Z0h0

75 W+W− → γγ

Table 17: Subprocess codes, part 2. Comments as before.
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In No. Subprocess Reference

+ 76 W+W− → Z0Z0 (longitudinal) [Ben87b]

+ 77 W+W± → W+W± (longitudinal) [Dun86, Bar90a]

78 W+h0 → W+h0

79 h0h0 → h0h0

+ 80 qiγ → qkπ
± [Bag82]

+ 81 fifi → QkQk [Com79]

+ 82 gg → QkQk [Com79]

+ 83 qifj → Qkfl [Dic86]

+ 84 gγ → QkQk [Fon81]

+ 85 γγ → FkFk [Bar90]

+ 86 gg → J/ψg [Bai83]

+ 87 gg → χ0cg [Gas87]

+ 88 gg → χ1cg [Gas87]

+ 89 gg → χ2cg [Gas87]

+ 91 elastic scattering [Sch94]

+ 92 single diffraction (AB → XB) [Sch94]

+ 93 single diffraction (AB → AX) [Sch94]

+ 94 double diffraction [Sch94]

+ 95 low-p⊥ production [Sjo87a]

+ 96 semihard QCD 2 → 2 [Sjo87a]

+ 99 γ∗q → q [Fri00]

101 gg → Z0

+ 102 gg → h0 [Eic84]

+ 103 γγ → h0 [Dre89]

+ 104 gg → χ0c [Bai83]

+ 105 gg → χ2c [Bai83]

+ 106 gg → J/ψγ [Dre91]

+ 107 gγ → J/ψg [Ber81]

+ 108 γγ → J/ψγ [Jun97]

+ 110 fifi → γh0 [Ber85a]

+ 111 fifi → gh0 [Ell88]

+ 112 fig → fih
0 [Ell88]

+ 113 gg → gh0 [Ell88]

+ 114 gg → γγ [Con71, Ber84, Dic88]

+ 115 gg → gγ [Con71, Ber84, Dic88]

116 gg → γZ0

117 gg → Z0Z0

118 gg → W+W−

Table 18: Subprocess codes, part 3. Comments as before
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119 γγ → gg

+ 121 gg → QkQkh
0 [Kun84]

+ 122 qiqi → QkQkh
0 [Kun84]

+ 123 fifj → fifjh
0 (ZZ fusion) [Cah84]

+ 124 fifj → fkflh
0 (W+W− fusion) [Cah84]

+ 131 fiγ
∗
T → fig [Alt78]

+ 132 fiγ
∗
L → fig [Alt78]

+ 133 fiγ
∗
T → fiγ [Alt78]

+ 134 fiγ
∗
L → fiγ [Alt78]

+ 135 gγ∗
T → fifi [Alt78]

+ 136 gγ∗
L → fifi [Alt78]

+ 137 γ∗
Tγ∗

T → fifi [Bai81]

+ 138 γ∗
Tγ∗

L → fifi [Bai81]

+ 139 γ∗
Lγ∗

T → fifi [Bai81]

+ 140 γ∗
Lγ∗

L → fifi [Bai81]

+ 141 fifi → γ/Z0/Z′0 [Alt89]

+ 142 fifj → W′+ [Alt89]

+ 143 fifj → H+ [Gun87]

+ 144 fifj → R [Ben85a]

+ 145 qi`j → LQ [Wud86]

+ 146 eγ → e∗ [Bau90]

+ 147 dg → d∗ [Bau90]

+ 148 ug → u∗ [Bau90]

+ 149 gg → ηtc [Eic84, App92]

+ 151 fifi → H0 [Eic84]

+ 152 gg → H0 [Eic84]

+ 153 γγ → H0 [Dre89]

+ 156 fifi → A0 [Eic84]

+ 157 gg → A0 [Eic84]

+ 158 γγ → A0 [Dre89]

+ 161 fig → fkH
+ [Bar88]

+ 162 qig → `kLQ [Hew88]

+ 163 gg → LQLQ [Hew88, Eic84]

+ 164 qiqi → LQLQ [Hew88]

+ 165 fifi → fkfk (via γ∗/Z0) [Eic84, Lan91]

+ 166 fifj → fkfl (via W±) [Eic84, Lan91]

+ 167 qiqj → qkd
∗ [Bau90]

+ 168 qiqj → qku
∗ [Bau90]

Table 19: Subprocess codes, part 4. Comments as before.
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+ 169 qiqi → e±e∗∓ [Bau90]

+ 171 fifi → Z0H0 [Eic84]

+ 172 fifj → W+H0 [Eic84]

+ 173 fifj → fifjH
0 (ZZ fusion) [Cah84]

+ 174 fifj → fkflH
0 (W+W− fusion) [Cah84]

+ 176 fifi → Z0A0 [Eic84]

+ 177 fifj → W+A0 [Eic84]

+ 178 fifj → fifjA
0 (ZZ fusion) [Cah84]

+ 179 fifj → fkflA
0 (W+W− fusion) [Cah84]

+ 181 gg → QkQkH
0 [Kun84]

+ 182 qiqi → QkQkH
0 [Kun84]

+ 183 fifi → gH0 [Ell88]

+ 184 fig → fiH
0 [Ell88]

+ 185 gg → gH0 [Ell88]

+ 186 gg → QkQkA
0 [Kun84]

+ 187 qiqi → QkQkA
0 [Kun84]

+ 188 fifi → gA0 [Ell88]

+ 189 fig → fiA
0 [Ell88]

+ 190 gg → gA0 [Ell88]

+ 191 fifi → ρ0
tc [Eic96]

+ 192 fifj → ρ±tc [Eic96]

+ 193 fifi → ω0
tc [Eic96]

+ 194 fifi → fkfk [Eic96, Lan99]

+ 195 fifj → fkf l [Eic96, Lan99]

+ 201 fifi → ẽLẽ∗L [Bar87, Daw85]

+ 202 fifi → ẽRẽ∗R [Bar87, Daw85]

+ 203 fifi → ẽLẽ∗R + ẽ∗LẽR [Bar87]

+ 204 fifi → µ̃Lµ̃∗
L [Bar87, Daw85]

+ 205 fifi → µ̃Rµ̃∗
R [Bar87, Daw85]

+ 206 fifi → µ̃Lµ̃∗
R + µ̃∗

Lµ̃R [Bar87]

+ 207 fifi → τ̃1τ̃
∗
1 [Bar87, Daw85]

+ 208 fifi → τ̃2τ̃
∗
2 [Bar87, Daw85]

+ 209 fifi → τ̃1τ̃
∗
2 + τ̃∗

1 τ̃2 [Bar87]

+ 210 fifj → ˜̀
Lν̃∗

` + ˜̀∗
Lν̃` [Daw85]

+ 211 fifj → τ̃1ν̃
∗
τ + τ̃∗

1 ν̃τ [Daw85]

+ 212 fifj → τ̃2ν̃τ
∗ + τ̃∗

2 ν̃τ [Daw85]

+ 213 fifi → ν̃`ν̃
∗
` [Bar87, Daw85]

+ 214 fifi → ν̃τ ν̃
∗
τ [Bar87, Daw85]

Table 20: Subprocess codes, part 5. Comments as before.
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+ 216 fifi → χ̃1χ̃1 [Bar86a]

+ 217 fifi → χ̃2χ̃2 [Bar86a]

+ 218 fifi → χ̃3χ̃3 [Bar86a]

+ 219 fifi → χ̃4χ̃4 [Bar86a]

+ 220 fifi → χ̃1χ̃2 [Bar86a]

+ 221 fifi → χ̃1χ̃3 [Bar86a]

+ 222 fifi → χ̃1χ̃4 [Bar86a]

+ 223 fifi → χ̃2χ̃3 [Bar86a]

+ 224 fifi → χ̃2χ̃4 [Bar86a]

+ 225 fifi → χ̃3χ̃4 [Bar86a]

+ 226 fifi → χ̃±
1 χ̃∓

1 [Bar86b]

+ 227 fifi → χ̃±
2 χ̃∓

2 [Bar86b]

+ 228 fifi → χ̃±
1 χ̃∓

2 [Bar86b]

+ 229 fifj → χ̃1χ̃
±
1 [Bar86a, Bar86b]

+ 230 fifj → χ̃2χ̃
±
1 [Bar86a, Bar86b]

+ 231 fifj → χ̃3χ̃
±
1 [Bar86a, Bar86b]

+ 232 fifj → χ̃4χ̃
±
1 [Bar86a, Bar86b]

+ 233 fifj → χ̃1χ̃
±
2 [Bar86a, Bar86b]

+ 234 fifj → χ̃2χ̃
±
2 [Bar86a, Bar86b]

+ 235 fifj → χ̃3χ̃
±
2 [Bar86a, Bar86b]

+ 236 fifj → χ̃4χ̃
±
2 [Bar86a, Bar86b]

+ 237 fifi → g̃χ̃1 [Daw85]

+ 238 fifi → g̃χ̃2 [Daw85]

+ 239 fifi → g̃χ̃3 [Daw85]

+ 240 fifi → g̃χ̃4 [Daw85]

+ 241 fifj → g̃χ̃±
1 [Daw85]

+ 242 fifj → g̃χ̃±
2 [Daw85]

+ 243 fifi → g̃g̃ [Daw85]

+ 244 gg → g̃g̃ [Daw85]

+ 246 fig → q̃iLχ̃1 [Daw85]

+ 247 fig → q̃iRχ̃1 [Daw85]

+ 248 fig → q̃iLχ̃2 [Daw85]

+ 249 fig → q̃iRχ̃2 [Daw85]

+ 250 fig → q̃iLχ̃3 [Daw85]

+ 251 fig → q̃iRχ̃3 [Daw85]

+ 252 fig → q̃iLχ̃4 [Daw85]

+ 253 fig → q̃iRχ̃4 [Daw85]

+ 254 fig → q̃jLχ̃±
1 [Daw85]

Table 21: Subprocess codes, part 6. Comments as before.
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+ 256 fig → q̃jLχ̃±
2 [Daw85]

+ 258 fig → q̃iLg̃ [Daw85]

+ 259 fig → q̃iRg̃ [Daw85]

+ 261 fifi → t̃1t̃
∗
1 [Daw85]

+ 262 fifi → t̃2t̃
∗
2 [Daw85]

+ 263 fifi → t̃1t̃
∗
2 + t̃∗1t̃2 [Daw85]

+ 264 gg → t̃1t̃
∗
1 [Daw85]

+ 265 gg → t̃2t̃
∗
2 [Daw85]

+ 271 fifj → q̃iLq̃jL [Daw85]

+ 272 fifj → q̃iRq̃jR [Daw85]

+ 273 fifj → q̃iLq̃jR + q̃iRq̃jL [Daw85]

+ 274 fifj → q̃iLq̃∗jL [Daw85]

+ 275 fifj → q̃iRq̃∗jR [Daw85]

+ 276 fifj → q̃iLq̃∗jR + q̃iRq̃∗jL [Daw85]

+ 277 fifi → q̃jLq̃∗jL [Daw85]

+ 278 fifi → q̃jRq̃∗jR [Daw85]

+ 279 gg → q̃iLq̃∗i L [Daw85]

+ 280 gg → q̃iRq̃∗i R [Daw85]

+ 281 bq → b̃1q̃L (q not b) [Daw85a]

+ 282 bq → b̃2q̃R [Daw85a]

+ 283 bq → b̃1q̃R + b̃2q̃L [Daw85a]

+ 284 bq → b̃1q̃
∗
L [Daw85a]

+ 285 bq → b̃2q̃
∗
R [Daw85a]

+ 286 bq → b̃1q̃
∗
R + b̃2q̃

∗
L [Daw85a]

+ 287 fifi → b̃1b̃
∗
1 [Daw85a]

+ 288 fifi → b̃2b̃
∗
2 [Daw85a]

+ 289 gg → b̃1b̃
∗
1 [Daw85a]

+ 290 gg → b̃2b̃
∗
2 [Daw85a]

+ 291 bb → b̃1b̃1 [Daw85a]

+ 292 bb → b̃2b̃2 [Daw85a]

+ 293 bb → b̃1b̃2 [Daw85a]

+ 294 bg → b̃1g̃ [Daw85a]

+ 295 bg → b̃2g̃ [Daw85a]

+ 296 bb → b̃1b̃
∗
2 + b̃∗

1b̃2 [Daw85a]

+ 297 fifj → H±h0 [Daw85a]

+ 298 fifj → H±H0 [Daw85a]

+ 299 fifi → Ah0 [Daw85a]

+ 300 fifi → AH0 [Daw85a]

Table 22: Subprocess codes, part 7. Comments as before.
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+ 301 fifi → H+H− [Daw85a]

+ 341 `i`j → H±±
L [Hui97]

+ 342 `i`j → H±±
R [Hui97]

+ 343 `iγ → H±±
L e∓ [Hui97]

+ 344 `iγ → H±±
R e∓ [Hui97]

+ 345 `iγ → H±±
L µ∓ [Hui97]

+ 346 `iγ → H±±
R µ∓ [Hui97]

+ 347 `iγ → H±±
L τ∓ [Hui97]

+ 348 `iγ → H±±
R τ∓ [Hui97]

+ 349 fifi → H++
L H−−

L [Hui97]

+ 350 fifi → H++
R H−−

R [Hui97]

+ 351 fifj → fkflH
±±
L (WW) fusion) [Hui97]

+ 352 fifj → fkflH
±±
R (WW) fusion) [Hui97]

+ 353 fifi → Z0
R [Eic84]

+ 354 fifj → W+
R [Eic84]

+ 361 fifi → W+
L W−

L [Lan99]

+ 362 fifi → W±
L π∓

tc [Lan99]

+ 363 fifi → π+
tcπ

−
tc [Lan99]

+ 364 fifi → γπ0
tc [Lan99]

+ 365 fifi → γπ′0
tc [Lan99]

+ 366 fifi → Z0π0
tc [Lan99]

+ 367 fifi → Z0π′0
tc [Lan99]

+ 368 fifi → W±π∓
tc [Lan99]

+ 370 fifj → W±
L Z0

L [Lan99]

+ 371 fifj → W±
L π0

tc [Lan99]

+ 372 fifj → π±
tcZ

0
L [Lan99]

+ 373 fifj → π±
tcπ

0
tc [Lan99]

+ 374 fifj → γπ±
tc [Lan99]

+ 375 fifj → Z0π±
tc [Lan99]

+ 376 fifj → W±π0
tc [Lan99]

+ 377 fifj → W±π′0
tc [Lan99]

+ 381 qiqj → qiqj (QCD+TC) [Chi90, Lan02a]

+ 382 qiqi → qkqk (QCD+TC) [Chi90, Lan02a]

+ 383 qiqi → gg (QCD+TC) [Lan02a]

+ 384 fig → fig (QCD+TC) [Lan02a]

+ 385 gg → qkqk (QCD+TC) [Lan02a]

+ 386 gg → gg (QCD+TC) [Lan02a]

+ 387 fifi → QkQk (QCD+TC) [Lan02a]

Table 23: Subprocess codes, part 8. Comments as before.
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+ 388 gg → QkQk (QCD+TC) [Lan02a]

+ 391 ff → G∗ [Ran99]

+ 392 gg → G∗ [Ran99]

+ 393 qq → gG∗ [Ran99, Bij01]

+ 394 qg → qG∗ [Ran99, Bij01]

+ 395 gg → gG∗ [Ran99, Bij01]

+ 401 gg → tbH+ [Bor99]

+ 402 qq → tbH+ [Bor99]

+ 421 gg → cc[3S
(1)
1 ] g [Bod95]

+ 422 gg → cc[3S
(8)
1 ] g [Bod95]

+ 423 gg → cc[1S
(8)
0 ] g [Bod95]

+ 424 gg → cc[3P
(8)
J ] g [Bod95]

+ 425 gq → q cc[3S
(8)
1 ] [Bod95]

+ 426 gq → q cc[1S
(8)
0 ] [Bod95]

+ 427 gq → q cc[3P
(8)
J ] [Bod95]

+ 428 qq → g cc[3S
(8)
1 ] [Bod95]

+ 429 qq → g cc[1S
(8)
0 ] [Bod95]

+ 430 qq → g cc[3P
(8)
J ] [Bod95]

+ 431 gg → cc[3P
(1)
0 ] g [Bod95]

+ 432 gg → cc[3P
(1)
1 ] g [Bod95]

+ 433 gg → cc[3P
(1)
2 ] g [Bod95]

+ 434 gq → q cc[3P
(1)
0 ] [Bod95]

+ 435 gq → q cc[3P
(1)
1 ] [Bod95]

+ 436 gq → q cc[3P
(1)
2 ] [Bod95]

+ 437 qq → g cc[3P
(1)
0 ] [Bod95]

+ 438 qq → g cc[3P
(1)
1 ] [Bod95]

+ 439 qq → g cc[3P
(1)
2 ] [Bod95]

+ 461 gg → bb[3S
(1)
1 ] g [Bod95]

+ 462 gg → bb[3S
(8)
1 ] g [Bod95]

+ 463 gg → bb[1S
(8)
0 ] g [Bod95]

+ 464 gg → bb[3P
(8)
J ] g [Bod95]

+ 465 gq → q bb[3S
(8)
1 ] [Bod95]

+ 466 gq → q bb[1S
(8)
0 ] [Bod95]

+ 467 gq → q bb[3P
(8)
J ] [Bod95]

+ 468 qq → g bb[3S
(8)
1 ] [Bod95]

+ 469 qq → g bb[1S
(8)
0 ] [Bod95]

Table 24: Subprocess codes, part 9. Comments as before.
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+ 470 qq → g bb[3P
(8)
J ] [Bod95]

+ 471 gg → bb[3P
(1)
0 ] g [Bod95]

+ 472 gg → bb[3P
(1)
1 ] g [Bod95]

+ 473 gg → bb[3P
(1)
2 ] g [Bod95]

+ 474 gq → q bb[3P
(1)
0 ] [Bod95]

+ 475 gq → q bb[3P
(1)
1 ] [Bod95]

+ 476 gq → q bb[3P
(1)
2 ] [Bod95]

+ 477 qq → g bb[3P
(1)
0 ] [Bod95]

+ 478 qq → g bb[3P
(1)
1 ] [Bod95]

+ 479 qq → g bb[3P
(1)
2 ] [Bod95]

Table 25: Subprocess codes, part 10. Comments as before.
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8. Physics processes

In this section we enumerate the physics processes that are available in Pythia, introducing

the ISUB code that can be used to select desired processes. A number of comments are made

about the physics scenarios involved, with emphasis on the underlying assumptions and

domain of validity. The section closes with a survey of interesting processes by machine.

Note that ISUB is a dummy index introduced to allow simple referencing of processes.

There are no global variables in Pythia named ISUB.

8.1 The process classification scheme

A wide selection of fundamental 2 → 1 and 2 → 2 tree processes of the Standard Model

(electroweak and strong) has been included in Pythia, and slots are provided for some

more, not (yet) implemented. In addition, ‘minimum-bias’-type processes (like elastic

scattering), loop graphs, box graphs, 2 → 3 tree graphs and many non-Standard Model

processes are included. The classification is not always unique. A process that proceeds

only via an s-channel state is classified as a 2 → 1 process (e.g. qq → γ∗/Z0 → e+e−).

A generic 2 → 2 process may have contributions from s-, t− and u-channel diagrams.

Also, in the program, 2 → 1 and 2 → 2 graphs may sometimes be convoluted with two

1 → 2 splittings to form effective 2 → 3 or 2 → 4 processes (W+W− → h0 is folded with

q → q′′W+ and q′ → q′′′W− to give qq′ → q′′q′′′h0).

The original classification and numbering scheme is less relevant today than when

originally conceived. The calculation of 2 → 3 or 2 → 4 matrix elements by hand is

sufficiently complicated that approximation schemes were employed, such as the effective

W-approximation which factored W bosons into an effective parton density. Today, im-

provements in computational techniques and increases in computing power make the exact

calculation manageable. Given the large top mass and large Higgs boson mass limits,

there is also a natural subdivision, such that the b quark is the heaviest object for which

the parton-distribution concept makes sense at current or near-future colliders. Therefore

most of the prepared but empty slots are likely to remain empty, or be reclaimed for other

processes.

It is possible to select a combination of subprocesses and also to know which subpro-

cess was actually selected in each event. For this purpose, all subprocesses are numbered

according to an ISUB code. The list of possible codes is given in tables 16 through 25, and

summarized in appendix A. Only processes marked with a ‘+’ sign in the first column have

been implemented in the program to date. Although ISUB codes were originally designed

in a logical fashion, subsequent developments of the program have obscured the structure.

For instance, the process numbers for Higgs production are spread out, in part as a conse-

quence of the original classification, in part because further production mechanisms have

been added one at a time, in whatever free slots could be found. In the thematic descrip-

tions that follow the main tables, the processes of interest are repeated in a more logical

order. If you want to look for a specific process, it will be easier to find it there.

In the following, fi represents a fundamental fermion of flavour i, i.e. d, u, s, c, b, t,

b′, t′, e−, νe, µ−, νµ, τ−, ντ , τ ′− or ν ′
τ . A corresponding antifermion is denoted by fi.
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In several cases, some classes of fermions are explicitly excluded, since they do not couple

to the g or γ (no e+e− → gg, e.g.). When processes have only been included for quarks,

while leptons might also have been possible, the notation qi is used. A lepton is denoted

by `; in a few cases neutrinos are also lumped under this heading. In processes where

fermion masses are explicitly included in the matrix elements, an F or Q is used to denote

an arbitrary fermion or quark. Flavours appearing already in the initial state are denoted

by indices i and j, whereas new flavours in the final state are denoted by k and l.

In supersymmetric processes, antiparticles of sfermions are denoted by ∗, i.e. t̃∗.

Charge-conjugate channels are always assumed included as well (where separate), and

processes involving a W+ also imply those involving a W−. Wherever Z0 is written, it is

understood that γ∗ and γ∗/Z0 interference should be included as well (with possibilities to

switch off either, if so desired). In practice, this means that fermion pairs produced from

γ∗/Z0 decay will have invariant masses as small as the program cutoff, and not regulated

by the large Z mass. The cutoff is set by an appropriate CKIN variable. In some cases,

γ∗/Z0 interference is not implemented; see further below. Correspondingly, Z′0 denotes

the complete set γ∗/Z0/Z′0 (or some subset of it). Thus the notation γ is only used for a

photon on the mass shell.

In the last column of the tables below, references are given to works from which

formulae have been taken. Sometimes these references are to the original works on the

subject, sometimes only to the place where the formulae are given in the most convenient

or accessible form, or where chance lead us. Apologies to all matrix-element calculators

who are not mentioned. However, remember that this is not a review article on physics

processes, but only a way for readers to know what is actually found in the program,

for better or worse. In several instances, errata have been obtained from the authors.

Often the formulae given in the literature have been generalized to include trivial radiative

corrections, Breit-Wigner line shapes with ŝ-dependent widths (see section 7.3), etc.

The following sections contain some useful comments on the processes included in the

program, grouped by physics interest rather than sequentially by ISUB or MSEL code (see

9.2 for further information on the MSEL code). The different ISUB and MSEL codes that can

be used to simulate the different groups are given. ISUB codes within brackets indicate the

kind of processes that indirectly involve the given physics topic, although only as part of a

larger whole. Some obvious examples, such as the possibility to produce jets in just about

any process, are not spelled out in detail.

The text at times contains information on which special switches or parameters are of

particular interest to a given process. All these switches are described in detail in sections

9.3 9.4 and 9.5, but are alluded to here so as to provide a more complete picture of the

possibilities available for the different subprocesses. However, the list of possibilities is

certainly not exhausted by the text below.

8.2 QCD processes

Obviously most processes in Pythia contain QCD physics one way or another, so the

above title should not be overstressed. One example: a process like e+e− → γ∗/Z0 → qq

is also traditionally called a QCD event, but is here book-kept as γ∗/Z0 production. In
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this section we discuss scatterings between coloured partons, plus a few processes that are

close relatives to other processes of this kind.

8.2.1 QCD jets

MSEL = 1, 2

ISUB = 11 qiqj → qiqj

12 qiqi → qkqk

13 qiqi → gg

28 qig → qig

53 gg → qkqk

68 gg → gg

96 semihard QCD 2 → 2

These are all tree-level, 2 → 2 process with a cross section ∝ α2
s. No higher-order loop

corrections are explicitly included. However, initial- and final-state QCD radiation added

to the above processes generates multijet events. In general, the rate of multijet (> 2)

production through the parton shower mechanism is less certain for jets at high-p⊥ and for

well-separated pairs of jets.

A string-based fragmentation scheme such as the Lund model needs cross sections for

the different colour flows. The planar approximation allows such a subdivision, with cross

sections, calculated in [Ben84], that differ from the usual ones by interference terms of the

order 1/N2
C . By default, the standard colour-summed QCD expressions for the differential

cross sections are used with the interference terms distributed among the various colour

flows according to the pole structure of the terms. However, the interference terms can be

excluded by changing MSTP(34).

As an example, consider subprocess 28, qg → qg. The differential cross section for

this process, obtained by summing and squaring the Feynman graphs and employing the

identity of the Mandelstam variables for the massless case, ŝ + t̂ + û = 0, is proportional

to [Com77]
ŝ2 + û2

t̂2
− 4

9

(
ŝ

û
+

û

ŝ

)
. (8.1)

On the other hand, the cross sections for the two possible colour flows of this subprocess

are [Ben84]

A :
4

9

(
2
û2

t̂2
− û

ŝ

)
;

B :
4

9

(
2
ŝ2

t̂2
− ŝ

û

)
. (8.2)

Colour configuration A is one in which the original colour of the q annihilates with the anti-

colour of the g, the g colour flows through, and a new colour–anticolour is created between

the final q and g. In colour configuration B, the gluon anticolour flows through, but the

q and g colours are interchanged. Note that these two colour configurations have different

kinematics dependence. In principle, this has observable consequences. For MSTP(34) =

0, these are the cross sections actually used.
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The sum of the A and B contributions is

8

9

ŝ2 + û2

t̂2
− 4

9

(
ŝ

û
+

û

ŝ

)
. (8.3)

The difference between this expression and that of [Com77], corresponding to the interfer-

ence between the two colour-flow configurations, is then

1

9

ŝ2 + û2

t̂2
, (8.4)

which can be naturally divided between colour flows A and B:

A :
1

9

û2

t̂2
;

B :
1

9

ŝ2

t̂2
. (8.5)

For MSTP(34) = 1, the standard QCD matrix element is used, with the same relative

importance of the two colour configurations as above. Similar procedures are followed also

for the other QCD subprocesses.

All the matrix elements in this group are for massless quarks (although final-state

quarks are of course put on the mass shell). As a consequence, cross sections are divergent

for p⊥ → 0, and some kind of regularization is required. Normally you are expected to set

the desired p⊥min value in CKIN(3).

The new flavour produced in the annihilation processes (ISUB = 12 and 53) is deter-

mined by the flavours allowed for gluon splitting into quark-antiquark; see switch MDME.

Subprocess 96 is special among all the ones in the program. In terms of the basic

cross section, it is equivalent to the sum of the other ones, i.e. 11, 12, 13, 28, 53 and

68. The phase space is mapped differently, however, and allows p⊥ as the input variable.

This is especially useful in the context of the multiple interactions machinery (see section

11.2) where potential scatterings are considered in order of decreasing p⊥, with a form

factor related to the probability of not having another scattering with a p⊥ larger than

the considered one. You are not expected to access process 96 yourself. Instead it is

automatically initialized and used either if process 95 is included or if multiple interactions

are switched on. The process will then appear in the maximization information output, but

not in the cross section table at the end of a run. Instead, the hardest scattering generated

within the context of process 95 is reclassified as an event of the 11, 12, 13, 28, 53 or 68

kinds, based on the relative cross section for these in the point chosen. Further multiple

interactions, subsequent to the hardest one, also do not show up in cross section tables.

8.2.2 Heavy flavours

MSEL = 4, 5, 6, 7, 8
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ISUB = 81 qiqi → QkQk

82 gg → QkQk

(83) qifj → Qkfl

(84) gγ → QkQk

(85) γγ → FkFk

(1) fifi → γ∗/Z0 → FkFk

(2) fifj → W+ → FkFl

(142) fifj → W′+ → FkFl

The matrix elements in this group differ from the corresponding ones in the group

above in that they correctly take into account the quark masses. As a consequence, the

cross sections are finite for p⊥ → 0 and require no special cuts.

The two first processes that appear here are the dominant lowest-order QCD graphs

in hadron colliders — a few other graphs will be mentioned later, such as process 83.

The flavour produced is selected according to a hierarchy of options:

1. if MSEL = 4 - 8 then the flavour is set by the MSEL value;

2. else if MSTP(7) = 1 - 8 then the flavour is set by the MSTP(7) value;

3. else the flavour is determined by the heaviest flavour allowed for gluon splitting into

quark-antiquark; see switch MDME.

Note that only one heavy flavour is allowed at a time; if more than one is turned on in

MDME, only the heaviest will be produced (as opposed to the case for ISUB = 12 and 53

above, where more than one flavour is allowed simultaneously).

The lowest-order processes listed above just represent one source of heavy-flavour pro-

duction. Heavy quarks can also be present in the parton distributions at the Q2 scale of

the hard interaction, leading to processes like Qg → Qg, so-called flavour excitation, or

they can be created by gluon splittings g → QQ in initial- or final-state shower evolution.

The implementation and importance of these various production mechanisms is discussed

in detail in [Nor98]. In fact, as the c.m. energy is increased, these other processes gain

in importance relative to the lowest-order production graphs above. As as example, only

10%–20% of the b production at LHC energies come from the lowest-order graphs. The

figure is even smaller for charm, while it is well above 50% for top. At LHC energies, the

specialized treatment described in this section is therefore only of interest for top (and po-

tential fourth-generation quarks) — the higher-order corrections can here be approximated

by an effective K factor, except possibly in some rare corners of phase space.

For charm and bottom, on the other hand, it is necessary to simulate the full event

sample (within the desired kinematics cuts), and then only keep those events that contain

b/c, be that either from lowest-order production, or flavour excitation, or gluon splitting.

Obviously this may be a time-consuming enterprise — although the probability for a high-

p⊥ event at collider energies to contain (at least) one charm or bottom pair is fairly large,

most of these heavy flavours are carrying a small fraction of the total p⊥ flow of the jets,

and therefore do not survive normal experimental cuts. We note that the lowest-order

production of charm or bottom with processes 12 and 53, as part of the standard QCD

mix, is now basically equivalent with that offered by processes 81 and 82. For 12 vs. 81
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this is rather trivial, since only s-channel gluon exchange is involved, but for process 53 it

requires a separate evaluation of massive matrix elements for c and b in the flavour sum.

This is performed by retaining the ŝ and θ̂ values already preliminarily selected for the

massless kinematics, and recalculating t̂ and û with mass effects included. Some of the

documentation information in PARI does not properly reflect this recalculation, but that is

purely a documentation issue. Also process 96, used internally for the total QCD jet cross

section, includes c and b masses. Only the hardest interaction in a multiple interactions

scenario may contain c/b, however, for technical reasons, so that the total rate may be

underestimated. (Quite apart from other uncertainties, of course.)

As an aside, it is not only for the lowest-order graphs that events may be generated with

a guaranteed heavy-flavour content. One may also generate the flavour excitation process

by itself, in the massless approximation, using ISUB = 28 and setting the KFIN array

appropriately. No trick exists to force the gluon splittings without introducing undesirable

biases, however. In order to have it all, one therefore has to make a full QCD jets run, as

already noted.

Also other processes can generate heavy flavours, all the way up to top, but then

without a proper account of masses. By default, top production is switched off in those

processes where a new flavour pair is produced at a gluon or photon vertex, i.e. 12, 53, 54,

58, 96 and 135–140, while charm and bottom is allowed. These defaults can be changed by

setting the MDME(IDC,1) values of the appropriate g or γ ‘decay channels’; see further below.

The cross section for heavy quark pair production close to threshold can be modified

according to the formulae of [Fad90]; see MSTP(35). Here threshold effects due to QQ

bound-state formation are taken into account in a smeared-out, average sense. Then the

näıve cross section is multiplied by the squared wave function at the origin. In a colour-

singlet channel this gives a net enhancement of the form

|Ψ(s)(0)|2 =
X(s)

1 − exp(−X(s))
, where X(s) =

4

3

παs

β
, (8.6)

where β is the quark velocity, while in a colour octet channel there is a net suppression

given by

|Ψ(8)(0)|2 =
X(8)

exp(X(8)) − 1
, where X(8) =

1

6

παs

β
. (8.7)

The αs factor in this expression is related to the energy scale of bound-state formation and

is selected independently from the factor in the standard production cross section. The

presence of a threshold factor affects the total rate and also kinematic distributions.

Heavy flavours can also be produced by secondary decays of gauge bosons or new

exotic particles. We have listed 1, 2 and 142 above as among the most important ones.

There is a special point to including W′ in this list. Imagine that you want to study the

electroweak s-channel production of a single top, ud → W+ → tb, and therefore decide to

force this particular decay mode of the W. But then the same decay channel is required

for the W+ produced in the decay t → bW+, i.e. you have set up an infinite recursion

W → t → W → t → . . .. The way out is to use the W′, which has default couplings just

like the normal W, only a different mass, which then can be changed to agree, PMAS(34,1)
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= PMAS(24,1). The W′ is now forced to decay to tb, while the W can decay freely (or

also be forced, e.g. to have a leptonic decay, if desired). (Additionally, it may be necessary

to raise CKIN(1) to be at least around the top mass, so that the program does not get

stuck in a region of phase space where the cross section is vanishing.) Alternatively, a full

run (after raising CKIN(1) to be just below the single top threshold) can be used if one is

willing to select the desired events by hand.

Heavy flavours, i.e. top and fourth generation, are assumed to be so short-lived that

they decay before they have time to hadronize. This means that the light quark in the

decay Q → W±q inherits the colour of the heavy one. The current Pythia description

represents a change of philosophy compared to much earlier versions, formulated at a time

when the top was thought to live long enough to form hadrons. For event shapes the

difference between the two time orderings normally has only marginal effects [Sjo92a]. In

practical terms, the top (or a fourth generation fermion) is treated like a resonance in

the sense of section 7.6.2, i.e. the cross-section is reduced so as only to correspond to the

channels left open by you. This also includes the restrictions on secondary decays, i.e. on

the decays of a W+ or a H+ produced in the top decay. For b and c quarks, which are

long-lived enough to form hadrons, no such reduction takes place. Branching ratios then

have to be folded in by hand to get the correct cross sections.

This rule about cross-section calculations applies to all the processes explicitly set up

to handle heavy flavour creation. In addition to the ones above, this means all the ones in

tables 16–23 where the fermion final state is given as capital letters (‘Q’ and ‘F’) and also

flavours produced in resonance decays (Z0, W±, h0, etc., including processes 165 and 166).

However, heavy flavours could also be produced in a process such as 31, qig → qkW
±,

where qk could be a top quark. In this case, the thrust of the description is clearly on

light flavours — the kinematics of the process is formulated in the massless fermion limit

— so any top production is purely incidental. Since here the choice of scattered flavour

is only done at a later stage, the top branching ratios are not correctly folded in to the

hard-scattering cross section. So, for applications like these, it is not recommended to

restrict the allowed top decay modes. Often one might like to get rid of the possibility

of producing top together with light flavours. This can be done by switching off (i.e.

setting MDME(I,1) = 0) the ‘channels’ d → W−t, s → W−t, b → W−t, g → tt and

γ → tt. Also any heavy flavours produced by parton-shower evolution would not be

correctly weighted into the cross section. However, currently top production is switched

off both as a beam remnant (see MSTP(9)) and in initial (see KFIN array) and final (see

MSTJ(45)) state radiation.

In pair production of heavy flavour (top) in processes 81, 82, 84 and 85, matrix elements

are only given for one common mass, although Breit-Wigner distributions are used to select

two separate masses. As described in section 7.3, an average mass value is constructed for

the matrix element evaluation so that the β34 kinematics factor can be retained.

Because of its large mass, it is possible that the top quark can decay to some not yet

discovered particle. Some such alternatives are included in the program, such as t → bH+

or t → G̃t̃. These decays are not obtained by default, but can be included as discussed for

the respective physics scenario.
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8.2.3 J/ψ and other hidden heavy flavours

ISUB = 86 gg → J/ψg

87 gg → χ0cg

88 gg → χ1cg

89 gg → χ2cg

104 gg → χ0c

105 gg → χ2c

106 gg → J/ψγ

107 gγ → J/ψg

108 γγ → J/ψγ

MSEL = 61,62,63

ISUB = cc bb

421 461 gg → QQ[3S
(1)
1 ] g

422 462 gg → QQ[3S
(8)
1 ] g

423 463 gg → QQ[1S
(8)
0 ] g

424 464 gg → QQ[3P
(8)
J ] g

425 465 gq → qQQ[3S
(8)
1 ]

426 466 gq → qQQ[1S
(8)
0 ]

427 467 gq → qQQ[3P
(8)
J ]

428 468 qq → g QQ[3S
(8)
1 ]

429 469 qq → g QQ[1S
(8)
0 ]

430 470 qq → g QQ[3P
(8)
J ]

431 471 gg → QQ[3P
(1)
0 ] g

432 472 gg → QQ[3P
(1)
1 ] g

433 473 gg → QQ[3P
(1)
2 ] g

434 474 gq → qQQ[3P
(1)
0 ]

435 475 gq → qQQ[3P
(1)
1 ]

436 476 gq → qQQ[3P
(1)
2 ]

437 477 qq → g QQ[3P
(1)
0 ]

438 478 qq → g QQ[3P
(1)
1 ]

439 479 qq → g QQ[3P
(1)
2 ]

In Pythia one may distinguish between three main sources of J/ψ production.

1. Decays of B mesons and baryons.

2. Parton-shower evolution, wherein a c and a c quark produced in adjacent branchings

(e.g. g → gg → cccc) turn out to have so small an invariant mass that the pair

collapses to a single particle.

3. Direct production, where a c quark loop gives a coupling between a set of gluons and a

cc bound state. Higher-lying states, like the χc ones, may subsequently decay to J/ψ.

The first two sources are implicit in the production of b and c quarks, although the

forcing specifically of J/ψ production is difficult. In this section are given the main processes

for the third source, intended for applications at hadron colliders.
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The traditional ‘colour singlet’ approach is encapsulated in the above processes in the

range 86 – 108. Processes 104 and 105 are the equivalents of 87 and 89 in the limit of

p⊥ → 0; note that gg → J/ψ and gg → χ1c are forbidden and thus absent. As always one

should beware of double-counting between 87 and 104, and between 89 and 105, and thus

use either the one or the other depending on the kinematic domain to be studied. The

cross sections depend on wave function values at the origin, see PARP(38) and PARP(39).

A review of the physics issues involved may be found in [Glo88] (note, however, that the

choice of Q2 scale is different in Pythia).

While programmed for the charm system, it would be straightforward to apply these

processes instead to bottom mesons, i.e. for the production of Υ.One needs to change the

codes of states produced, which is achieved by KFPR(ISUB,1) = KFPR(ISUB,1) + 110 for

the processes ISUB above, and changing the values of the wave functions at the origin,

PARP(38) and PARP(39).

It is known that the above sources are not enough to explain the full J/ψ rate, and

further production mechanisms have been proposed, extending on the more conventional

treatment here [Can97]. The most common extension is the ‘colour octet’ production

mechanism, in the framework of nonrelativistic QCD (NRQCD) [Bod95]. In this lan-

guage, production in part proceeds via intermediate colour octet states that collapse to

singlet states by the emission of soft (and thus nonperturbative) gluons. In the current

implementation [Wol02], three new colour octet states are introduced for each of the cc

and bb systems, with spectroscopic notation QQ[2S+1L
(8)
J ], where the (8) is a reminder

of the colour octet nature of these states. These new ‘particles’ are assumed to ‘de-

cay’ exclusively to J/ψ + g or Υ + g, respectively. Their masses have been chosen to

allow this, without too much excess phase space, so that the emitted gluon is always very

soft.

Unlike the first set of processes above, the NRQCD processes have been explicitly

duplicated for the cc and bb sectors. Further, several processes already present in the

colour singlet framework are repeated here, only differing by the way wave function and

matrix element normalization factors are defined, so as to provide a coherent framework.

For this reason, obviously the processes above 420 should not be combined with the lower-

number ones, or else one would doublecount.

The rates for these new processes are regulated by 10 new NRQCD matrix element

values, PARP(141) - PARP(150). The switches MSTP(145) - MSTP(149) can be used to

modify the behaviour of the processes, but are mainly intended for experts.

8.2.4 Minimum bias

MSEL = 1, 2

ISUB = 91 elastic scattering

92 single diffraction (AB → XB)

93 single diffraction (AB → AX)

94 double diffraction

95 low-p⊥ production
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These processes are briefly discussed in section 7.7. They are mainly intended for

interactions between hadrons, although one may also consider γp and γγ interactions in

the options where the incoming photon(s) is (are) assumed resolved.

Uncertainties come from a number of sources, e.g. from the parameterizations of the

various cross sections and slope parameters.

In diffractive scattering, the structure of the selected hadronic system may be regulated

with MSTP(101). No high-p⊥ jet production in diffractive events is included so far; one

would have to use add-on programs like PomPyt [Bru96] for that.

The subprocess 95, low-p⊥ events, is somewhat unique in that no meaningful physical

border-line to high-p⊥ events can be defined. Even if the QCD 2 → 2 high-p⊥ processes are

formally switched off, some of the generated events will be classified as belonging to this

group, with a p⊥ spectrum of interactions to match the ‘minimum-bias’ event sample. The

generation of such jets is performed with the help of the auxiliary subprocess 96, see section

8.2.1. Only with the option MSTP(82) = 0 will subprocess 95 yield strictly low-p⊥ events,

events which will then probably not be compatible with any experimental data. A number

of options exist for the detailed structure of low-p⊥ events, see in particular MSTP(81) and

MSTP(82). Further details on the model(s) for minimum-bias events are found in sections

11.2–11.4.

8.3 Physics with incoming photons

With recent additions, the machinery for photon physics has become rather extensive

[Fri00]. The border between the physics of real photon interactions and of virtual photon

ones is now bridged by a description that continuously interpolates between the two ex-

tremes, as summarized in section 7.7.2. Furthermore, the ’gamma/lepton’ option (where

lepton is to be replaced by e-, e+, mu-, mu+, tau- or tau+ as the case may be) in a PYINIT

call gives access to an internally generated spectrum of photons of varying virtuality. The

CKIN(61) - CKIN(78) variables can be used to set experimentally motivated x and Q2

limits on the photon fluxes. With this option, and the default MSTP(14) = 30, one au-

tomatically obtains a realistic first approximation to ‘all’ QCD physics of γ∗p and γ∗γ∗

interactions. The word ‘all’ clearly does not mean that a perfect description is guaranteed,

or that all issues are addressed, but rather that the intention is to simulate all processes

that give a significant contribution to the total cross section in whatever Q2 range is being

studied: jets, low-p⊥ events, elastic and diffractive scattering, etc.

The material to be covered encompasses many options, several of which have been

superseded by further developments but have been retained for backwards compatibility.

Therefore it is here split into three sections. The first covers the physics of real photons

and the subsequent one that of (very) virtual ones. Thereafter, in the final section, the

threads are combined into a machinery applicable at all Q2.

8.3.1 Photoproduction and γγ physics

MSEL = 1, 2, 4, 5, 6, 7, 8
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ISUB = 33 qiγ → qig

34 fiγ → fiγ

54 gγ → qkqk

58 γγ → fkfk
80 qiγ → qkπ

±

84 gγ → QkQk

85 γγ → FkFk

An (almost) real photon has both a point-like component and a hadron-like one. This

means that several classes of processes may be distinguished, see section 7.7.2.

1. The processes listed above are possible when the photon interacts as a point-like

particle, i.e. couples directly to quarks and leptons.

2. When the photon acts like a hadron, i.e. is resolved in a partonic substructure,

then high-p⊥ parton-parton interactions are possible, as described in sections 8.2.1

and 8.4.1. These interactions may be further subdivided into VMD and anomalous

(GVMD) ones [Sch93, Sch93a].

3. A hadron-like photon can also produce the equivalent of the minimum-bias processes

of section 8.2.4. Again, these can be subdivided into VMD and GVMD (anomalous)

ones.

For γp events, we believe that the best description can be obtained when three separate

event classes are combined, one for direct, one for VMD and one for GVMD/anomalous

events, see the detailed description in [Sch93, Sch93a]. These correspond to MSTP(14) being

0, 2 and 3, respectively. The direct component is high-p⊥ only, while VMD and GVMD

contain both high-p⊥ and low-p⊥ events. The option MSTP(14) = 1 combines the VMD

and GVMD/anomalous parts of the photon into one single resolved photon concept, which

therefore is less precise than the full subdivision.

When combining three runs to obtain the totality of γp interactions, to the best of our

knowledge, it is necessary to choose the p⊥ cut-offs with some care, so as to represent the

expected total cross section.

• The direct processes by themselves only depend on the CKIN(3) cut-off of the gen-

eration. In older program versions the preferred value was 0.5 GeV [Sch93, Sch93a].

In the more recent description in [Fri00], also eikonalization of direct with anomalous

interactions into the GVMD event class is considered. That is, given a branching

γ → qq, direct interactions are viewed as the low-p⊥ events and anomalous ones as

high-p⊥ events that have to merge smoothly. Then the CKIN(3) cut-off is increased to

the p⊥min of multiple interactions processes, see PARP(81) (or PARP(82), depending

on minijet unitarization scheme). See MSTP(18) for a possibility to switch back to

the older behaviour. However, full backwards compatibility cannot be assured, so

the older scenarios are better simulated by using an older Pythia version.

• The VMD processes work as ordinary hadron-hadron ones, i.e. one obtains both low-

and high-p⊥ events by default, with dividing line set by p⊥min above.

• Also the GVMD processes work like the VMD ones. Again this is a change from

previous versions, where the anomalous processes only contained high-p⊥ physics
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and the low-p⊥ part was covered in the direct event class. See MSTP(15) = 5 for a

possibility to switch back to the older behaviour, with comments as above for the

direct class. A GVMD state is book-kept as a diffractive state in the event listing,

even when it scatters ‘elastically’, since the subsequent hadronization descriptions

are very similar.

The processes in points 1 and 2 can be simulated with a photon beam, i.e. when

’gamma’ appears as argument in the PYINIT call. It is then necessary to use option

MSTP(14) to switch between a point-like and a resolved photon — it is not possible to

simulate the two sets of processes in a single run. This would be the normal mode of

operation for beamstrahlung photons, which have Q2 = 0 but with a nontrivial energy

spectrum that would be provided by some external routine.

For bremsstrahlung photons, the x and Q2 spectrum can be simulated internally, with

the ’gamma/lepton’ argument in the PYINIT call. This is the recommended procedure,

wherein direct and resolved processes can be mixed. An older — now not recommended —

alternative is to use a parton-inside-electron structure function concept, obtainable with

a simple ’e-’ (or other lepton) argument in PYINIT. To access these quark and gluon

distributions inside the photon (itself inside the electron), MSTP(12) = 1 must then be

used. Also the default value MSTP(11) = 1 is required for the preceding step, that of

finding photons inside the electron. Also here the direct and resolved processes may be

generated together. However, this option only works for high-p⊥ physics. It is not possible

to have also the low-p⊥ physics (including multiple interactions in high-p⊥ events) for an

electron beam. Kindly note that subprocess 34 contains both the scattering of an electron

off a photon and the scattering of a quark (inside a photon inside an electron) off a photon;

the former can be switched off with the help of the KFIN array.

If you are only concerned with standard QCD physics, the option MSTP(14) = 10 or the

default MSTP(14) = 30 gives an automatic mixture of the VMD, direct and GVMD/ano-

malous event classes. The mixture is properly given according to the relative cross sections.

Whenever possible, this option is therefore preferable in terms of user-friendliness. How-

ever, it can only work because of a completely new layer of administration, not found

anywhere else in Pythia. For instance, a subprocess like qg → qg is allowed in several of

the classes, but appears with different sets of parton distributions and different p⊥ cut-offs

in each of these, so that it is necessary to switch gears between each event in the generation.

It is therefore not possible to avoid a number of restrictions on what you can do in this case:

• The MSTP(14) = 10 and = 30 options can only be used for incoming photon beams,

with or without convolution with the bremsstrahlung spectrum, i.e. when ’gamma’

or ’gamma/lepton’ is the argument in the PYINIT call.

• The machinery has only been set up to generate standard QCD physics, specifically

either ‘minimum-bias’ one or high-p⊥ jets. There is thus no automatic mixing of

processes only for heavy-flavour production, say, or of some exotic particle. For min-

imum bias, you are not allowed to use the CKIN variables at all. This is not a major

limitation, since it is in the spirit of minimum-bias physics not to impose any con-

straints on allowed jet production. (If you still do, these cuts will be ineffective for
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the VMD processes but take effect for the other ones, giving inconsistencies.) The

minimum-bias physics option is obtained by default; by switching from MSEL = 1

to MSEL = 2 also the elastic and diffractive components of the VMD and GVMD

parts are included. High-p⊥ jet production is obtained by setting the CKIN(3) cut-

off larger than the p⊥min(W
2) of the multiple interactions scenario. For lower in-

put CKIN(3) values the program will automatically switch back to minimum-bias

physics.

• Multiple interactions become possible in both the VMD and GVMD sector, with the

average number of interactions given by the ratio of the jet to the total cross section.

Currently only the simpler scenario MSTP(82) = 1 in the old model is implemented,

however, i.e. the more sophisticated variable-impact-parameter ones need further

physics studies and model development.

• Some variables are internally recalculated and reset, notably CKIN(3). This is because

it must have values that depend on the component studied. It can therefore not be

modified without changing PYINPR and recompiling the program, which obviously is

a major exercise.

• Pileup events are not at all allowed.

Also, a warning about the usage of Pdflib/LHAPDF for photons. So long as

MSTP(14) = 1, i.e. the photon is not split up, Pdflib is accessed by MSTP(56) = 2 and

MSTP(55) as the parton distribution set. However, when the VMD and anomalous pieces

are split, the VMD part is based on a rescaling of pion distributions by VMD factors

(except for the SaS sets, that already come with a separate VMD piece). Therefore, to

access Pdflib for MSTP(14) = 10, it is not correct to set MSTP(56) = 2 and a photon

distribution in MSTP(55). Instead, one should put MSTP(56) = 2, MSTP(54) = 2 and a

pion distribution code in MSTP(53), while MSTP(55) has no function. The anomalous

part is still based on the SaS parameterization, with PARP(15) as main free parame-

ter.

Currently, hadrons are not defined with any photonic content. None of the processes

are therefore relevant in hadron-hadron collisions. In ep collisions, the electron can emit

an almost real photon, which may interact directly or be resolved. In e+e− collisions, one

may have direct, singly-resolved or doubly-resolved processes.

The γγ equivalent to the γp description involves six different event classes, see section

7.7.2. These classes can be obtained by setting MSTP(14) to 0, 2, 3, 5, 6 and 7, respectively.

If one combines the VMD and anomalous parts of the parton distributions of the photon,

in a more coarse description, it is enough to use the MSTP(14) options 0, 1 and 4. The

cut-off procedures follows from the ones used for the γp ones above.

As with γp events, the options MSTP(14) = 10 or MSTP(14) = 30 give a mixture of

the six possible γγ event classes. The same complications and restrictions exist here as

already listed above.

Process 54 generates a mixture of quark flavours; allowed flavours are set by the gluon

MDME values. Process 58 can generate both quark and lepton pairs, according to the

MDME values of the photon. Processes 84 and 85 are variants of these matrix elements,
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with fermion masses included in the matrix elements, but where only one flavour can be

generated at a time. This flavour is selected as described for processes 81 and 82 in section

8.2.2, with the exception that for process 85 the ‘heaviest’ flavour allowed for photon

splitting takes to place of the heaviest flavour allowed for gluon splitting. Since lepton KF

codes come after quark ones, they are counted as being ‘heavier’, and thus take precedence

if they have been allowed.

Process 80 is a higher twist one. The theory for such processes is rather shaky, so

results should not be taken too literally. The messy formulae given in [Bag82] have not been

programmed in full, instead the pion form factor has been parameterized as Q2Fπ(Q2) ≈
0.55/ ln Q2, with Q in GeV.

8.3.2 Deeply inelastic scattering and γ∗γ∗ physics

MSEL = 1, 2, 35, 36, 37, 38

ISUB = 10 fifj → fkfl
83 qifj → Qkfl
99 γ∗q → q

131 fiγ
∗
T → fig

132 fiγ
∗
L → fig

133 fiγ
∗
T → fiγ

134 fiγ
∗
L → fiγ

135 gγ∗
T → fifi

136 gγ∗
L → fifi

137 γ∗
Tγ∗

T → fifi
138 γ∗

Tγ∗
L → fifi

139 γ∗
Lγ∗

T → fifi
140 γ∗

Lγ∗
L → fifi

Among the processes in this section, 10 and 83 are intended to stand on their own,

while the rest are part of the newer machinery for γ∗p and γ∗γ∗ physics. We therefore

separate the description in this section into these two main parts.

The Deeply Inelastic Scattering (DIS) processes, i.e. t-channel electroweak gauge boson

exchange, are traditionally associated with interactions between a lepton or neutrino and

a hadron, but processes 10 and 83 can equally well be applied for qq scattering in hadron

colliders (with a cross section much smaller than corresponding QCD processes, however).

If applied to incoming e+e− beams, process 10 corresponds to Bhabha scattering.

For process 10 both γ, Z0 and W± exchange contribute, including interference between

γ and Z0. The switch MSTP(21) may be used to restrict to only some of these, e.g. neutral

or charged current only.

The option MSTP(14) = 10 (see previous section) has now been extended so that it

also works for DIS of an electron off a (real) photon, i.e. process 10. What is obtained

is a mixture of the photon acting as a vector meson and it acting as an anomalous state.

This should therefore be the sum of what can be obtained with MSTP(14) = 2 and = 3. It

is distinct from MSTP(14) = 1 in that different sets are used for the parton distributions

— in MSTP(14) = 1 all the contributions to the photon distributions are lumped together,
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while they are split in VMD and anomalous parts for MSTP(14) = 10. Also the beam-

remnant treatment is different, with a simple Gaussian distribution (at least by default)

for MSTP(14) = 1 and the VMD part of MSTP(14) = 10, but a powerlike distribution

dk2
⊥/k2

⊥ between PARP(15) and Q for the anomalous part of MSTP(14) = 10.

To access this option for e and γ as incoming beams, it is only necessary to set MSTP(14)

= 10 and keep MSEL at its default value. Unlike the corresponding option for γp and γγ,

no cuts are overwritten, i.e. it is still your responsibility to set these appropriately.

Cuts especially appropriate for DIS usage include either CKIN(21) - CKIN(22) or

CKIN(23) - CKIN(24) for the x range (former or latter depending on which side is the in-

coming real photon), CKIN(35) - CKIN(36) for the Q2 range, and CKIN(39) - CKIN(40)

for the W 2 range.

In principle, the DIS x variable of an event corresponds to the x value stored in

PARI(33) or PARI(34), depending on which side the incoming hadron is on, while the

DIS Q2 = −t̂ =-PARI(15). However, just like initial- and final-state radiation can shift

jet momenta, they can modify the momentum of the scattered lepton. Therefore the DIS

x and Q2 variables are not automatically conserved. An option, on by default, exists in

MSTP(23), where the event can be ‘modified back’ so as to conserve x and Q2, but this

option is rather primitive and should not be taken too literally.

Process 83 is the equivalent of process 10 for W± exchange only, but with the heavy-

quark mass included in the matrix element. In hadron colliders it is mainly of interest for

the production of very heavy flavours, where the possibility of producing just one heavy

quark is kinematically favoured over pair production. The selection of the heavy flavour is

already discussed in section 8.2.2.

Turning to the other processes, part of the γ∗p and γ∗γ∗ process-mixing machineries,

99 has close similarities with the above discussed 10 one. Whereas 10 would simulate the

full process eq → eq, 99 assumes a separate machinery for the flux of virtual photons,

e → eγ∗ and only covers the second half of the process, γ∗q → q. One limitation of this

factorization is that only virtual photons are considered in process 99, not contributions

from the Z0 neutral current or the W± charged current.

Note that 99 has no correspondence in the real-photon case, but has to vanish in this

limit by gauge invariance, or indeed by simple kinematics considerations. This, plus the

desire to avoid double-counting with real-photon physics processes, is why the cross section

for this process is explicitly made to vanish for photon virtuality Q2 → 0, eq. (7.83), also

when parton distributions have not been constructed to fulfil this, see MSTP(19). (No such

safety measures are present in 10, again illustrating how the two are intended mainly to

be used at large or at small Q2, respectively.)

For a virtual photon, processes 131–136 may be viewed as first-order corrections to

99. The three with a transversely polarized photon, 131, 133 and 135, smoothly reduce to

the real-photon direct (single-resolved for γγ) processes 33, 34 and 54. The other three,

corresponding to the exchange of a longitudinal photon, vanish like Q2 for Q2 → 0. The

double-counting issue with process 99 is solved by requiring the latter process not to

contain any shower branchings with a p⊥ above the lower p⊥ cut-off of processes 131-136.
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The cross section is then to be reduced accordingly, see eq. (7.84) and the discussion there,

and again MSTP(19).

We thus see that process 99 by default is a low-p⊥ process in about the same sense

as process 95, giving ‘what is left’ of the total cross section when jet events have been

removed. Therefore, it will be switched off in event class mixes such as MSTP(14) = 30

if CKIN(3) is above p⊥min(W
2) and MSEL is not 2. There is a difference, however, in that

process 99 events still are allowed to contain shower evolution (although currently only the

final-state kind has been implemented), since the border to the other processes is at p⊥ = Q

for large Q and thus need not be so small. The p⊥ scale of the ‘hard process’, stored e.g.

in PARI(17) always remains 0, however. (Other PARI variables defined for normal 2 → 2

and 2 → 1 processes are not set at all, and may well contain irrelevant junk left over from

previous events.)

Processes 137–140, finally, are extensions of process 58 from the real-photon limit to

the virtual-photon case, and correspond to the direct process of γ∗γ∗ physics. The four

cases correspond to either of the two photons being either transversely or longitudinally

polarized. As above, the cross section of a longitudinal photon vanishes when its virtuality

approaches 0.

8.3.3 Photon physics at all virtualities

ISUB = direct×direct: 137, 138, 139, 140

direct×resolved: 131, 132, 135, 136

DIS×resolved: 99

resolved×resolved, high-p⊥: 11, 12, 13, 28, 53, 68

resolved×resolved, low-p⊥: 91, 92, 93, 94, 95
where ‘resolved’ is a hadron or a VMD or GVMD photon.

At intermediate photon virtualities, processes described in both of the sections above

are allowed, and have to be mixed appropriately. The sets are of about equal importance at

around Q2 ∼ m2
ρ ∼ 1 GeV2, but the transition is gradual over a larger Q2 range. The ansatz

for this mixing is given by eq. (7.85) for γ∗p events and eq. (7.86) for γ∗γ∗ ones. In short,

for direct and DIS processes the photon virtuality explicitly enters in the matrix element

expressions, and thus is easily taken into account. For resolved photons, perturbation

theory does not provide a unique answer, so instead cross sections are suppressed by dipole

factors, (m2/(m2 + Q2))2, where m = mV for a VMD state and m = 2k⊥ for a GVMD

state characterized by a k⊥ scale of the γ∗ → qq branching. These factors appear explicitly

for total, elastic and diffractive cross sections, and are also implicitly used e.g. in deriving

the SaS parton distributions for virtual photons. Finally, some double-counting need to

be removed, between direct and DIS processes as mentioned in the previous section, and

between resolved and DIS at large x.

Since the mixing is not trivial, it is recommended to use the default MSTP(14) = 30

to obtain it in one go and hopefully consistently, rather than building it up by combining

separate runs. The main issues still under your control include, among others

• The CKIN(61) - CKIN(78) should be used to set the range of x and Q2 values emitted

from the lepton beams. That way one may decide between almost real or very virtual
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photons, say. Also some other quantities, like W 2, can be constrained to desirable

ranges.

• Whether or not minimum-bias events are simulated depends on the CKIN(3) value,

just like in hadron physics. The only difference is that the initialization energy scale

Winit is selected in the allowed W range rather than to be the full c.m. energy.

For a high CKIN(3), CKIN(3) > p⊥min(W
2
init), only jet production is included. Then

further CKIN values can be set to constrain e.g. the rapidity of the jets produced.

For a low CKIN(3), CKIN(3) < p⊥min(W
2
init), like the default value CKIN(3) = 0,

low-p⊥ physics is switched on together with jet production, with the latter properly

eikonalized to be lower than the total one. The ordinary CKIN cuts, not related to

the photon flux, cannot be used here.

For a low CKIN(3), when MSEL = 2 instead of the default = 1, also elastic and diffrac-

tive events are simulated.

• The impact of resolved longitudinal photons is not unambiguous, e.g. only recently

the first parameterization of parton distributions appeared [Chy00]. Different simple

alternatives can be probed by changing MSTP(17) and associated parameters.

• The choice of scales to use in parton distributions for jet rates is always ambiguous,

but depends on even more scales for virtual photons than in hadronic collisions.

MSTP(32) allows a choice between several alternatives.

• The matching of p⊥ generation by shower evolution to that by primordial k⊥ is a

general problem, for photons with an additional potential source in the γ∗ → qq

vertex. MSTP(66) offer some alternatives.

• PARP(15) is the k0 parameter separating VMD from GVMD.

• PARP(18) is the kρ parameter in GVMD total cross sections.

• MSTP(16) selects the momentum variable for an e → eγ∗ branching.

• MSTP(18) regulates the choice of p⊥min for direct processes.

• MSTP(19) regulates the choice of partonic cross section in process 99, γ∗q → q.

• MSTP(20) regulates the suppression of the resolved cross section at large x.

The above list is not complete, but gives some impression what can be done.

8.4 Electroweak gauge bosons

This section covers the production and/or exchange of γ, Z0 and W± gauge bosons, singly

and in pairs. The topic of longitudinal gauge-boson scattering at high energies is deferred

to the Higgs section, since the presence or absence of a Higgs boson here makes a big

difference.

8.4.1 Prompt photon production

MSEL = 10
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ISUB = 14 qiqi → gγ

18 fifi → γγ

29 qig → qiγ

114 gg → γγ

115 gg → gγ
In hadron colliders, processes ISUB = 14 and 29 give the main source of single-γ

production, with ISUB = 115 giving an additional contribution which, in some kinematics

regions, may become important. For γ-pair production, the process ISUB = 18 is often

overshadowed in importance by ISUB = 114.

Another source of photons is bremsstrahlung off incoming or outgoing quarks. This

has to be treated on an equal footing with QCD parton showering. For time-like parton-

shower evolution, i.e. in the final-state showering and in the side branches of the initial-state

showering, photon emission may be switched on or off with MSTJ(41). Photon radiation

off the space-like incoming quark or lepton legs is similarly regulated by MSTP(61).

Warning: the cross sections for the box graphs 114 and 115 become very complicated,

numerically unstable and slow when the full quark mass dependence is included. For

quark masses much below the ŝ scale, the simplified massless expressions are therefore

used — a fairly accurate approximation. However, there is another set of subtle numerical

cancellations between different terms in the massive matrix elements in the region of small-

angle scattering. The associated problems have not been sorted out yet. There are therefore

two possible solutions. One is to use the massless formulae throughout. The program then

becomes faster and numerically stable, but does not give, for example, the characteristic dip

(due to destructive interference) at top threshold. This is the current default procedure,

with five flavours assumed, but this number can be changed in MSTP(38). The other

possibility is to impose cuts on the scattering angle of the hard process, see CKIN(27) and

CKIN(28), since the numerically unstable regions are when | cos θ̂| is close to unity. It is

then also necessary to change MSTP(38) to 0.

8.4.2 Single W/Z production

MSEL = 11, 12, 13, 14, 15, (21)

ISUB = 1 fifi → γ∗/Z0

2 fifj → W+

15 fifi → g(γ∗/Z0)

16 fifj → gW+

19 fifi → γ(γ∗/Z0)

20 fifj → γW+

30 fig → fi(γ
∗/Z0)

31 fig → fkW
+

35 fiγ → fi(γ
∗/Z0)

36 fiγ → fkW
+

(141) fifi → γ/Z0/Z′0

(142) fifj → W′+
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This group consists of 2 → 1 processes, i.e. production of a single resonance, and 2 → 2

processes, where the resonance is recoiling against a jet or a photon. The processes 141

and 142, which also are listed here, are described further elsewhere.

With initial-state showers turned on, the 2 → 1 processes also generate additional

jets; in order to avoid double-counting, the corresponding 2 → 2 processes should there-

fore not be turned on simultaneously. The basic rule is to use the 2 → 1 processes for

inclusive generation of W/Z, i.e. where the bulk of the events studied have p⊥ ¿ mW/Z.

With the introduction of explicit matrix-element-inspired corrections to the parton shower

[Miu99], also the high-p⊥ tail is well described in this approach, thus offering an overall

good description of the full p⊥ spectrum of gauge bosons [Bal01].

If one is interested in the high-p⊥ tail only, however, the generation efficiency will

be low. It is here better to start from the 2 → 2 matrix elements and add showers to

these. However, the 2 → 2 matrix elements are divergent for p⊥ → 0, and should not be

used down to the low-p⊥ region, or one may get unphysical cross sections. As soon as the

generated 2 → 2 cross section corresponds to a non-negligible fraction of the total 2 → 1

one, say 10%–20%, Sudakov effects are likely to be affecting the shape of the p⊥ spectrum

to a corresponding extent, and results should not be trusted.

The problems of double-counting and Sudakov effects apply not only to W/Z produc-

tion in hadron colliders, but also to a process like e+e− → Z0γ, which clearly is part of the

initial-state radiation corrections to e+e− → Z0 obtained for MSTP(11) = 1. As is the case

for Z production in association with jets, the 2 → 2 process should therefore only be used

for the high-p⊥ region.

The Z0 of subprocess 1 includes the full interference structure γ∗/Z0; via MSTP(43) you

can select to produce only γ∗, only Z0, or the full γ∗/Z0. The same holds true for the Z′0

of subprocess 141; via MSTP(44) any combination of γ∗, Z0 and Z′0 can be selected. Thus,

subprocess 141 with MSTP(44) = 4 is essentially equivalent to subprocess 1 with MSTP(43)

= 3; however, process 141 also includes the possibility of a decay into Higgs bosons. Also

processes 15, 19, 30 and 35 contain the full mixture of γ∗/Z0, with MSTP(43) available to

change this. Note that the γ∗/Z0 decay products can have an invariant mass as small as

the program cutoff. This can be changed using CKIN.

Note that process 1, with only qq → γ∗ → `+`− allowed, and studied in the region well

below the Z0 mass, is what is conventionally called Drell–Yan. This latter process therefore

does not appear under a separate heading, but can be obtained by a suitable setting of

switches and parameters.

A process like fifj → γW+ requires some comment. When the W boson decays,

photons can be radiated off the decay products. The full interference between photon

radiation off the incoming fermions, the intermediate W boson, and the decay products is

not included in the Pythia treatment. If such effects are important, a full matrix element

calculation is preferred. Some caution must therefore be exercised; see also section 8.4.3

for related comments.

For the 2 → 1 processes, the Breit-Wigner includes an ŝ-dependent width, which

should provide an improved description of line shapes. In fact, from a line-shape point

of view, process 1 should provide a more accurate simulation of e+e− annihilation events
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than the dedicated e+e− generation scheme of PYEEVT (see section 6.1). Another difference

is that PYEEVT only allows the generation of γ∗/Z0 → qq, while process 1 additionally

contains γ∗/Z0 → `+`− and νν. The parton-shower and fragmentation descriptions are the

same, but the process 1 implementation only contains a partial interface to the first- and

second-order matrix-element options available in PYEEVT, see MSTP(48).

All processes in this group have been included with the correct angular distribution in

the subsequent W/Z → ff decays. In process 1 also fermion mass effects have been included

in the angular distributions, while this is not the case for the other ones. Normally mass

effects are not large anyway.

As noted earlier, some approximations can be used to simulate higher-order processes.

The process e+e− → e+e−Z0 can be simulated in two different ways. One is to make use

of the e ‘sea’ distribution inside e, i.e. have splittings e → γ → e. This can be obtained,

together with ordinary Z0 production, by using subprocess 1, with MSTP(11) = 1 and

MSTP(12) = 1. Then the contribution of the type above is 5.0 pb for a 500 GeV e+e−

collider, compared with the correct 6.2 pb [Hag91]. Alternatively one may use process 35,

with MSTP(11) = 1 and MSTP(12) = 0, relying on the splitting e → γ. This process has a

singularity in the forward direction, regularized by the electron mass and also sensitive to

the virtuality of the photon. It is therefore among the few where the incoming masses have

been included in the matrix element expression. Nevertheless, it may be advisable to set

small lower cut-offs, e.g. CKIN(3) = CKIN(5) = 0.01, if one should experience problems

(e.g. at higher energies).

Process 36, fγ → f ′W± may have corresponding problems; except that in e+e− the

forward scattering amplitude for eγ → νW is killed (radiation zero), which means that the

differential cross section is vanishing for p⊥ → 0. It is therefore feasible to use the default

CKIN(3) and CKIN(5) values in e+e−, and one also comes closer to the correct cross section.

The process gg → Z0bb, formerly available as process 131, has been removed from the

current version, since the implementation turned out to be slow and unstable. However,

process 1 with incoming flavours set to be bb (by KFIN(1,5) = KFIN(1,-5) = KFIN(2,5)

= KFIN(2,-5) = 1 and everything else = 0) provides an alternative description, where the

additional bb are generated by g → bb branchings in the initial-state showers. (Away from

the low-p⊥ region, process 30 with KFIN values as above except that also incoming gluons

are allowed, offers yet another description. Here it is in terms of gb → Z0b, with only one

further g → bb branching constructed by the shower.) At first glance, the shower approach

would seem less reliable than the full 2 → 3 matrix element. The relative lightness of the b

quark will generate large logs of the type ln(m2
Z/m2

b), however, that ought to be resummed

[Car00]. This is implicit in the parton-density approach of incoming b quarks but absent

from the lowest-order gg → Z0bb matrix elements. Therefore actually the shower approach

may be the more accurate of the two in the region of intermediate transverse momenta.

8.4.3 W/Z pair production

MSEL = 15
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ISUB = 22 fifi → (γ∗/Z0)(γ∗/Z0)

23 fifj → Z0W+

25 fifi → W+W−

69 γγ → W+W−

70 γW+ → Z0W+

In this section we mainly consider the production of W/Z pairs by fermion–antifermion

annihilation, but also include two processes which involve γ/W beams. Scatterings between

gauge-boson pairs, i.e. processes like W+W− → Z0Z0, depend so crucially on the assumed

Higgs scenario that they are considered separately in section 8.5.2.

The cross sections used for the above processes are those derived in the narrow-width

limit, but have been extended to include Breit-Wigner shapes with mass-dependent widths

for the final-state particles. In process 25, the contribution from Z0 exchange to the cross

section is now evaluated with the fixed nominal Z0 mass and width in the propagator. If

instead the actual mass and the running width were to be used, it would give a diverging

cross section at large energies, by imperfect gauge cancellation.

However, one should realize that other graphs, not included here, can contribute in

regions away from the W/Z mass. This problem is especially important if several flavours

coincide in the four-fermion final state. Consider, as an example, e+e− → µ+µ−νµνµ. Not

only would such a final state receive contributions from intermediate Z0Z0 and W+W−

states, but also from processes e+e− → Z0 → µ+µ−, followed either by µ+ → µ+Z0 →
µ+νµνµ, or by µ+ → νµW+ → νµµ+νµ. In addition, all possible interferences should

be considered. Since this is not done, the processes have to be used with some sound

judgement. Very often, one may wish to constrain a lepton pair mass to be close to mZ,

in which case a number of the possible ‘other’ processes are negligible.

For the W pair production graph, one experimental objective is to do precision mea-

surements of the cross section near threshold. Then also other effects enter. One such is

Coulomb corrections, induced by photon exchange between the two W’s and their decay

products. The gauge invariance issues induced by the finite W lifetime are not yet fully

resolved, and therefore somewhat different approximate formulae may be derived [Kho96].

The options in MSTP(40) provide a reasonable range of uncertainty.

Of the above processes, the first contains the full fifi → (γ∗/Z0)(γ∗/Z0) structure,

obtained by a straightforward generalization of the formulae in ref. [Gun86] (done by one

of the Pythia authors). Of course, the possibility of there being significant contributions

from graphs that are not included is increased, in particular if one γ∗ is very light and

therefore could be a bremsstrahlung-type photon. It is possible to use MSTP(43) to recover

the pure Z0 case, i.e. fifi → Z0Z0 exclusively. In processes 23 and 70, only the pure Z0

contribution is included.

Full angular correlations are included for the first three processes, i.e. the full 2 → 2 →
4 matrix elements are included in the resonance decays, including the appropriate γ∗/Z0

interference in process 22. In the latter two processes, 69 and 70, no spin information is

currently preserved, i.e. the W/Z bosons are allowed to decay isotropically.

We remind you that the mass ranges of the two resonances may be set with the

CKIN(41) - CKIN(44) parameters; this is particularly convenient, for instance, to pick
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one resonance almost on the mass shell and the other not.

8.5 Higgs production

A fair fraction of all the processes in Pythia deal with Higgs production in one form or an-

other. This multiplication is caused by the need to consider production by several different

mechanisms, depending on Higgs mass and machine type. Further, the program contains a

full two-Higgs-multiplet scenario, as predicted for example in the Minimal Supersymmetric

extension of the Standard Model (MSSM). Therefore the continued discussion is, some-

what arbitrarily, subdivided into a few different scenarios. Doubly-charged Higgs particles

appear in left-right symmetric models, and are covered in section 8.6.3.

8.5.1 Light Standard Model Higgs

MSEL = 16, 17, 18

ISUB = 3 fifi → h0

24 fifi → Z0h0

26 fifj → W+h0

32 fig → fih
0

102 gg → h0

103 γγ → h0

110 fifi → γh0

111 fifi → gh0

112 fig → fih
0

113 gg → gh0

121 gg → QkQkh
0

122 qiqi → QkQkh
0

123 fifj → fifjh
0 (Z0Z0 fusion)

124 fifj → fkflh
0 (W+W− fusion)

In this section we discuss the production of a reasonably light Standard Model Higgs,

below 700 GeV, say, so that the narrow width approximation can be used with some

confidence. Below 400 GeV there would certainly be no trouble, while above that the

narrow width approximation is gradually starting to break down.

In a hadron collider, the main production processes are 102, 123 and 124, i.e. gg, Z0Z0

and W+W− fusion. In the latter two processes, it is also necessary to take into account the

emission of the space-like W/Z bosons off quarks, which in total gives the 2 → 3 processes

above.

Other processes with lower cross sections may be of interest because they provide

signals with less background. For instance, processes 24 and 26 give associated production

of a Z or a W together with the h0. There is also the processes 3 (see below), 121 and 122,

which involve production of heavy flavours.

Process 3 contains contributions from all flavours, but is completely dominated by the

subprocess tt → h0, i.e. by the contribution from the top sea distributions. This assumes

that parton densities for top quarks are provided, which is no longer the case in current

parameterizations of PDF’s. This process is by now known to overestimate the cross section
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for Higgs production as compared with a more careful calculation based on the subprocess

gg → tth0, process 121. The difference between the two is that in process 3 the t and t

are added by the initial-state shower, while in 121 the full matrix element is used. The

price to be paid is that the complicated multi-body phase space in process 121 makes the

program run slower than with most other processes. As usual, it would be double-counting

to include the same flavour both with 3 and 121. An intermediate step — in practice

probably not so useful — is offered by process 32, qg → qh0, where the quark is assumed

to be a b one, with the antiquark added by the showering activity.

Process 122 is similar in structure to 121, but is less important. In both process 121

and 122 the produced quark is assumed to be a t; this can be changed in KFPR(121,2) and

KFPR(122,2) before initialization, however. For b quarks it could well be that process 3

with bb → h0 is more reliable than process 121 with gg → bbh0 [Car00]; see the discussion

on Z0bb final states in section 8.4.2. Thus it would make sense to run with all quarks up

to and including b simulated in process 3 and then consider t quarks separately in process

121. Assuming no t parton densities, this would actually be the default behaviour, meaning

that the two could be combined in the same run without double-counting.

The two subprocess 112 and 113, with a Higgs recoiling against a quark or gluon jet,

are also effectively generated by initial-state corrections to subprocess 102. Thus, in order

to avoid double-counting, just as for the case of Z0/W+ production, section 8.4.2, these

subprocesses should not be switched on simultaneously. Process 111, qq → gh0 is different,

in the sense that it proceeds through an s-channel gluon coupling to a heavy-quark loop,

and that therefore the emitted gluon is necessary in the final state in order to conserve

colours. It is not to be confused with a gluon-radiation correction to the Born-level process

3, like in process 32, since processes 3 and 32 vanish for massless quarks while process 111

is mainly intended for such. The lack of a matching Born-level process shows up by process

111 being vanishing in the p⊥ → 0 limit. Numerically it is of negligible importance, except

at very large p⊥ values. Process 102, possibly augmented by 111, should thus be used for

inclusive production of Higgs, and 111–113 for the study of the Higgs subsample with high

transverse momentum.

A warning is that the matrix-element expressions for processes 111–113 are very lengthy

and the coding therefore more likely to contain some errors and numerical instabilities than

for most other processes. Therefore the full expressions are only available by setting the

non-default value MSTP(38) = 0. Instead the default is based on the simplified expressions

obtainable if only the top quark contribution is considered, in the mt → ∞ limit [Ell88]. As

a slight improvement, this expression is rescaled by the ratio of the gg → h0 cross sections

(or, equivalently, the h → gg partial widths) of the full calculation and that in the mt → ∞
limit. Simple checks show that this approach normally agrees with the full expressions to

within ∼ 20%, which is small compared with other uncertainties. The agreement is worse

for process 111 alone, about a factor of 2, but this process is small anyway. We also

note that the matrix element correction factors, used in the initial-state parton shower for

process 102, section 10.3.5, are based on the same mt → ∞ limit expressions, so that the

high-p⊥ tail of process 102 is well matched to the simple description of process 112 and

113.
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In e+e− annihilation, associated production of an h0 with a Z0, process 24, is usually

the dominant one close to threshold, while the Z0Z0 and W+W− fusion processes 123 and

124 win out at high energies. Process 103, γγ fusion, may also be of interest, in particular

when the possibilities of beamstrahlung photons and backscattered photons are included

(see section 7.1.3). Process 110, which gives an h0 in association with a γ, is a loop process

and is therefore suppressed in rate. It would have been of interest for a h0 mass above 60

GeV at LEP 1, since its phase space suppression there is less severe than for the associated

production with a Z0. Now it is not likely to be of any further interest.

The branching ratios of the Higgs are very strongly dependent on the mass. In prin-

ciple, the program is set up to calculate these correctly, as a function of the actual Higgs

mass, i.e. not just at the nominal mass. However, higher-order corrections may at times

be important and not fully unambiguous; see for instance MSTP(37).

Since the Higgs is a spin-0 particle it decays isotropically. In decay processes such

as h0 → W+W−/Z0Z0 → 4 fermions angular correlations are included [Lin97]. Also

in processes 24 and 26, Z0 and W± decay angular distributions are correctly taken into

account.

8.5.2 Heavy Standard Model Higgs

ISUB = 5 Z0Z0 → h0

8 W+W− → h0

71 Z0Z0 → Z0Z0 (longitudinal)

72 Z0Z0 → W+W− (longitudinal)

73 Z0W+ → Z0W+ (longitudinal)

76 W+W− → Z0Z0 (longitudinal)

77 W+W± → W+W± (longitudinal)

Processes 5 and 8 are the simple 2 → 1 versions of what is now available in 123 and

124 with the full 2 → 3 kinematics. For low Higgs masses processes 5 and 8 overestimate

the correct cross sections and should not be used, whereas good agreement between the

2 → 1 and 2 → 3 descriptions is observed when heavy Higgs production is studied.

The subprocesses 5 and 8, V V → h0, which contribute to the processes V V → V ′V ′,

show a bad high-energy behaviour. Here V denotes a longitudinal intermediate gauge

boson, Z0 or W±. This can be cured only by the inclusion of all V V → V ′V ′ graphs, as

is done in subprocesses 71, 72, 73, 76 and 77. In particular, subprocesses 5 and 8 give

rise to a fictitious high-mass tail of the Higgs. If this tail is thrown away, however, the

agreement between the s-channel graphs only (subprocesses 5 and 8) and the full set of

graphs (subprocesses 71 etc.) is very good: for a Higgs of nominal mass 300 (800) GeV, a

cut at 600 (1200) GeV retains 95% (84%) of the total cross section, and differs from the

exact calculation, cut at the same values, by only 2% (11%) (numbers for SSC energies).

With this prescription there is therefore no need to use subprocesses 71 etc. rather than

subprocesses 5 and 8.

For subprocess 77, there is an option, see MSTP(45), to select the charge combination

of the scattering W’s: like-sign, opposite-sign (relevant for Higgs), or both.
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Process 77 contains a divergence for p⊥ → 0 due to γ-exchange contributions. This

leads to an infinite total cross section, which is entirely fictitious, since the simple parton-

distribution function approach to the longitudinal W flux is not appropriate in this limit.

For this process, it is therefore necessary to make use of a cut, e.g. p⊥ > mW.

For subprocesses 71, 72, 76 and 77, an option is included (see MSTP(46)) whereby you

can select only the s-channel Higgs graph; this will then be essentially equivalent to running

subprocess 5 or 8 with the proper decay channels (i.e. Z0Z0 or W+W−) set via MDME. The

difference is that the Breit-Wigner distributions in subprocesses 5 and 8 contain a mass-

dependent width, whereas the width in subprocesses 71–77 is calculated at the nominal

Higgs mass; also, higher-order corrections to the widths are treated more accurately in

subprocesses 5 and 8. Further, processes 71–77 assume the incoming W/Z to be on the

mass shell, with associated kinematics factors, while processes 5 and 8 have W/Z correctly

space-like. All this leads to differences in the cross sections by up to a factor of 1.5.

In the absence of a Higgs, the sector of longitudinal Z and W scattering will become

strongly interacting at energies above 1 TeV. The models proposed by Dobado, Herrero and

Terron [Dob91] to describe this kind of physics have been included as alternative matrix

elements for subprocesses 71, 72, 73, 76 and 77, selectable by MSTP(46). From the point of

view of the general classification scheme for subprocesses, this model should appropriately

be included as separate subprocesses with numbers above 100, but the current solution

allows a more efficient reuse of existing code. By a proper choice of parameters, it is also

here possible to simulate the production of a techni-ρ (see section 8.6.7).

Currently, the scattering of transverse gauge bosons has not been included, neither that

of mixed transverse–longitudinal scatterings. These are expected to be less important at

high energies, and do not contain an h0 resonance peak, but need not be entirely negligible

in magnitude. As a rule of thumb, processes 71–77 should not be used for V V invariant

masses below 500 GeV.

The decay products of the longitudinal gauge bosons are correctly distributed in angle.

8.5.3 Extended neutral Higgs sector

MSEL = 19

ISUB = h0 H0 A0

3 151 156 fifi → X

102 152 157 gg → X

103 153 158 γγ → X

111 183 188 qq → gX

112 184 189 qg → qX

113 185 190 gg → gX

24 171 176 fifi → Z0X

26 172 177 fifj → W+X

123 173 178 fifj → fifjX (ZZ fusion)

124 174 179 fifj → fkflX (W+W− fusion)

121 181 186 gg → QkQkX

122 182 187 qiqi → QkQkX
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In Pythia, the particle content of a two-Higgs-doublet scenario is included: two neu-

tral scalar particles, 25 and 35, one pseudoscalar one, 36, and a charged doublet, ±37.

(Of course, these particles may also be associated with corresponding Higgs states in larger

multiplets.) By convention, we choose to call the lighter scalar Higgs h0 and the heavier H0.

The pseudoscalar is called A0 and the charged H±. Charged-Higgs production is covered

in section 8.5.4.

A number of h0 processes have been duplicated for H0 and A0. The correspondence

between ISUB numbers is shown in the table above: the first column of ISUB numbers

corresponds to X = h0, the second to X = H0, and the third to X = A0. Note that

several of these processes are not expected to take place at all, owing to vanishing Born

term couplings. We have still included them for flexibility in simulating arbitrary couplings

at the Born or loop level, or for the case of mixing between the scalar and pseudoscalar

sectors.

A few Standard Model Higgs processes have no correspondence in the scheme above.

These include

• 5 and 8, which anyway have been superseded by 123 and 124;

• 71, 72, 73, 76 and 77, which deal with what happens if there is no light Higgs, and so

is a scenario complementary to the one above, where several light Higgs bosons are

assumed; and

• 110, which is mainly of interest in Standard Model Higgs searches.

The processes 102–103, 111–113, 152–153, 157–158, 183–185 and 188–190 have only

been worked out in full detail for the Standard Model Higgs case, and not when other

(e.g. squark loop) contributions need be considered. For processes 102–103, 152–153, and

157–158, the same approximation mainly holds true for the decays, since these production

processes are proportional to the partial decay width for the gg and γγ channels. The γγ

channel does include H+ in the loop. In some corners of SUSY parameter space, the effects

of squarks and gauginos in loops can be relevant. The approximate procedure outlined

in section 8.5.1, based on combining the kinematics shape from simple expressions in the

mt → ∞ limit with a normalization derived from the gg → X cross section, should therefore

be viewed as a first ansatz only. In particular, it is not recommended to try the non-default

MSTP(38) = 0 option, which is incorrect beyond the Standard Model.

In processes 121, 122, 181, 182, 186 and 187 the recoiling heavy flavour is assumed to

be top, which is the only one of interest in the Standard Model, and the one where the

parton-distribution-function approach invoked in processes 3, 151 and 156 is least reliable.

However, it is possible to change the quark flavour in 121 etc.; for each process ISUB this

flavour is given by KFPR(ISUB,2). This may become relevant if couplings to bb states are

enhanced, e.g. if tan β À 1 in the MSSM. The matrix elements in this group are based on

scalar Higgs couplings; differences for a pseudoscalar Higgs remains to be worked out, but

are proportional to the heavy quark mass relative to other kinematic quantities.

By default, the h0 has the couplings of the Standard Model Higgs, while the H0 and A0

have couplings set in PARU(171) - PARU(178) and PARU(181) - PARU(190), respectively.

The default values for the H0 and A0 have no deep physics motivation, but are set just
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so that the program will not crash due to the absence of any couplings whatsoever. You

should therefore set the above couplings to your desired values if you want to simulate

either H0 or A0. Also the couplings of the h0 particle can be modified, in PARU(161) -

PARU(165), provided that MSTP(4) = 1.

For MSTP(4) = 2, the mass of the h0 (PMAS(25,1)) and the tan β value (PARU(141))

are used to derive the masses of the other Higgs bosons, as well as all Higgs cou-

plings. PMAS(35,1) - PMAS(37,1) and PARU(161) - PARU(195) are overwritten accord-

ingly. The relations used are the ones of the Born-level MSSM [Gun90].

Note that not all combinations of mh and tan β are allowed; for MSTP(4) = 2 the

requirement of a finite A0 mass imposes the constraint

mh < mZ
tan2 β − 1

tan2 β + 1
, (8.8)

or, equivalently,

tan2 β >
mZ + mh

mZ − mh
. (8.9)

If this condition is not fulfilled, the program will print a diagnostic message and stop.

A more realistic approach to the Higgs mass spectrum is to include radiative corrections

to the Higgs potential. Such a machinery has never been implemented as such in Pythia,

but appears as part of the Supersymmetry framework described in sections 8.7 and 9.5. At

tree level, the minimal set of inputs would be IMSS(1) = 1 to switch on SUSY, RMSS(5)

to set the tan β value (this overwrites the PARU(141) value when SUSY is switched on)

and RMSS(19) to set A0 mass. However, the significant radiative corrections depend on the

properties of all particles that couple to the Higgs boson, and the user may want to change

the default values of the relevant RMSS inputs. In practice, the most important are those

related indirectly to the physical masses of the third generation supersymmetric quarks and

the Higgsino: RMSS(10) to set the left-handed doublet SUSY mass parameter, RMSS(11)

to set the right stop mass parameter, RMSS(12) to set the right sbottom mass parameter,

RMSS(4) to set the Higgsino mass and a portion of the squark mixing, and RMSS(16) and

RMSS(17) to set the stop and bottom trilinear couplings, respectively, which specifies the

remainder of the squark mixing. From these inputs, the Higgs masses and couplings would

be derived. Note that switching on SUSY also implies that Supersymmetric decays of

the Higgs particles become possible if kinematically allowed. If you do not want this to

happen, you may want to increase the SUSY mass parameters. (Use CALL PYSTAT(2) after

initialization to see the list of branching ratios.)

Pair production of Higgs states may be a relevant source, see section 8.5.5 below.

Finally, heavier Higgs bosons may decay into lighter ones, if kinematically allowed,

in processes like A0 → Z0h0 or H+ → W+h0. Such modes are included as part of the

general mixture of decay channels, but they can be enhanced if the uninteresting channels

are switched off.
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8.5.4 Charged Higgs sector

MSEL = 23

ISUB = 143 fifj → H+

161 fig → fkH
+

401 gg → tbH+

402 qq → tbH+

A charged Higgs doublet, H±, is included in the program. This doublet may be the

one predicted in the MSSM scenario, see section 8.5.3, or in any other scenario. The tan β

parameter, which is relevant also for neutral Higgs couplings, is set via PARU(141) or, if

SUSY is switched on, via RMSS(5).

The basic subprocess for charged Higgs production in hadron colliders is ISUB = 143.

However, this process is dominated by tb → H+, and so depends on the choice of t parton

distribution, if non-vanishing. A better representation is provided by subprocess 161,

fg → f ′H+; i.e. actually bg → tH+. It is therefore recommended to use 161 and not 143;

to use both would be double-counting.

A further step is to include the initial state gluon splitting g → bb as part of the matrix

element, as in process 401. Using both 161 and 401 again would involve doublecounting,

but now the issue is more complicated, since 401 may be expected to give the better

description at large p⊥b and 161 the better at small p⊥b, so some matching may be the

best solution [Bor99]. Process 402 gives a less important contribution, that can be added

without doublecounting. (The situation is similar to that for processes 3, 32, 121 and 122

for neutral Higgs production.)

A major potential source of charged Higgs production is top decay. It is possible to

switch on the decay channel t → bH+. Top will then decay to H+ a fraction of the time,

whichever way it is produced. The branching ratio is automatically calculated, based on

the tan β value and masses. It is possible to only have the H+ decay mode switched on, in

which case the cross section is reduced accordingly.

Pair production of the charged Higgs is also possible through its electromagnetic charge;

see section 8.5.5 below.

8.5.5 Higgs pairs

ISUB = (141) fifi → γ/Z0/Z′0

297 fifj → H±h0

298 fifj → H±H0

299 fifi → Ah0

300 fifi → AH0

301 fifi → H+H−

The subprocesses 297–301 give the production of a pair of Higgs bosons via the s-

channel exchange of a γ∗/Z0 or a W± state.
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Note that Higgs pair production is possible alternatively through subprocess 141, as

part of the decay of a generic combination of γ∗/Z0/Z′0. Thus it can be used to simulate

Z0 → h0A0 and Z0 → H0A0 for associated neutral Higgs production. The fact that we

here make use of the Z′0 can easily be discounted, either by letting the relevant couplings

vanish, or by the option MSTP(44) = 4.

Similarly the decay γ∗/Z0/Z′0 → H+H− allows the production of a pair of charged

Higgs particles. This process is especially important in e+e− colliders. The coupling of

the γ∗ to H+H− is determined by the charge alone (neglecting loop effects), while the Z0

coupling is regulated by PARU(142), and that of the Z′0 by PARU(143). The Z′0 piece can

be switched off, e.g. by MSTP(44) = 4. An ordinary Z0, i.e. particle code 23, cannot be

made to decay into a Higgs pair, however.

The advantage of the explicit pair production processes is the correct implementation

of the pair threshold.

8.6 Non-standard physics

Many extensions of the Standard Model have been proposed, and likely this represents

only a small number of what is possible. Despite different underlying assumptions, many

Beyond-the-Standard-Model scenarios predict some common interactions or particles. For

instance, new W′ and Z′ gauge bosons can arise in a number of different ways. Therefore

it makes sense to cover a few basic classes of particles and interactions, with enough gen-

erality that many kinds of detailed scenarios can be accommodated by suitable parameter

choices. We have already seen one example of this, in the extended Higgs sector above.

In this section a few other kinds of non-standard generic physics scenarios are discussed.

Supersymmetry is covered separately in the following section, since it is such a large sector

by itself.

8.6.1 Fourth-generation fermions

MSEL = 7, 8, 37, 38

ISUB = 1 fifi → γ∗/Z0

2 fifj → W+

81 qiqi → QkQk

82 gg → QkQk

83 qifj → Qkfl
84 gγ → QkQk

85 γγ → FkFk

141 fifi → γ/Z0/Z′0

142 fifj → W′+

While the existence of a fourth generation currently seems unlikely, the appropriate

flavour content is still found in the program. In fact, the fourth generation is included

on an equal basis with the first three, provided MSTP(1) = 4. Also processes other than

the ones above can therefore be used, e.g. all other processes with gauge bosons, including

non-standard ones such as the Z′0. We therefore do not repeat the descriptions found
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elsewhere, such as how to set only the desired flavour in processes 81–85. Note that it may

be convenient to set CKIN(1) and other cuts such that the mass of produced gauge bosons

is enough for the wanted particle production — in principle the program will cope even

without that, but possibly at the expense of very slow execution.

8.6.2 New gauge bosons

MSEL = 21, 22, 24

ISUB = 141 fifi → γ/Z0/Z′0

142 fifj → W′+

144 fifj → R

The Z′0 of subprocess 141 contains the full γ∗/Z0/Z′0 interference structure for cou-

plings to fermion pairs. With MSTP(44) it is possible to pick only a subset, e.g. only the

pure Z′0 piece. The couplings of the Z′0 to quarks and leptons in the first generation can

be set via PARU(121) - PARU(128), in the second via PARJ(180) - PARJ(187) and in the

third via PARJ(188) - PARJ(195). The eight numbers correspond to the vector and axial

couplings of down-type quarks, up-type quarks, leptons and neutrinos, respectively. The

default corresponds to the same couplings as that of the Standard Model Z0, with axial

couplings af = ±1 and vector couplings vf = af − 4ef sin2θW . This implies a resonance

width that increases linearly with the mass. By a suitable choice of the parameters, it is

possible to simulate just about any imaginable Z′0 scenario, with full interference effects in

cross sections and decay angular distributions and generation-dependent couplings. The

conversion from the coupling conventions in a set of different Z′0 models in the literature

to those used in Pythia can be found in [Cio05].

The coupling to the decay channel Z′0 → W+W− is regulated by PARU(129) -

PARU(130). The former gives the strength of the coupling, which determines the rate. The

default, PARU(129) = 1., corresponds to the ‘extended gauge model’ of [Alt89], wherein

the Z0 → W+W− coupling is used, scaled down by a factor m2
W/m2

Z′ , to give a Z′0 partial

width into this channel that again increases linearly. If this factor is cancelled, by having

PARU(129) proportional to m2
Z′/m2

W, one obtains a partial width that goes like the fifth

power of the Z′0 mass, the ‘reference model’ of [Alt89]. In the decay angular distribution

one could imagine a much richer structure than is given by the one parameter PARU(130).

Other decay modes include Z′0 → Z0h0, predicted in left-right symmetric models (see

PARU(145) and ref. [Coc91]), and a number of other Higgs decay channels, see sections

8.5.3 and 8.5.4.

The W′± of subprocess 142 so far does not contain interference with the Standard

Model W± — in practice this should not be a major limitation. The couplings of the

W′ to quarks and leptons are set via PARU(131) - PARU(134). Again one may set vector

and axial couplings freely, separately for the qq′ and the `ν` decay channels. The defaults

correspond to the V − A structure of the Standard Model W, but can be changed to

simulate a wide selection of models. One possible limitation is that the same Cabibbo–

Kobayashi–Maskawa quark mixing matrix is assumed as for the standard W.

The coupling W′ → Z0W can be set via PARU(135) - PARU(136). Further comments

on this channel as for Z′; in particular, default couplings again agree with the ‘extended
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gauge model’ of [Alt89]. A W′ → Wh0 channel is also included, in analogy with the

Z′0 → Z0h0 one, see PARU(146).

The R boson (particle code 41) of subprocess 144 represents one possible scenario

[Ben85a] for a horizontal gauge boson, i.e. a gauge boson that couples between the gener-

ations, inducing processes like sd → R0 → µ−e+. Experimental limits on flavour-changing

neutral currents forces such a boson to be fairly heavy.

A further example of new gauge groups follows right after this.

8.6.3 Left-right symmetry and doubly charged Higgs bosons

ISUB = 341 `i`j → H±±
L

342 `i`j → H±±
R

343 `iγ → H±±
L e∓

344 `iγ → H±±
R e∓

345 `iγ → H±±
L µ∓

346 `iγ → H±±
R µ∓

347 `iγ → H±±
L τ∓

348 `iγ → H±±
R τ∓

349 fifi → H++
L H−−

L

350 fifi → H++
R H−−

R

351 fifj → fkflH
±±
L (WW fusion)

352 fifj → fkflH
±±
R (WW fusion)

353 fifi → Z0
R

354 fifi → W±
R

At current energies, the world is left-handed, i.e. the Standard Model contains an

SU(2)L group. Left-right symmetry at some larger scale implies the need for an SU(2)R

group. Thus the particle content is expanded by right-handed Z0
R and W±

R and right-handed

neutrinos. The Higgs fields have to be in a triplet representation, leading to doubly-charged

Higgs particles, one set for each of the two SU(2) groups. Also the number of neutral and

singly-charged Higgs states is increased relative to the Standard Model, but a search for

the lowest-lying states of this kind is no different from e.g. the freedom already accorded

by the MSSM Higgs scenarios.

Pythia implements the scenario of [Hui97]. The expanded particle content with de-

fault masses is:
KF name m (GeV)

9900012 νRe 500

9900014 νRµ 500

9900016 νRτ 500

9900023 Z0
R 1200

9900024 W+
R 750

9900041 H++
L 200

9900042 H++
R 200

The main decay modes implemented are H++
L → W+

LW+
L , `+

i `+
j (i, j generation indices)

and H++
R → W+

RW+
R, `+

i `+
j . The physics parameters of the scenario are found in PARP(181)
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- PARP(192).

The W±
R has been implemented as a simple copy of the ordinary W±, with the exception

that it couple to right-handed neutrinos instead of the ordinary left-handed ones. Thus

the standard CKM matrix is used in the quark sector, and the same vector and axial

coupling strengths, leaving only the mass as free parameter. The Z0
R implementation

(without interference with γ or the ordinary Z0) allows decays both to left- and right-

handed neutrinos, as well as other fermions, according to one specific model ansatz [Fer00].

Obviously both the W±
R and the Z0

R descriptions are likely to be simplifications, but provide

a starting point.

The right-handed neutrinos can be allowed to decay further [Riz81, Fer00]. Assuming

them to have a mass below that of W+
R , they decay to three-body states via a virtual W+

R ,

νR` → `+ff
′
and νR` → `−ff ′, where both choices are allowed owing to the Majorana char-

acter of the neutrinos. If there is a significant mass splitting, also sequential decays νR` →
`±`′∓ν ′

R` are allowed. Currently the decays are isotropic in phase space. If the neutrino

masses are close to or above the WR ones, this description has to be substituted by a sequen-

tial decay via a real WR (not implemented, but actually simpler to do than the one here).

8.6.4 Leptoquarks

MSEL = 25

ISUB = 145 qi`j → LQ

162 qg → `LQ

163 gg → LQLQ

164 qiqi → LQLQ

Several leptoquark production processes are included. Currently only one leptoquark

species has been implemented, as particle 42, denoted LQ. The leptoquark is assumed to

carry specific quark and lepton quantum numbers, by default u quark plus electron. These

flavour numbers are conserved, i.e. a process such as ue− → LQ → dνe is not allowed. This

may be a bit restrictive, but it represents one of many leptoquark possibilities. The spin

of the leptoquark is assumed to be zero, so its decay is isotropic. Vector leptoquarks have

not yet been implemented.

Although only one leptoquark is implemented, its flavours may be changed arbitrarily

to study the different possibilities. The flavours of the leptoquark are defined by the

quark and lepton flavours in the decay mode list. Since only one decay channel is allowed,

this means that the quark flavour is stored in KFDP(MDCY(42,2),1) and the lepton one

in KFDP(MDCY(42,2),2). The former must always be a quark, while the latter could

be a lepton or an antilepton; a charge-conjugate partner is automatically defined by the

program. At initialization, the charge is recalculated as a function of the flavours defined;

also the leptoquark name is redefined to be of the type ’LQ (q)(l)’, where actual quark

(q) and lepton (l) flavours are displayed.

The LQ → q` vertex contains an undetermined Yukawa coupling strength, which

fixes both the width of the leptoquark and the cross section for many of the production

graphs. This strength may be changed in PARU(151) which corresponds to the k factor of
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[Hew88], i.e. to λ2/(4παem), where λ is the Yukawa coupling strength of [Wud86]. Note

that PARU(151) is thus quadratic in the coupling.

The leptoquark is likely to be fairly long-lived, in which case it has time to fragment

into a mesonic- or baryonic-type state, which would decay later on. This is a bit tedious

to handle; therefore the leptoquark is always assumed to decay before fragmentation. This

simplification should not have a major impact on experimental analyses [Fri97].

Inside the program, the leptoquark is treated as a resonance. Since it carries colour,

some extra care is required. In particular, the leptoquark should not be made stable by

modifying either MDCY(42,1) or MSTP(41): then the leptoquark would be handed unde-

cayed to Pythia, which would try to fragment it (as it does with any other coloured object)

unsuccessfully, leading to error messages and a premature conclusion of the run.

8.6.5 Compositeness and anomalous couplings

ISUB = 20 fifj → γW+

165 fifi → fkfk (via γ∗/Z0)

166 fifj → fkf l (via W±)

381 fifj → fifj
382 fifi → fkfk

Some processes are implemented to allow the introduction of anomalous coupling, in

addition to the Standard Model ones. These can be switched on by ITCM(5) ≥ 1; the

default ITCM(5) = 0 corresponds to the Standard Model behaviour.

In processes 381 and 382, the quark substructure is included in the left–left isoscalar

model [Eic84, Chi90] for ITCM(5) = 1, with compositeness scale Λ given in RTCM(41)

(default 1000 GeV) and sign η of interference term in RTCM(42) (default +1; only other

alternative −1). The above model assumes that only u and d quarks are composite (at

least at the scale studied); with ITCM(5) = 2 compositeness terms are included in the

interactions between all quarks. When ITCM(5) = 0, the two processes are equivalent

with 11 and 12. A consistent set of high-p⊥ jet production processes in compositeness

scenarios is thus obtained by combining 381 and 382 with 13, 28, 53 and 68.

The processes 165 and 166 are basically equivalent to 1 and 2, i.e. γ∗/Z0 and W±

exchange, respectively, but with less detail (no mass-dependent width, etc.). The reason

for this duplication is that the resonance treatment formalism of processes 1 and 2 could not

easily be extended to include other than s-channel graphs. In processes 165 and 166, only

one final-state flavour is generated at the time; this flavour should be set in KFPR(165,1)

and KFPR(166,1), respectively. For process 166 one gives the down-type flavour, and the

program will associate the up-type flavour of the same generation. Defaults are 11 in

both cases, i.e. e+e− and e+νe (e−νe) final states. While ITCM(5) = 0 gives the Standard

Model results, ITCM(5) = 1 contains the left–left isoscalar model (which does not affect

process 166), and ITCM(5) = 3 the helicity-non-conserving model (which affects both)

[Eic84, Lan91]. Both models above assume that only u and d quarks are composite; with

ITCM(5) = 2 or 4, respectively, contact terms are included for all quarks in the initial state.

The relevant parameters are RTCM(41) and RTCM(42), as above.
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Note that processes 165 and 166 are book-kept as 2 → 2 processes, while 1 and 2 are

2 → 1 ones. This means that the default Q2 scale in parton distributions is p2
⊥ for the

former and ŝ for the latter. To make contact between the two, it is recommended to set

MSTP(32) = 4, so as to use ŝ as scale also for processes 165 and 166.

In process 20, for Wγ pair production, it is possible to set an anomalous magnetic

moment for the W in RTCM(46) (= η = κ − 1; where κ = 1 is the Standard Model value).

The production process is affected according to the formulae of [Sam91], while W decay

currently remains unaffected. It is necessary to set ITCM(5) = 1 to enable this extension.

8.6.6 Excited fermions

ISUB = 146 eγ → e∗

147 dg → d∗

148 ug → u∗

167 qiqj → qkd
∗

168 qiqj → qku
∗

169 qiqi → e±e∗∓

Compositeness scenarios may also give rise to sharp resonances of excited quarks and

leptons. An excited copy of the first generation is implemented, consisting of spin 1/2

particles d∗ (code 4000001), u∗ (4000002), e∗ (4000011) and ν∗
e (4000012). A treatment of

other generations is not currently possible.

The current implementation contains gauge interaction production by quark–gluon

fusion (processes 147 and 148) or lepton–photon fusion (process 146) and contact interac-

tion production by quark–quark or quark-antiquark scattering (processes 167–169) . The

couplings f , f ′ and fs to the SU(2), U(1) and SU(3) groups are stored in RTCM(43)

- RTCM(45), the scale parameter Λ in RTCM(41); you are also expected to change the f∗

masses in accordance with what is desired — see [Bau90] for details on conventions. Decay

processes are of the types q∗ → qg, q∗ → qγ, q∗ → qZ0 or q∗ → q′W±, with the latter

three (two) available also for e∗ (ν∗
e ). A non-trivial angular dependence is included in the

q∗ decay for processes 146–148, but has not been included for processes 167–169.

8.6.7 Technicolor

MSEL = 50, 51

ISUB = 149 gg → ηtc (obsolete)

191 fifi → ρ0
tc (obsolete)

192 fifj → ρ+
tc (obsolete)

193 fifi → ω0
tc (obsolete)

194 fifi → fkfk
195 fifj → fkf l
361 fifi → W+

L W−
L

362 fifi → W±
L π∓

tc

363 fifi → π+
tcπ

−
tc

364 fifi → γπ0
tc

365 fifi → γπ′0
tc
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366 fifi → Z0π0
tc

367 fifi → Z0π′0
tc

368 fifi → W±π∓
tc

370 fifj → W±
L Z0

L

371 fifj → W±
L π0

tc

372 fifj → π±
tcZ

0
L

373 fifj → π±
tcπ

0
tc

374 fifj → γπ±
tc

375 fifj → Z0π±
tc

376 fifj → W±π0
tc

377 fifj → W±π′0
tc

381 qiqj → qiqj

382 qiqi → qkqk

383 qiqi → gg

384 fig → fig

385 gg → qkqk

386 gg → gg

387 fifi → QkQk

388 gg → QkQk

Technicolor (TC) uses strong dynamics instead of weakly-coupled fundamental scalars

to manifest the Higgs mechanism for giving masses to the W and Z bosons. In TC, the

breaking of a chiral symmetry in a new, strongly interacting gauge theory generates the

Goldstone bosons necessary for electroweak symmetry breaking (EWSB). Thus three of the

technipions assume the rôle of the longitudinal components of the W and Z bosons, but

other states can remain as separate particles depending on the gauge group: technipions

(πtc), technirhos (ρtc), techniomegas (ωtc), etc.

No fully-realistic model of strong EWSB has been found so far, and some of the as-

sumptions and simplifications used in model-building may need to be discarded in the

future. The processes represented here correspond to several generations of development.

Processes 149, 191, 192 and 193 should be considered obsolete and superseded by the other

processes 194, 195 and 361–377. The former processes are kept for cross-checks and back-

ward compatibility. In section 8.5.2 it is discussed how processes 71–77 can be used to

simulate a scenario with techni-ρ resonances in longitudinal gauge boson scattering.

Process 149 describes the production of a spin–0 techni-η meson (particle code KF

= 3000331), which is an electroweak singlet and a QCD colour octet. It is one of the

possible techni-π particles; the name ‘techni-η’ is not used universally in the literature.

The techni-η couples to ordinary fermions proportional to fermion mass. The dominant

decay mode is therefore tt, if kinematically allowed. An effective gg–coupling arises through

an anomaly, and is roughly comparable in size with that to bb. Techni-η production at

hadron colliders is therefore predominantly through gg fusion, as implemented in process

149. In topcolor-assisted technicolor (discussed below), particles like the techni-η should

not have a predominant coupling to t quarks. In this sense, the process is considered

obsolete.
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(The following discussion borrows liberally from the introduction to Ref. [Lan99a] with

the author’s permission.) Modern technicolor models require walking technicolor [Hol81]

to prevent large flavor-changing neutral currents and the assistance of topcolor (TC2)

interactions that are strong near 1 TeV [Nam88, Hil95, Lan95] to provide the large mass

of the top quark. Both additions to the basic technicolor scenario [Wei79, Eic80] tend to

require a large number ND of technifermion doublets to make the β-function of walking

technicolor small. They are needed in TC2 to generate the hard masses of quarks and

leptons, to induce the right mixing between heavy and light quarks, and to break topcolor

symmetry down to ordinary colour. A large number of techni-doublets implies a relatively

low technihadron mass scale [Lan89, Eic96], set by the technipion decay constant FT '
Fπ/

√
ND, where Fπ = 246 GeV.

The model adopted in Pythia is the ‘Technicolor Straw Man Model’ (TCSM)

[Lan99a, Lan02a]. The TCSM describes the phenomenology of color-singlet vector and

pseudoscalar technimesons and their interactions with SM particles. These technimesons

are expected to be the lowest-lying bound states of the lightest technifermion doublet,

(TU , TD), with components that transform under technicolor SU(NTC) as fundamentals,

but are QCD singlets; they have electric charges QU and QD = QU − 1. The vector techn-

imesons form a spin-one isotriplet ρ±,0
tc and an isosinglet ωtc. Since techni-isospin is likely

to be a good approximate symmetry, ρtc and ωtc should be approximately mass-degenerate.

The pseudoscalars, or technipions, also comprise an isotriplet Π±,0
tc and an isosinglet Π0′

tc.

However, these are not mass eigenstates. In this model, they are simple, two-state mix-

tures of the longitudinal weak bosons W±
L , Z0

L — the true Goldstone bosons of dynamical

electroweak symmetry breaking in the limit that the SU(2) ⊗ U(1) couplings g, g′ vanish

— and mass-eigenstate pseudo-Goldstone technipions π±
tc, π

0
tc:

|Πtc〉 = sin χ |WL〉 + cos χ |πtc〉 ; |Π0′
tc〉 = cos χ ′ |π0′

tc〉 + · · · , (8.10)

where sinχ = FT /Fπ ¿ 1, χ′ is another mixing angle and the ellipsis refer to other

technipions needed to eliminate the TC anomaly from the Π0′
tc chiral current. These massive

technipions are also expected to be approximately degenerate.

The coupling of technipions to quarks and leptons are induced mainly by extended

technicolor (ETC) interactions [Eic80]. These couplings are proportional to fermion mass,

except for the case of the top quark, which has most of its mass generation through TC2

interactions. The coupling to electroweak gauge boson pairs vanishes at tree-level, and is

assumed to be negligible. Thus the ordinary mechanisms for producing Higgs-like bosons

through enhanced couplings to heavy fermions or heavy gauge bosons is absent for tech-

nipions. In the following, we will concentrate on how technipions decay once they are

produced. Besides coupling to fermions proportional to mass (except for the case of top

quarks where the coupling strength should be much less than mt), the π0′
tc can decay to

gluon or photon pairs through technifermion loops. However, there may be appreciable

π0
tc–π

0′
tc mixing [Eic96]. If that happens, the lightest neutral technipions are ideally-mixed

T̄UTU and T̄DTD bound states. To simulate this effect, there are separate factors Cπ0
tc→gg

and Cπ0′
tc→gg to weight the πtc and π0′

tc partial widths for gg decays. The relevant techni-

pion decay modes are π+
tc → tb̄, cb̄,ub̄, cs̄, cd̄ and τ+ντ ; π0

tc → t̄t,bb̄, cc̄, and τ+τ−; and
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π0′
tc → gg, t̄t,bb̄, cc̄, and τ+τ−. In the numerical evaluation of partial widths, the running

mass (see PYMRUN) is used, and all fermion pairs are considered as final states. The decay

π+
tc → W+bb̄ is also included, with the final-state kinematics distributed according to phase

space (i.e. not weighted by the squared matrix element). The πtc couplings to fermions can

be weighted by parameters Cc, Cb, Ct and Cτ depending on the heaviest quark involved

in the decay.

The technivector mesons have direct couplings to the technipion interaction states. In

the limit of vanishing gauge couplings g, g′ = 0, the ρtc and ωtc coupling to technipions

are:

ρtc → ΠtcΠtc = cos2 χ (πtcπtc) + 2 sin χ cos χ (WLπtc) + sin2 χ (WLWL) ;

ωtc → ΠtcΠtcΠtc = cos3 χ (πtcπtcπtc) + · · · . (8.11)

The ρtc → πtcπtc decay amplitude, then, is given simply by

M(ρtc(q) → πA(p1)πB(p2)) = gρtc
CAB ε(q) · (p1 − p2) , (8.12)

where the technirho coupling αρtc
≡ g2

ρtc
/4π = 2.91(3/NTC ) is scaled näıvely from QCD

(NTC = 4 by default) and CAB = cos2 χ for πtcπtc, sin χ cos χ for πtcWL, and sin2 χ for

WLWL. While the technirho couples to WLWL, the coupling is suppressed. Technivector

production will be addressed shortly; here, we concentrate on technivector decays.

Walking technicolor enhancements of technipion masses are assumed to close off the

channel ωtc → πtcπtcπtc (which is not included) and to kinematically suppress the channels

ρtc → πtcπtc and the isospin-violating ωtc → πtcπtc (which are allowed with appropriate

choices of mass parameters). The rates for the isospin-violating decays ωtc → π+
Aπ−

B =

W+
LW−

L , W±
Lπ∓

tc, π+
tcπ

−
tc are given by Γ(ωtc → π+

Aπ−
B) = |ερω|2 Γ(ρ0

tc → π+
Aπ−

B) where ερω is

the isospin-violating ρtc-ωtc mixing. Based on analogy with QCD, mixing of about 5% is

expected. Additionally, this decay mode is dynamically suppressed, but it is included as a

possibility. While a light technirho can decay to WLπtc or WLWL through TC dynamics, a

light techniomega decays mainly through electroweak dynamics, ωtc → γπ0
tc, Z0π0

tc, W±π∓
tc,

etc., where Z and W may are transversely polarized. Since sin2 χ ¿ 1, the electroweak

decays of ρtc to the transverse gauge bosons γ,W,Z plus a technipion may be competitive

with the open-channel strong decays.

Note, the exact meaning of longitudinal or transverse polarizations only makes sense at

high energies, where the Goldstone equivalence theorem can be applied. At the moderate

energies considered in the TCSM, the decay products of the W and Z bosons are distributed

according to phase space, regardless of their designation as longitudinal WL/ZL or ordinary

transverse gauge bosons.

To calculate the rates for transverse gauge boson decay, an effective Lagrangian for

technivector interactions was constructed [Lan99a], exploiting gauge invariance, chiral

symmetry, and angular momentum and parity conservation. As an example, the lowest-

dimensional operator mediating the decay ωtc(q) → γ(p1)π
0
tc(p2)) is (e/MV ) Fρtc

· F̃γ π0
tc,

where the mass parameter MV is expected to be of order several 100 GeV. This leads to
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the decay amplitude:

M(ωtc(q) → γ(p1)π
0
tc(p2)) =

e cos χ

MV
εµνλρεµ(q)ε∗ν(p1)qλp1ρ . (8.13)

Similar expressions exist for the other amplitudes involving different technivectors and/or

different gauge bosons [Lan99a], where the couplings are derived in the valence tech-

nifermion approximation [Eic96, Lan99]. In a similar fashion, decays to fermion-antifermion

pairs are included. These partial widths are typically small, but can have important phe-

nomenological consequences, such as narrow lepton-antilepton resonances produced with

electroweak strength.

Next, we address the issue of techniparticle production. Final states containing Stan-

dard Model particles and/or pseudo-Goldstone bosons (technipions) can be produced at

colliders through two mechanisms: technirho and techniomega mixing with gauge bosons

through a vector-dominance mechanism, and anomalies [Lan02] involving technifermions

in loops. Processes 191, 192 and 193 are based on s-channel production of the respective

resonance [Eic96] in the narrow width approximation. All decay modes implemented can

be simulated separately or in combination, in the standard fashion. These include pairs of

fermions, of gauge bosons, of technipions, and of mixtures of gauge bosons and technipions.

Processes 194, 195 and 361–377, instead, include interference, a correct treatment of kine-

matic thresholds and the anomaly contribution, all of which can be important effects, but

also are limited to specific final states. Therefore, several processes need to be simulated

at once to determine the full effect of TC.

Process 194 is intended to more accurately represent the mixing between the γ∗, Z0, ρ0
tc

and ω0
tc particles in the Drell–Yan process [Lan99]. Process 195 is the analogous charged

channel process including W± and ρ±tc mixing. By default, the final-state fermions are e+e−

and e±νe, respectively. These can be changed through the parameters KFPR(194,1) and

KFPR(195,1), respectively (where the KFPR value should represent a charged fermion).

Processes 361–368 describe the pair production of technipions and gauge bosons

through ρ0
tc/ω

0
tc resonances and anomaly contributions. Processes 370–377 describe pair

production through the ρ±tc resonance and anomalies. It is important to note that pro-

cesses 361, 362, 370, 371, 372 include final states with only longitudinally-polarized

W and Z bosons, whereas the others include final states with only transverse W and Z

bosons. Again, all processes must be simulated to get the full effect of the TC model

under investigation. All processes 361–377 are obtained by setting MSEL = 50.

The vector dominance mechanism is implemented using the full γ–Z0–ρtc–ωtc prop-

agator matrix, ∆0(s), including the effects of kinetic mixing. With the notation M2
V =

M2
V − i

√
s ΓV (s) and ΓV (s) the energy-dependent width for V = Z0, ρtc, ωtc, this matrix is

the inverse of

∆−1
0 (s) =




s 0 sfγρtc
sfγωtc

0 s −M2
Z sfZρtc

sfZωtc

sfγρtc
sfZρtc

s −M2
ρ0
tc

0

sfγωtc
sfZωtc

0 s −M2
ωtc


 . (8.14)

The parameters fγρtc
= ξ, fγωtc

= ξ (QU + QD), fZρtc
= ξ cot 2θW , and fZωtc

= −ξ (QU +

QD) tan θW , and ξ =
√

α/αρtc
determine the strength of the kinetic mixing, and are fixed
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by the quantum numbers of the technifermions in the theory. Because of the off-diagonal

entries, the propagators resonate at mass values shifted from the nominal MV values.

Thus, while users input the technihadron masses using PMAS values, these will not represent

exactly the resulting mass spectrum of pair-produced particles. Note that special care is

taken in the limit of very heavy technivectors to reproduce the canonical γ∗/Z∗ → π+
tcπ

−
tc

couplings. In a similar fashion, cross sections for charged final states require the W±–ρ±tc
matrix ∆±:

∆−1
± (s) =

(
s −M2

W sfWρtc

sfWρtc
s −M2

ρ±tc

)
, (8.15)

where fWρtc
= ξ/(2 sin θW ).

By default, the TCSM Model has the parameters NTC= 4, sin χ = 1
3 , QU = 4

3 , QD =

QU − 1 = 1
3 , Cb = Cc = Cτ= 1, Ct= mb/mt, Cπtc

= 4
3 , Cπ0

tc→gg=0, Cπ0′
tc→gg=1, |ερω| =

0.05, FT = Fπ sin χ = 82 GeV, Mρ±tc
= Mρ0

tc
= Mωtc

= 210 GeV, Mπ±

tc
= Mπ0

tc
= Mπ0′

tc
=

110 GeV, MV = MA = 200 GeV. The techniparticle mass parameters are set through the

usual PMAS array. Parameters regulating production and decay rates are stored in the RTCM

array in PYTCSM. This concludes the discussion of the electroweak sector of the strawman

model.

In the original TCSM outlined above, the existence of top-color interactions only af-

fected the coupling of technipions to top quarks, which is a significant effect only for higher

masses. In general, however, TC2 requires some new and possibly light coloured parti-

cles. In most TC2 models, the existence of a large tt̄, but not bb̄, condensate and mass

is due to SU(3)1 ⊗ U(1)1 gauge interactions which are strong near 1 TeV. The SU(3)1
interaction is t–b symmetric while U(1)1 couplings are t–b asymmetric. There are weaker

SU(3)2 ⊗ U(1)2 gauge interactions in which light quarks (and leptons) may [Hil95], or

may not [Chi96], participate. The two U(1)’s must be broken to weak hypercharge U(1)Y
at an energy somewhat higher than 1 TeV by electroweak-singlet condensates. The full

phenomenology of even such a simple model can be quite complicated, and many (possibly

unrealistic) simplifications are made to reduce the number of free parameters [Lan02a].

Nonetheless, it is useful to have some benchmark to guide experimental searches.

The two TC2 SU(3)’s can be broken to their diagonal SU(3) subgroup by using techni-

color and U(1)1 interactions, both strong near 1 TeV. This can be explicitly accomplished

[Lan95] using two electroweak doublets of technifermions, T1 = (U1,D1) and T2 = (U2,D2),

which transform respectively as (3, 1, NTC ) and (1, 3, NTC ) under the two colour groups

and technicolor. The desired pattern of symmetry breaking occurs if SU(NTC) and U(1)1
interactions work together to induce electroweak and SU(3)1 ⊗SU(3)2 non-invariant con-

densates 〈 ŪiLUjR〉 and 〈 D̄iLDjR〉, (i, j = 1, 2) . This minimal TC2 scenario leads to

a rich spectrum of colour-nonsinglet states readily accessible in hadron collisions. The

lowest-lying ones include eight ‘colorons’, V8, the massive gauge bosons of broken topcolor

SU(3); four isosinglet ρtc8 formed from T̄iTj and the isosinglet pseudo-Goldstone techni-

pions formed from T̄2T2. In this treatment, the isovector technipions are ignored, because

they must be pair produced in ρtc8 decays, and such decays are assumed to be kinematically

suppressed.
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The colorons are new fundamental particles with couplings to quarks. In standard

TC2 [Hil95], top and bottom quarks couple to SU(3)1 and the four light quarks to SU(3)2.

Because the SU(3)1 interaction is strong and acts exclusively on the third generation, the

residual V8 coupling can be enhanced for t and b quarks. The coupling ga = gc cot θ3

for t and b and ga = −gc tan θ3 for u,d, c, s, where gc is the QCD coupling and cot θ3

is related to the original g1 and g2 couplings. In flavor-universal TC2 [Chi96] all quarks

couple to SU(3)1, not SU(3)2, so that colorons couple equally and strongly to all flavors:

ga = gc cot θ3.

Assuming that techni-isospin is not badly broken by ETC interactions, the ρtc8 are

isosinglets labeled by the technifermion content and colour index A: ρA
11, ρ

A
22, ρ

A
12, ρ

A
12′ . The

first two of these states, ρ11 and ρ22, mix with V8 and g. The topcolor-breaking condensate,

〈T̄1LT2R〉 6= 0, causes them to also mix with ρ12 and ρ12′ . Technifermion condensation also

leads to a number of (pseudo)Goldstone boson technipions. The lightest technipions are

expected to be the isosinglet SU(3) octet and singlet T̄2T2 states πA
22 and π0

22.

These technipions can decay into either fermion-antifermion pairs or two gluons;

presently, they are assumed to decay only into gluons. As noted, walking technicolor

enhancement of technipion masses very likely close off the ρtc8 → πtcπtc channels. Then

the ρtc8 decay into qq̄ and gg. The rate for the former are proportional to the amount of

kinetic mixing, set by ξg = gc/gρtc
. Additionally, the ρ22 decays to gπ0,A

22 .

The V8 colorons are expected to be considerably heavier than the ρtc8, with mass in

the range 0.5–1 TeV. In both the standard and flavor-universal models, colorons couple

strongly to T̄1T1, but with only strength gc to T̄2T2. Since relatively light technipions are

T̄2T2 states, it is estimated that Γ(V8 → πtcπtc) = O(αc) and Γ(V8 → gπtc) = O(α2
c).

Therefore, these decay modes are ignored, so that the V8 decay rate is the sum over open

channels of

Γ(V8 → qaq̄a) =
αa

6

(
1 +

2m2
a

s

) (
s − 4m2

a

) 1

2 , (8.16)

where αa = g2
a/4π.

The phenomenological effect of this techniparticle structure is to modify the gluon

propagator in ordinary QCD processes, because of mixing between the gluon, V8 and the

ρtc8’s. The g–V8–ρ11–ρ22–ρ12–ρ12′ propagator is the inverse of the symmetric matrix

D−1(s) =




s 0 s ξg s ξg 0 0

0 s −M2
V8

s ξρ11
s ξρ22

s ξρ12
s ξρ12′

s ξg s ξρ11
s −M2

11 −M2
11,22 −M2

11,12 −M2
11,12′

s ξg s ξρ22
−M2

11,22 s −M2
22 −M2

22,12 −M2
22,12′

0 s ξρ12
−M2

11,12 −M2
22,12 s −M2

12 −M2
12,12′

0 s ξρ12′
−M2

11,12′ −M2
22,12′ −M2

12,12′ s −M2
12′




. (8.17)
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Here, M2
V = M2

V − i
√

sΓV (s) uses the energy-dependent widths of the octet vector bosons,

and the ξρij
are proportional to ξg and elements of matrices that describe the pattern of

technifermion condensation. The mixing terms M2
ij,kl, induced by T̄1T2 condensation are

assumed to be real.

This extension of the TCSM is still under development, and any results should be

carefully scrutinized. The main effects are indirect, in that they modify the underlying two-

parton QCD processes much like compositeness terms, except that a resonant structure is

visible. Similar to compositeness, the effects of these colored technihadrons are simulated

by setting ITCM(5) = 5 for processes 381–388. By default, these processes are equivalent to

the 11, 12, 13, 28, 53, 68, 81 and 82 ones, respectively. The last two are specific for heavy-

flavour production, while the first six could be used to describe standard or non-standard

high-p⊥ jet production. These six are simulated by MSEL = 51. The parameter dependence

of the ‘model’ is encoded in tan θ3 (RTCM(21)) and a mass parameter M8 (RTCM(27)), which

determines the decay width ρ22 → gπ22 analogously to MV for ωtc → γπtc. For ITCM(2)

equal to 0 (1), the standard (flavor universal) TC2 couplings are used. The mass parameters

are set by the PMAS array using the codes: V8 (3100021), π1
22 (3100111), π8

22 (3200111), ρ11

(3100113), ρ12 (3200113), ρ21 (3300113), and ρ22 (3400113). The mixing parameters Mij,kl

take on the (arbitrary) values M11,22 = 100 GeV, M11,12 = M11,21 = M22,12 = 150 GeV,

M22,21 = 75 GeV and M12,21 = 50 GeV, while the kinetic mixing terms ξρij
are calculated

assuming the technicolor condensates are fully mixed, i.e. 〈TiT̄j〉 ∝ 1/
√

2.

8.6.8 Extra dimensions

ISUB = 391 ff → G∗

392 gg → G∗

393 qq → gG∗

394 qg → qG∗

395 gg → gG∗

In recent years, the area of observable consequences of extra dimensions has attracted

a strong interest. The field is still in rapid development, so there still does not exist a

‘standard phenomenology’. The topic is also fairly new in Pythia, and currently only a

first scenario is available.

The G∗, introduced as new particle code 5000039, is intended to represent the lowest

excited graviton state in a Randall-Sundrum scenario [Ran99] of extra dimensions. The

lowest-order production processes by fermion or gluon fusion are found in 391 and 392.

The further processes 393–395 are intended for the high-p⊥ tail in hadron colliders. As

usual, it would be double-counting to have both sets of processes switched on at the same

time. Processes 391 and 392, with initial-state showers switched on, are appropriate for

the full cross section at all p⊥ values, and gives a reasonable description also of the high-p⊥
tail. Processes 393–395 could be useful e.g. for the study of invisible decays of the G∗,

where a large p⊥ imbalance would be required. It also serves to test/confirm the shower

expectations of different p⊥ spectra for different production processes [Bij01].

Decay channels of the G∗ to ff, gg, γγ, Z0Z0 and W+W− contribute to the total width.

The correct angular distributions are included for decays to a fermion, g or γ pair in the
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lowest-order processes, whereas other decays currently are taken to be isotropic.

The G∗ mass is to be considered a free parameter. The other degree of freedom in this

scenario is a dimensionless coupling; see PARP(50).

8.7 Supersymmetry

MSEL = 39–45

ISUB = 201–296 (see tables at the beginning of this chapter)

Pythia includes the possibility of simulating a large variety of production and decay

processes in the Minimal Supersymmetric extension of the Standard Model (MSSM). The

simulation is based on an effective Lagrangian of softly-broken SUSY with parameters

defined at the weak scale, typically between mZ and 1 TeV. The relevant parameters

should either be supplied directly by the user or they should be read in from a SUSY Les

Houches Accord (SLHA) spectrum file [Ska03] (see below). Some other possibilities for

obtaining the SUSY parameters also exist in the code, as described below, but these are

only intended for backwards compatibility and debugging purposes.

8.7.1 General introduction

In any (N = 1) supersymmetric version of the SM there exists a partner to each SM

state with the same gauge quantum numbers but whose spin differs by one half unit.

Additionally, the dual requirements of generating masses for up- and down-type fermions

while preserving SUSY and gauge invariance, require that the SM Higgs sector be enlarged

to two scalar doublets, with corresponding spin-partners.

After Electroweak symmetry breaking (EWSB), the bosonic Higgs sector contains a

quintet of physical states: two CP-even scalars, h0 and H0, one CP-odd pseudoscalar, A0,

and a pair of charged scalar Higgs bosons, H± (naturally, this classification is only correct

when CP violation is absent in the Higgs sector. Non-trivial phases between certain soft-

breaking parameters will induce mixing between the CP eigenstates). The fermionic Higgs

(called ‘Higgsino’) sector is constituted by the superpartners of these fields, but these are

not normally exact mass eigenstates, so we temporarily postpone the discussion of them.

In the gauge sector, the spin-1/2 partners of the U(1)Y and SU(2)L gauge bosons

(called ‘gauginos’) are the Bino, B̃, the neutral Wino, W̃3, and the charged Winos, W̃1 and

W̃2, while the partner of the gluon is the gluino, g̃. After EWSB, the B̃ and W̃3 mix with

the neutral Higgsinos, H̃1, H̃2, to form four neutral Majorana fermion mass-eigenstates, the

neutralinos, χ̃0
1−4. In addition, the charged Higgsinos, H̃±, mix with the charged Winos,

W̃1 and W̃2, resulting in two charged Dirac fermion mass eigenstates, the charginos, χ̃±
1,2.

Note that the γ̃ and Z̃, which sometimes occur in the literature, are linear combinations of

the B̃ and W̃3, by exact analogy with the mixing giving the γ and Z0, but these are not

normally mass eigenstates after EWSB, due to the enlarged mixing caused by the presence

of the Higgsinos.

The spin-0 partners of the SM fermions (so-called ‘scalar fermions’, or ‘sfermions’) are

the squarks q̃, sleptons ˜̀, and sneutrinos ν̃. Each fermion (except possibly the neutrinos)

has two scalar partners, one associated with each of its chirality states. These are named

left-handed and right-handed sfermions, respectively. Due to their scalar nature, it is of
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course impossible for these particles to possess any intrinsic ‘handedness’ themselves, but

they inherit their couplings to the gauge sector from their SM partners, so that e.g. a d̃R

does not couple to SU(2)L while a d̃L does.

Generically, the KF code numbering scheme used in Pythia reflects the relationship

between particle and sparticle, so that e.g. for sfermions, the left-handed (right-handed)

superpartners have codes 1000000 (2000000) plus the code of the corresponding SM fermion.

A complete list of the particle partners and their KF codes is given in table 11. Note that,

antiparticles of scalar particles are denoted by ∗, i.e. t̃∗. A gravitino is also included

with KF=1000039. The gravitino is only relevant in Pythia when simulating models of

gauge-mediated SUSY breaking, where the gravitino becomes the lightest superpartner.

In practice, the gravitino simulated here is the spin-1
2 Goldstino components of the spin-3

2

gravitino.

The MSSM Lagrangian contains interactions between particles and sparticles, with

couplings fixed by SUSY. There are also a number of soft SUSY-breaking mass parameters.

‘Soft’ here means that they break the mass degeneracy between SM particles and their

SUSY partners without reintroducing quadratic divergences in the theory or destroying its

gauge invariance. In the MSSM, the soft SUSY-breaking parameters are extra mass terms

for gauginos and sfermions and trilinear scalar couplings. Further soft terms may arise, for

instance in models with broken R-parity, but we here restrict our attention to the minimal

case (for RPV in Pythia see section 8.7.7).

The exact number of independent parameters depends on the detailed mechanism

of SUSY breaking. The general MSSM model in Pythia assumes only a few relations

between these parameters which seem theoretically difficult to avoid. Thus, the first two

generations of sfermions with otherwise similar quantum numbers, e.g. d̃L and s̃L, have the

same masses. Despite such simplifications, there are a fairly large number of parameters

that appear in the SUSY Lagrangian and determine the physical masses and interactions

with Standard Model particles, though far less than the > 100 which are allowed in all

generality. The Lagrangian (and, hence, Feynman rules) follows the conventions set down

by Kane and Haber in their Physics Report article [Hab85] and the papers of Gunion

and Haber [Gun86a]. Once the parameters of the softly-broken SUSY Lagrangian are

specified, the interactions are fixed, and the sparticle masses can be calculated. Note that,

when using SUSY Les Houches Accord input, Pythia automatically translates between

the SLHA conventions and the above, with no action required on the part of the user.

8.7.2 Extended Higgs sector

Pythia already simulates a Two Higgs Doublet Model (2HDM) obeying tree-level relations

fixed by two parameters, which can be conveniently taken as the ratio of doublet vacuum

expectation values tan β, and the pseudoscalar mass MA (as noted earlier, for the non-SUSY

implementation of a 2HDM, the input parameters are Mh and tan β). The Higgs particles

are considered Standard Model fields, since a 2HDM is a straightforward extension of the

Standard Model. The MSSM Higgs sector is more complicated than that described above in

section 8.5, and includes important radiative corrections to the tree-level relations. The CP-

even Higgs mixing angle α is shifted as well as the full Higgs mass spectrum. The properties
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of the radiatively-corrected Higgs sector in Pythia are derived in the effective potential

approach [Car95]. The effective potential contains an all-orders resummation of the most

important radiative corrections, but makes approximations to the virtuality of internal

propagators. This is to be contrasted with the diagrammatic technique, which performs

a fixed-order calculation without approximating propagators. In practice, both techniques

can be systematically corrected for their respective approximations, so that there is good

agreement between their predictions, though sometimes the agreement occurs for slightly

different values of SUSY-breaking parameters. The calculation of the Higgs spectrum in

Pythia is based on the FORTRAN code SubHpole [Car95], which is also used in HDecay

[Djo97], except that certain corrections that are particularly important at large values of

tan β are included rigorously in Pythia.

There are several notable properties of the MSSM Higgs sector. As long as the soft

SUSY-breaking parameters are less than about 1.5 TeV, a number which represents a fair,

albeit subjective, limit for where the required degree of fine-tuning of MSSM parameters

becomes unacceptably large, there is an upper bound of about 135 GeV on the mass of

the CP-even Higgs boson most like the Standard Model one, i.e. the one with the largest

couplings to the W and Z bosons, be it the h or H. If it is h that is the SM-like Higgs

boson, then H can be significantly heavier. On the other hand, if H is the SM-like Higgs

boson, then h must be even lighter. If all SUSY particles are heavy, but MA is small, then

the low-energy theory would look like a two-Higgs-doublet model. For sufficiently large

MA, the heavy Higgs doublet decouples, and the effective low-energy theory has only one

light Higgs doublet with SM-like couplings to gauge bosons and fermions.

The Standard Model fermion masses are not fixed by SUSY, but their Yukawa couplings

become a function of tan β. For the up- and down-quark and leptons, mu = huv sin β,

md = hdv cos β, and m` = h`v cos β, where hf=u,d,` is the corresponding Yukawa coupling

and v ≈ 246 GeV is the order parameter of Electroweak symmetry breaking. At large tan β,

significant corrections can occur to these relations. These are included for the b quark,

which appears to have the most sensitivity to them, and the t quark in the subroutine

PYPOLE, based on an updated version of SubHpole, which also includes some bug fixes, so

that it is generally better behaved. The array values RMSS(40) and RMSS(41) are used for

temporary storage of the corrections ∆mt and ∆mb.

The input parameters that determine the MSSM Higgs sector in Pythia are RMSS(5)

(tan β), RMSS(19) (MA), RMSS(10-12) (the third generation squark mass parameters),

RMSS(15-16) (the third generation squark trilinear couplings), and RMSS(4) (the Higgsino

mass µ). Additionally, the large tan β corrections related to the b Yukawa coupling depend

on RMSS(3) (the gluino mass). Of course, these calculations also depend on SM parameters

(mt,mZ, αs, etc.). Any modifications to these quantities from virtual MSSM effects are not

taken into account. In principle, the sparticle masses also acquire loop corrections that

depend on all MSSM masses.

If IMSS(4) = 0, an approximate version of the effective potential calculation can be

used. It is not as accurate as that available for IMSS(4) = 1, but it useful for demonstrating

the effects of higher orders. Alternatively, for IMSS(4) = 2, the physical Higgs masses are

set by their PMAS values while the CP-even Higgs boson mixing angle α is set by RMSS(18).
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These values and tan β (RMSS(5)) are enough to determine the couplings, provided that

the same tree-level relations are used.

See section 8.7.5 for a description how to use the loop-improved RGE’s of Isasusy

to determine the SUSY mass and mixing spectrum (including also loop corrections to the

Higgs mass spectrum and couplings) with Pythia.

Finally, a run-time interface to FeynHiggs [Hei99], for the diagrammatic calculation

of the h0, H0, A0, and H+ masses and the mixing angle α in the MSSM, has been introduced,

available through the option IMSS(4) = 3. For the time being, it can be invoked either

when using an SLHA SUSY spectrum, i.e. for IMSS(1) = 11, or when using the run-time

interface to Isasusy, i.e. for IMSS(1) = 12 or 13. The interface calls three FeynHiggs

routines, in the following order:

• FHSETFLAGS(IERR,4,0,0,2,0,2,1,1) : these are the ‘default’ settings recom-

mended for FeynHiggs [Hei99].

• FHSETPARA : to set the MSSM parameters.

• FHHIGGSCORR : to get the corrected Higgs parameters.

Note that, for Pythia to compile properly without the FeynHiggs library, three dummy

routines have been added to the Pythia source code, corresponding to the three listed

above. To obtain proper linking with FeynHiggs, these dummy routines should first be

removed/renamed and the Pythia source recompiled without them. The interface has

been tested to work with FeynHiggs-2.2.8. Differences in the FeynHiggs and SubHpole

predictions represent, to some degree, the theoretical uncertainty in the MSSM Higgs

sector.

8.7.3 Superpartners of gauge and Higgs bosons

The chargino and neutralino masses and their mixing angles (that is, their gaugino and

Higgsino composition) are determined by the SM gauge boson masses (MW and MZ), tan β,

two soft SUSY-breaking parameters (the SU(2)L gaugino mass M2 and the U(1)Y gaugino

mass M1), together with the Higgsino mass parameter µ, all evaluated at the electroweak

scale ∼ MZ. Pythia assumes that the input parameters are evaluated at the ‘correct’ scale.

Obviously, more care is needed to set precise experimental limits or to make a connection

to higher-order calculations.

Explicit solutions of the chargino and neutralino masses and their mixing angles (which

appear in Feynman rules) are found by diagonalizing the 2 × 2 chargino MC and 4 × 4

neutralino MN mass matrices:

MC =

(
M2

√
2MWsβ√

2MWcβ µ

)
; MN =

(
Mi Z

ZT Mµ

)
(8.18)

Mi =

(
M1 0

0 M2

)
; Mµ =

(
0 −µ

−µ 0

)
; Z =

(
−MZcβsW MZsβsW

MZcβcW −MZsβcW

)

MC is written in the (W̃+, H̃+) basis, MN in the (B̃, W̃3, H̃1, H̃2) basis, with the notation

sβ = sin β, cβ = cos β, sW = sin θW and cW = cos θW . Different sign conventions and
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bases sometimes appear in the literature. In particular, Pythia agrees with the Isasusy

[Bae93] convention for µ, but uses a different basis of fields and has different-looking mixing

matrices.

In general, the soft SUSY-breaking parameters can be complex valued, resulting in CP

violation in some sector of the theory, but more directly expanding the possible masses and

mixings of sparticles. Presently, the consequences of arbitrary phases are only considered in

the chargino and neutralino sector, though it is well known that they can have a significant

impact on the Higgs sector. A generalization of the Higgs sector is among the plans for

the future development of the program. The chargino and neutralino input parameters are

RMSS(5) (tan β), RMSS(1) (the modulus of M1) and RMSS(30) (the phase of M1), RMSS(2)

and RMSS(31) (the modulus and phase of M2), and RMSS(4) and RMSS(33) (the modulus

and phase of µ). To simulate the case of real parameters (which is CP-conserving), the

phases are zeroed by default. In addition, the moduli parameters can be signed, to make

a simpler connection to the CP-conserving case. (For example, RMSS(5) = -100.0 and

RMSS(30) = 0.0 represents µ = −100 GeV.)

The expressions for the production cross sections and decay widths of neutralino and

chargino pairs contain the phase dependence, but ignore possible effects of the phases

in the sfermion masses appearing in propagators. The production cross sections have

been updated to include the dependence on beam polarization through the parameters

PARJ(131,132) (see section 8.8). There are several approximations made for three-body

decays. The numerical expressions for three-body decay widths ignore the effects of finite

fermion masses in the matrix element, but include them in the phase space. No three-body

decays χ0
i → t̄tχ0

j are simulated, nor χ+
i (χ0

i ) → tb̄χ0
j(χ

−
j ). Finally, the effects of mixing

between the third generation interaction and mass eigenstates for sfermions is ignored,

except that the physical sfermion masses are used. The kinematic distributions of the

decay products are spin-averaged, but include the correct matrix-element weighting. Note

that for the R-parity-violating decays (see below), both sfermion mixing effects and masses

of b, t, and τ are fully included.

In some corners of SUSY parameter space, special decay modes must be implemented

to capture important phenomenology. Three different cases are distinguished here: (1) In

the most common models of Supergravity-mediated SUSY breaking, small values of M1,

M2, µ and tan β can lead to a neutralino spectrum with small mass splittings. For this

case, the radiative decays χ0
i → χ0

jγ can be relevant, which are the SUSY analog of h → γγ

with two particles switched to superpartners to yield h̃ → γ̃γ, for example. These decays

are calculated approximately for all neutralinos when tan β ≤ 2, or the decay χ0
2 → χ0

1γ can

be forced using IMSS(10) = 1; (2) In models of gauge-mediated SUSY breaking (GMSB),

the gravitino G̃ is light and phenomenologically relevant at colliders. For IMSS(11) = 1,

the two-body decays of sparticle to particle plus gravitino are allowed. The most relevant

of these decay modes are likely χ0
1 → VG̃, with V = γ,Z or a Higgs boson; (3) In models of

anomaly-mediated SUSY breaking (AMSB), the wino mass parameter M2 is much smaller

than M1 or µ. As a result, the lightest chargino and neutralino are almost degenerate in

mass. At tree level, it can be shown analytically that the chargino should be heavier than
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the neutralino, but this is hard to achieve numerically. Furthermore, for this case, radiative

corrections are important in increasing the mass splitting more. Currently, if ever the

neutralino is heavier than the chargino when solving the eigenvalue problem numerically,

the chargino mass is set to the neutralino mass plus 2 times the charged pion mass, thus

allowing the decay χ̃±
1 → π±χ̃0

1.

Since the SU(3)C symmetry of the SM is not broken, the gluinos have masses deter-

mined by the SU(3)C gaugino mass parameter M3, input through the parameter RMSS(3).

The physical gluino mass is shifted from the value of the gluino mass parameter M3 be-

cause of radiative corrections. As a result, there is an indirect dependence on the squark

masses. Nonetheless, it is sometimes convenient to input the physical gluino mass, assum-

ing that there is some choice of M3 which would be shifted to this value. This can be

accomplished through the input parameter IMSS(3). A phase for the gluino mass can be

set using RMSS(32), and this can influence the gluino decay width (but no effect is included

in the g̃ + χ̃ production). Three-body decays of the gluino to t̄t and bb̄ and tb̄ plus the

appropriate neutralino or chargino are allowed and include the full effects of sfermion mix-

ing. However, they do not include the effects of phases arising from complex neutralino or

chargino parameters.

8.7.4 Superpartners of Standard Model fermions

The mass eigenstates of squarks and sleptons are, in principle, mixtures of their left- and

right-handed components, given by:

M2
f̃L

= m2
2 + m2

f + Df̃L
M2

f̃R
= m2

1 + m2
f + Df̃R

(8.19)

where m2 are soft SUSY-breaking parameters for superpartners of SU(2)L doublets, and

m1 are parameters for singlets. The D-terms associated with Electroweak symmetry break-

ing are Df̃L
= M2

Z cos(2β)(T3f
−Qf sin2 θW ) and Df̃R

= M2
Z cos(2β)Qf sin2 θW , where T3f

is the weak isospin eigenvalue (= ±1/2) of the fermion and Qf is the electric charge. Taking

the D-terms into account, one easily sees that the masses of sfermions in SU(2)L doublets

are related by a sum rule: M2
f̃L,T3=1/2

− M2
f̃L,T3=−1/2

= M2
Z cos(2β).

In many high-energy models, the soft SUSY-breaking sfermion mass parameters are

taken to be equal at the high-energy scale, but, in principle, they can be different for

each generation or even within a generation. However, the sfermion flavor dependence can

have important effects on low-energy observables, and it is often strongly constrained. The

suppression of flavor changing neutral currents (FCNC’s), such as KL → π◦νν̄, requires

that either (i) the squark soft SUSY-breaking mass matrix is diagonal and degenerate,

or (ii) the masses of the first- and second-generation sfermions are very large. Thus we

make the data-motivated simplification of setting MũL
= Mc̃L

, Md̃L
= Ms̃L

, MũR
= Mc̃R

,

Md̃R
= Ms̃R

.

The left-right sfermion mixing is determined by the product of soft SUSY-breaking

parameters and the mass of the corresponding fermion. Unless the soft SUSY-breaking

parameters for the first two generations are orders of magnitude greater than for the third

generation, the mixing in the first two generations can be neglected. This simplifying
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assumption is also made in Pythia: the sfermions q̃L,R, with q̃ = ũ, d̃, c̃, s̃, and ˜̀
L,R, ν̃`,

with ` = e, µ, are the real mass eigenstates with masses mq̃L,R
and m˜̀

L,R
,mν̃`

, respectively.

For the third generation sfermions, due to weaker experimental constraints, the left-right

mixing can be nontrivial. The tree-level mass matrix for the top squarks (stops) in the

(̃tL, t̃R) basis is given by

M2
t̃

=

(
m2

Q3
+ m2

t + Dt̃L
mt(At − µ/ tan β)

mt(At − µ/ tan β) m2
U3

+ m2
t + Dt̃R

)
, (8.20)

where At is a trilinear coupling. Different sign conventions for At occur in the literature;

Pythia and Isasusy use opposite signs. Unless there is a cancellation between At and

µ/ tan β, left-right mixing occurs for the stop squarks because of the large top quark mass.

The stop mass eigenstates are then given by

t̃1 = cos θt̃ t̃L + sin θt̃ t̃R

t̃2 = − sin θt̃ t̃L + cos θt̃ t̃R, (8.21)

where the masses and mixing angle θt̃ are fixed by diagonalizing the squared-mass matrix

Eq. (8.20). Note that different conventions exist also for the mixing angle θt̃, and that

Pythia here agrees with Isasusy. When translating Feynman rules from the (L,R) to

(1,2) basis, we use:

t̃L = cos θt̃ t̃1 − sin θt̃ t̃2

t̃R = sin θt̃ t̃1 + cos θt̃ t̃2. (8.22)

Because of the large mixing, the lightest stop t̃1 can be one of the lightest sparticles.

For the sbottom, an analogous formula for the mass matrix holds with mU3
→ mD3

,

At → Ab, Dt̃L,R
→ Db̃L,R

, mt → mb, and tan β → 1/ tan β. For the stau, the substitutions

mQ3
→ mL3

, mU3
→ mE3

, At → Aτ , Dt̃L,R
→ Dτ̃L,R

, mt → mτ and tan β → 1/tan β

are appropriate. The parameters At, Ab, and Aτ can be independent, or they might be

related by some underlying principle. When mb tan β or mτ tan β is large (O(mt)), left-

right mixing can also become relevant for the sbottom and stau.

Most of the SUSY input parameters are needed to specify the properties of the

sfermions. As mentioned earlier, the effects of mixing between the interaction and mass

eigenstates are assumed negligible for the first two generations. Furthermore, sleptons and

squarks are treated slightly differently. The physical slepton masses ˜̀
L and ˜̀

R are set

by RMSS(6) and RMSS(7). By default, the τ̃ mixing is set by the parameters RMSS(13),

RMSS(14) and RMSS(17), which represent ML3
, ME3

and Aτ , respectively, i.e. neither D-

terms nor mτ is included. However, for IMSS(8) = 1, the τ̃ masses will follow the same

pattern as for the first two generations. Previously, it was assumed that the soft SUSY-

breaking parameters associated with the stau included D-terms. This is no longer the

case, and is more consistent with the treatment of the stop and sbottom. For the first

two generations of squarks, the parameters RMSS(8) and RMSS(9) are the mass parameters

m2 and m1, i.e. without D-terms included. For more generality, the choice IMSS(9) =
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1 means that m1 for ũR is set instead by RMSS(22), while m1 for d̃R is RMSS(9). Note

that the left-handed squark mass parameters must have the same value since they reside in

the same SU(2)L doublet. For the third generation, the parameters RMSS(10), RMSS(11),

RMSS(12), RMSS(15) and RMSS(16) represent MQ3
, MD3

, MU3
, Ab and At, respectively.

There is added flexibility in the treatment of stops, sbottoms and staus. With the flag

IMSS(5) = 1, the properties of the third generation sparticles can be specified by their

mixing angle and mass eigenvalues (instead of being derived from the soft SUSY-breaking

parameters). The parameters RMSS(26) - RMSS(28) specify the mixing angle (in radians)

for the sbottom, stop, and stau. The parameters RMSS(10) - RMSS(14) specify the two

stop masses, the one sbottom mass (the other being fixed by the other parameters) and the

two stau masses. Note that the masses RMSS(10) and RMSS(13) correspond to the left-left

entries of the diagonalized matrices, while RMSS(11), RMSS(12) and RMSS(14) correspond

to the right-right entries. These entries need not be ordered in mass.

8.7.5 Models

At present, the exact mechanism of SUSY breaking is unknown. It is generally assumed

that the breaking occurs spontaneously in a set of fields that are almost entirely discon-

nected from the fields of the MSSM; if SUSY is broken explicitly in the MSSM, then

some superpartners must be lighter than the corresponding Standard Model particle, a

phenomenological disaster. The breaking of SUSY in this ‘hidden sector’ is then commu-

nicated to the MSSM fields through one or several mechanisms: gravitational interactions,

gauge interactions, anomalies, etc. While any one of these may dominate, it is also possible

that all contribute at once.

We may parametrize our ignorance of the exact mechanism of SUSY breaking by simply

setting each of the soft SUSY breaking parameters in the Lagrangian by hand. In Pythia

this approach can be effected by setting IMSS(1) = 1, although some simplifications have

already been made to greatly reduce the number of parameters from the initial more

than 100.

As to specific models, several exist which predict the rich set of measurable mass and

mixing parameters from the assumed soft SUSY breaking scenario with a much smaller

set of free parameters. One example is Supergravity (Sugra) inspired models, where

the number of free parameters is reduced by imposing universality at some high scale,

motivated by the apparent unification of gauge couplings. Five parameters fixed at the

gauge coupling unification scale, tan β,M0,m1/2, A0, and sign(µ), are then related to the

mass parameters at the scale of Electroweak symmetry breaking by renormalization group

equations (see e.g. [Pie97]).

The user who wants to study this and other models in detail can use spectrum calcu-

lation programs (e.g. Isasusy [Bae93], Softsusy [All02], SPheno [Por03], or Suspect

[Djo02]), which numerically solve the renormalization group equations (RGE) to determine

the mass and mixing parameters at the weak scale. These may then be input to Pythia via

a SLHA spectrum file [Ska03] using IMSS(1) = 11 and IMSS(21) equal to the unit number

where the spectrum file has been opened. All of Pythia’s own internal mSUGRA machin-

ery (see below) is then switched off. This means that none of the other IMSS switches can
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be used, except for IMSS(51:53) (R-parity violation), IMSS(10) (force χ̃2 → χ̃1γ), and

IMSS(11) (gravitino is the LSP). Note that the dependence of the b and t quark Yukawa

couplings on tan β and the gluino mass is at present ignored when using IMSS(1) = 11.

As an alternative, a run-time interface to Isasusy can be accessed by the options

IMSS(1) = 12 and IMSS(1) = 13, in which case the SUGRA routine of Isasusy is called

by PYINIT. This routine then calculates the spectrum of SUSY masses and mixings (CP

conservation, i.e. real-valued parameters, is assumed) and passes the information run-time

rather than in a file.

For IMSS(1) = 12, only the mSUGRA model of Isasusy can be accessed. The

mSUGRA model input parameters should then be given in RMSS as for IMSS(1) = 2, i.e.:

RMSS(1)= M1/2, RMSS(4) = sign(µ), RMSS(5)= tan β, RMSS(8)= M0, and RMSS(16)= A0.

For IMSS(1) = 13, the full range of Isasusy models can be interfaced, but the input

parameters must then be given in the form of an Isajet input file which Pythia reads

during initialization and passes to Isasusy. The contents of the input file should be

identical to what would normally be typed when using the Isajet RGE executable stand-

alone (normally isasugra.x). The input file should be opened by the user in his/her main

program and the Logical Unit Number should be stored in IMSS(20), where Pythia will

look for it during initialization.

The routine PYSUGI handles the conversion between the conventions of Pythia and

Isasusy, so that conventions are self-consistent inside Pythia. In the call to PYSUGI,

the RMSS array is filled with the values produced by Isasusy as for IMSS(1) = 1. In

particular, this means that when using the IMSS(1) = 12 option, the mSUGRA input

parameters mentioned above will be overwritten during initialization. Cross sections and

decay widths are then calculated by Pythia. Note that, since Pythia cannot always

be expected to be linked with Isajet, two dummy routines and a dummy function have

been added to the Pythia source. These are SUBROUTINE SUGRA, SUBROUTINE SSMSSM and

FUNCTION VISAJE. These must first be given other names and Pythia recompiled before

proper linking with Isajet can be achieved.

A problem is that the size of some Isasusy common blocks has been expanded in more

recent versions. Corresponding changes have been implemented in the PYSUGI interface

routine. Currently Pythia is matched to Isajet 7.71, and thus assumes the SSPAR, SUGPAS,

SUGMG and SUGXIN common blocks to have the forms:

COMMON/SSPAR/AMGLSS,AMULSS,AMURSS,AMDLSS,AMDRSS,AMSLSS

&,AMSRSS,AMCLSS,AMCRSS,AMBLSS,AMBRSS,AMB1SS,AMB2SS

&,AMTLSS,AMTRSS,AMT1SS,AMT2SS,AMELSS,AMERSS,AMMLSS,AMMRSS

&,AMLLSS,AMLRSS,AML1SS,AML2SS,AMN1SS,AMN2SS,AMN3SS

&,TWOM1,RV2V1,AMZ1SS,AMZ2SS,AMZ3SS,AMZ4SS,ZMIXSS(4,4)

&,AMW1SS,AMW2SS

&,GAMMAL,GAMMAR,AMHL,AMHH,AMHA,AMHC,ALFAH,AAT,THETAT

&,AAB,THETAB,AAL,THETAL,AMGVSS,MTQ,MBQ,MLQ,FBMA,

&VUQ,VDQ

REAL AMGLSS,AMULSS,AMURSS,AMDLSS,AMDRSS,AMSLSS
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&,AMSRSS,AMCLSS,AMCRSS,AMBLSS,AMBRSS,AMB1SS,AMB2SS

&,AMTLSS,AMTRSS,AMT1SS,AMT2SS,AMELSS,AMERSS,AMMLSS,AMMRSS

&,AMLLSS,AMLRSS,AML1SS,AML2SS,AMN1SS,AMN2SS,AMN3SS

&,TWOM1,RV2V1,AMZ1SS,AMZ2SS,AMZ3SS,AMZ4SS,ZMIXSS

&,AMW1SS,AMW2SS

&,GAMMAL,GAMMAR,AMHL,AMHH,AMHA,AMHC,ALFAH,AAT,THETAT

&,AAB,THETAB,AAL,THETAL,AMGVSS,MTQ,MBQ,MLQ,FBMA,VUQ,VDQ

COMMON /SUGPAS/ XTANB,MSUSY,AMT,MGUT,MU,G2,GP,V,VP,XW,

&A1MZ,A2MZ,ASMZ,FTAMZ,FBMZ,B,SIN2B,FTMT,G3MT,VEV,HIGFRZ,

&FNMZ,AMNRMJ,NOGOOD,IAL3UN,ITACHY,MHPNEG,ASM3,

&VUMT,VDMT,ASMTP,ASMSS,M3Q

REAL XTANB,MSUSY,AMT,MGUT,MU,G2,GP,V,VP,XW,

&A1MZ,A2MZ,ASMZ,FTAMZ,FBMZ,B,SIN2B,FTMT,G3MT,VEV,HIGFRZ,

&FNMZ,AMNRMJ,ASM3,VUMT,VDMT,ASMTP,ASMSS,M3Q

INTEGER NOGOOD,IAL3UN,ITACHY,MHPNEG

COMMON /SUGMG/ MSS(32),GSS(31),MGUTSS,GGUTSS,AGUTSS,FTGUT,

&FBGUT,FTAGUT,FNGUT

REAL MSS,GSS,MGUTSS,GGUTSS,AGUTSS,FTGUT,FBGUT,FTAGUT,FNGUT

COMMON /SUGXIN/ XISAIN(24),XSUGIN(7),XGMIN(14),XNRIN(4),

&XAMIN(7)

REAL XISAIN,XSUGIN,XGMIN,XNRIN,XAMIN

Isasusy users are warned to check that no incompatibilities arise between the versions

actually used. Unfortunately there is no universal solution to this problem: the Fortran

standard does not allow you dynamically to vary the size of a (named) common block. So if

you use an earlier Isasusy version, you have to shrink the size accordingly, and for a later

you may have to check that the above common blocks have not been expanded further.

As a cross check, the option IMSS(1) = 2 uses approximate analytical solutions of the

renormalization group equations [Dre95], which reproduce the output of Isasusy within

' 10% (based on comparisons of masses, decay widths, production cross sections, etc.).

This option is intended for debugging only, and does not represent the state-of-the-art.

In Sugra and in other models with the SUSY breaking scale of order MGUT, the spin–

3/2 superpartner of the graviton, the gravitino G̃ (code 1000039), has a mass of order MW

and interacts only gravitationally. In models of gauge-mediated SUSY breaking [Din96],

however, the gravitino can play a crucial role in the phenomenology, and can be the lightest

superpartner (LSP). Typically, sfermions decay to fermions and gravitinos, and neutralinos,

chargino, and gauginos decay to gauge or Higgs bosons and gravitinos. Depending on the

gravitino mass, the decay lengths can be substantial on the scale of colliders. Pythia

correctly handles finite decay lengths for all sparticles.

R-parity is a possible symmetry of the SUSY Lagrangian that prevents problems of

rapid proton decay and allows for a viable dark matter candidate. However, it is also pos-

sible to allow a restricted amount of R-parity violation. At present, there is no theoretical

consensus that R-parity should be conserved, even in string models. In the production of
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superpartners, Pythia assumes R-parity conservation (at least on the time and distance

scale of a typical collider experiment), and only lowest order, sparticle pair production pro-

cesses are included. Only those processes with e+e−, µ+µ−, or quark and gluon initial states

are simulated. Tables 20, 21 and 22 list available SUSY processes. In processes 210 and

213, ˜̀ refers to both ẽ and µ̃. For ease of readability, we have removed the subscript L on ν̃.

t̃it̃
∗
i , τ̃iτ̃

∗
j and τ̃iν̃

∗
τ production correctly account for sfermion mixing. Several processes are

conspicuously absent from the table. For example, processes 255 and 257 would simulate

the associated production of right-handed squarks with charginos. Since the right-handed

squark only couples to the higgsino component of the chargino, the interaction strength is

proportional to the quark mass, so these processes can be ignored.

By default, only R-parity conserving decays are allowed, so that one sparticle is stable,

either the lightest neutralino, the gravitino, or a sneutrino. SUSY decays of the top quark

are included, but all other SM particle decays are unaltered.

Generally, the decays of the superpartners are calculated using the formulae of

refs. [Gun88, Bar86a, Bar86b, Bar95]. All decays are spin averaged. Decays involving

b̃ and t̃ use the formulae of [Bar95], so they are valid for large values of tan β. The one

loop decays χ̃j → χ̃iγ and t̃ → cχ̃1 are also included, but only with approximate formula.

Typically, these decays are only important when other decays are not allowed because of

mixing effects or phase space considerations.

One difference between the SUSY simulation and the other parts of the program is that

it is not beforehand known which sparticles may be stable. Normally this would mean either

the χ̃0
1 or the gravitino G̃, but in principle also other sparticles could be stable. The ones

found to be stable have their MWID(KC) and MDCY(KC,1) values set zero at initialization. If

several PYINIT calls are made in the same run, with different SUSY parameters, the ones

set zero above are not necessarily set back to nonzero values, since most original values

are not saved anywhere. As an exception to this rule, the PYMSIN SUSY initialization

routine, called by PYINIT, does save and restore the MWID(KC) and MDCY(KC,1) values of

the lightest SUSY particle. It is therefore possible to combine several PYINIT calls in a

single run, provided that only the lightest SUSY particle is stable. If this is not the case,

MWID(KC) and MDCY(KC,1) values may have to be reset by hand, or else some particles that

ought to decay will not do that.

8.7.6 SUSY examples

The SUSY routines and common-block variables are described in section 9.5. To illustrate

the usage of the switches and parameters, we give six simple examples.

Example 1: light stop. The first example is an MSSM model with a light neutralino

χ̃1 and a light stop t̃1, so that t → t̃1χ̃1 can occur. The input parameters are

IMSS(1) = 1, RMSS(1) = 70., RMSS(2) = 70., RMSS(3) = 225., RMSS(4) = -40.,

RMSS(5) = 1.5, RMSS(6) = 100., RMSS(7) = 125., RMSS(8) = 250.,

RMSS(9) = 250., RMSS(10) = 1500., RMSS(11) = 1500., RMSS(12) = -128.,

RMSS(13) = 100., RMSS(14) = 125., RMSS(15) = 800., RMSS(16) = 800.,

RMSS(17) = 0., and RMSS(19) = 400.0.
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The top mass is fixed at 175 GeV, PMAS(6,1) = 175.0. The resulting model has Mt̃1
= 55

GeV and Mχ̃1
= 38 GeV. IMSS(1) = 1 turns on the MSSM simulation. By default, there

are no intrinsic relations between the gaugino masses, so M1 = 70 GeV, M2 = 70 GeV,

and M3 = 225 GeV. The pole mass of the gluino is slightly higher than the parameter M3,

and the decay g̃ → t̃∗1t + t̃1t occurs almost 100% of the time.

Example 2: SUSY Les Houches accord spectrum. The second example shows how

to input a spectrum file in the SUSY Les Houches Accord format [Ska03] to Pythia. First,

you should set IMSS(1) = 11 and open the spectrum file you want to use on some unused

Logical Unit Number. Then, set IMSS(21) equal to that number, to tell Pythia where to

read the spectrum file from. This should be done somewhere in your main program before

calling PYINIT. During the call to PYINIT, Pythia will read the spectrum file, perform a

number of consistency checks and issue warning messages if it finds something it does not

understand or which seems inconsistent. E.g. BLOCK GAUGE will normally be present in the

spectrum file, but since Pythia currently cannot use the information in that block, it will

issue a warning that the block will be ignored. In case a decay table is also desired to be

read in, the Logical Unit Number on which the decay table is opened should be put in

IMSS(22). To avoid inconsistencies, the spectrum and the decay table should normally go

together, so IMSS(22) should normally be equal to IMSS(21).

Example 3: calling Isasusy 7.71 at runtime using IMSS(1) = 12. The third ex-

ample shows how to use the built-in run-time interface to Isasusy with the IMSS(1) =

12 option. First, the Pythia source code needs to be changed. Rename the function

VISAJE to, for example, FDUMMY, rename the subroutines SUGRA and SSMSSM to e.g. SDUMM1

and SDUMM2, and recompile. In the calling program, set IMSS(1) = 12 and the RMSS in-

put parameters exactly as in example 5, and compile the executable while linked to both

Isajet and the modified Pythia. The resulting mass and mixing spectrum is printed in

the Pythia output.

Example 4: calling Isasusy 7.71 at runtime using IMSS(1) = 13. The fourth ex-

ample shows how to use the built-in run-time interface to Isasusy with the IMSS(1) = 13

option. First, the Pythia source code needs to be changed, cf. the previous example. In

the calling program, set IMSS(1) = 13 and open an Isajet SUSY model input file on any

available Logical Unit Number. The contents of the file should be exactly identical to what

would normally be typed when using the Isajet RGE executable stand-alone (normally

isasugra.x). Then, store that Unit Number in IMSS(20), that will enable Pythia to

access the correct file during initialization. Compile the executable while linked to both

Isajet and the modified Pythia. The resulting mass and mixing spectrum is printed in

the Pythia output.

Example 5: approximate SUGRA. This example shows you how to get a (very)

approximate SUGRA model. Note that this way of obtaining the SUSY spectrum should

never be used for serious studies. The input parameters are

IMSS(1) = 2, RMSS(1) = 200., RMSS(4) = 1., RMSS(5) = 10., RMSS(8) = 800., and
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RMSS(16) = 0.0.

The resulting model has Md̃L
= 901 GeV, MũR

= 890 GeV, Mt̃1
= 538 GeV, MẽL

= 814

GeV, Mg̃ = 560 GeV, Mχ̃1
= 80 GeV, Mχ̃±

1
= 151 GeV, Mh = 110 GeV, and MA = 883

GeV. It corresponds to the choice M0=800 GeV, M1/2 =200 GeV, tan β = 10, A0 = 0, and

sign(µ)> 0. The output is similar to an Isasusy run, but there is not exact agreement.

Example 6: Isasusy 7.71 model. The final example demonstrates how to convert the

output of an Isasusy run directly into the Pythia format, i.e. if SLHA output is not

available. This assumes that you already made an Isasusy run, e.g. with the equivalents

of the input parameters above. From the output of this run you can now extract those

physical parameters that need to be handed to Pythia, in the above example

IMSS(1) = 1, IMSS(3) = 1, IMSS(8) = 0, IMSS(9) = 1, RMSS(1) = 79.61,

RMSS(2) = 155.51, RMSS(3) = 533.1, RMSS(4) = 241.30, RMSS(5) = 10.,

RMSS(6) = 808.0, RMSS(7) = 802.8, RMSS(8) = 878.4, RMSS(9) = 877.1,

RMSS(10) = 743.81, RMSS(11) = 871.26, RMSS(12) = 569.87, RMSS(13) = 803.20,

RMSS(14) = 794.71, RMSS(15) = -554.96, RMSS(16) = -383.23, RMSS(17) = -126.11,

RMSS(19) = 829.94 and RMSS(22) = 878.5.

8.7.7 R-parity violation

R-parity, defined as R = (−1)2S+3B+L, is a discrete multiplicative symmetry where S is

the particle spin, B is the baryon number, and L is the lepton number. All SM particles

have R = 1, while all superpartners have R = −1, so a single SUSY particle cannot decay

into just SM particles if R-parity is conserved. In this case, the lightest superpartner

(LSP) is absolutely stable. Astrophysical considerations imply that a stable LSP should be

electrically neutral. Viable candidates are the lightest neutralino, the lightest sneutrino,

or alternatively the gravitino. Since the LSP can carry away energy without interacting

in a detector, the apparent violation of momentum conservation is an important part of

SUSY phenomenology. Also, when R-parity is conserved, superpartners must be produced

in pairs from a SM initial state. The breaking of the R-parity symmetry would result

in lepton- and/or baryon-number-violating processes. While there are strong experimental

constraints on some classes of R-parity-violating interactions, others are hardly constrained

at all.

One simple extension of the MSSM is to break the multiplicative R-parity symmetry.

Presently, neither experiment nor any theoretical argument demand R-parity conservation,

so it is natural to consider the most general case of R-parity breaking. It is convenient

to introduce a function of superfields called the superpotential, from which the Feynman

rules for R-parity-violating processes can be derived. The R-parity-violating (RPV) terms

which can contribute to the superpotential are:

WRPV = λijkL
iLjĒk + λ

′

ijkL
iQjD̄k + λ

′′

ijkŪ
iD̄jD̄k + εiLiH2 (8.23)

where i, j, k are generation indices (1,2,3), Li
1 ≡ νi

L, Li
2 = `i

L and Qi
1 = ui

L, Qi
2 = di

L are

lepton and quark components of SU(2)L doublet superfields, and Ei = ei
R, Di = di

R and

U i = ui
R are lepton, down- and up-quark SU(2)L singlet superfields, respectively. The

– 212 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

unwritten SU(2)L and SU(3)C indices imply that the first term is antisymmetric under

i ↔ j, and the third term is antisymmetric under j ↔ k. Therefore, i 6= j in LiLjĒk and

j 6= k in Ū iD̄jD̄k. The coefficients λijk, λ
′

ijk, λ
′′

ijk, and εi are Yukawa couplings, and there

is no a priori generic prediction for their values. In principle, WRPV contains 48 extra

parameters over the R-parity-conserving MSSM case. In Pythia the effects of the last

term in eq. (8.23) are not included.

Expanding eq. (8.23) as a function of the superfield components, the interaction La-

grangian derived from the first term is

LLLE = λijk

{
ν̃i

Lej
Lēk

R + ẽi
Lνj

Lēk
R + (ẽk

R)∗νi
Lej

L + h.c.
}

(8.24)

and from the second term,

LLQD = λ
′

ijk

{
ν̃i

Ldj
Ld̄k

R − ẽi
Luj

Ld̄k
R + d̃j

Lνi
Ld̄k

R − ũj
Lei

Ld̄k
R+

(d̃k
R)∗νi

Ldj
L − (d̃k

R)∗ei
Luj

L + h.c.
}

(8.25)

Both of these sets of interactions violate lepton number. The ŪD̄D̄ term, instead, violates

baryon number. In principle, all types of R-parity-violating terms may co-exist, but this

can lead to a proton with a lifetime shorter than the present experimental limits. The

simplest way to avoid this is to allow only operators which conserve baryon-number but

violate lepton-number or vice versa.

There are several effects on the SUSY phenomenology due to these new couplings:

(1) lepton- or baryon-number-violating processes are allowed, including the production of

single sparticles (instead of pair production), (2) the LSP is no longer stable, but can decay

to SM particles within a collider detector, and (3) because it is unstable, the LSP need not

be the neutralino or sneutrino, but can be charged and/or coloured.

In the current version of Pythia, decays of supersymmetric particles to SM parti-

cles via two different types of lepton-number-violating couplings and one type of baryon-

number-violating couplings can be invoked [Ska01, Sjo03].

Complete matrix elements (including L − R mixing for all sfermion generations) for

all two-body sfermion and three-body neutralino, chargino, and gluino decays are included

(as given in [Dre00]). The final-state fermions are treated as massive in the phase space

integrations and in the matrix elements for b, t, and τ .

The existence of R-odd couplings also allows for single sparticle production, i.e. there is

no requirement that SUSY particles should be produced in pairs. Single sparticle produc-

tion cross sections are not yet included in the program, and it may require some rethinking

of the parton shower to do so. For low-mass sparticles, the associated error is estimated

to be negligible, as long as the R-violating couplings are smaller than the gauge couplings.

For higher-mass sparticles, the reduction of the phase space for pair production becomes an

important factor, and single sparticle production could dominate even for very small values

of the R-violating couplings. The total SUSY production cross sections, as calculated by

Pythia in its current form are thus underestimated, possibly quite severely for heavy-mass

sparticles.
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Three possibilities exist for the initializations of the couplings, representing a fair but

not exhaustive range of models. The first, selected by setting IMSS(51) = 1 for LLE,

IMSS(52) = 1 for LQD, and/or IMSS(53) = 1 for UDD type couplings, sets all the cou-

plings, independent of generation, to a common value of 10−RMSS(51), 10−RMSS(52) , and/or

10−RMSS(53) , depending on which couplings are activated.

Taking now LLE couplings as an example, setting IMSS(51) = 2 causes the LLE cou-

plings to be initialized (in PYINIT) to so-called ‘natural’ generation-hierarchical values, as

proposed in [Hin93]. These values, inspired by the structure of the Yukawa couplings in

the SM, are defined by:

|λijk|2 = (RMSS(51))2m̂ei
m̂ej

m̂ek

|λ′
ijk|2 = (RMSS(52))2m̂ei

m̂qj
m̂dk

|λ′′
ijk|2 = (RMSS(53))2m̂qi

m̂qj
m̂qk

; m̂ ≡ m

v
=

m

126GeV
(8.26)

where mqi
is the arithmetic mean of mui

and mdi
.

The third option available is to set IMSS(51) = 3, IMSS(52) = 3, and/or IMSS(53)

= 3, in which case all the relevant couplings are zero by default (but the corresponding

lepton- or baryon-number-violating processes are turned on) and the user is expected to

enter the non-zero coupling values by hand. (Where antisymmetry is required, half of the

entries are automatically derived from the other half, see IMSS(51) = 3 and IMSS(53)

= 3.) RVLAM(i,j,k) contains the λijk, RVLAMP(i,j,k) contains the λ′
ijk couplings, and

RVLAMB(i,j,k) contains the λ′′
ijk couplings.

8.7.8 NMSSM

In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), three new particles

appear: a new CP-even Higgs boson H0
3 (code 45), a new CP-odd Higgs boson A0

2 (code

46), and an additional neutralino χ0
5 (code 1000045), where the particle codes are the ones

tentatively adopted by the SUSY Les Houches Accord (SLHA) community [All06].

Pythia does not contain any internal machinery for doing calculations in the NMSSM.

Thus, the basic scattering processes should be generated by an external program (e.g.

CompHEP/CalcHEP [Puk99]) and handed to Pythia via the Les Houches Accord in-

terface for parton-level events (LHA). This should then be combined with either setting

the NMSSM resonance decays by hand, or by reading in an SLHA decay table prepared by

an external decay package (e.g. NMHDecay [Ell05]). One possible chain of steps for gen-

erating fully simulated events for the NMSSM, starting from a high-scale model definition,

would thus be (see e.g. [Puk05]):

1. Obtain the EW scale masses and couplings for the model (e.g. by running NMHDe-

cay), and store the results as a SLHA spectrum file.

2. Compute decay widths and branching ratios for all relevant particles (by hand or

using some code), and store the resulting numbers in the SLHA decay table format.

3. Pass the spectrum to an NMSSM Matrix Element level generator (e.g. Com-

pHEP/CalcHEP), and obtain a set of elementary 2 → 2 (or 2 → ‘a few’) scat-

terings.
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4. Read in the SLHA spectrum and decay table into Pythia using IMSS(1) = 11 and

IMSS(13) = 1 (you need to set IMSS(21) and possibly IMSS(22) as well).

5. Read in the ME level events into Pythia using the LHA interface routines UPINIT

and UPEVNT.

8.7.9 Long-lived coloured sparticles

In SUSY scenarios, the coloured sparticles — squarks and gluinos — typically have widths

of several GeV, and thus decay well before they would have had time to hadronize. There

are specific cases in which one of them is more long-lived or even (quasi-)stable, however.

A recent example is the split SUSY scenarios, wherein the gauginos are rather light and

the sfermions very heavy [Ark05]. Then the gluino decay is strongly suppressed, since it

has to go via a virtual squark. In such cases, hadronic states may have time to form around

them. These are called R-hadrons, since they carry negative R-parity.

In the long-lived-gluino case, the set of possible R-hadrons include ‘gluino-balls’ g̃g,

‘gluino-mesons’ g̃qq and ‘gluino-baryons’ g̃qqq, in multiplets similarly to normal hadrons,

but of course with differences in the mass spectra and other properties. In the case of

a long-lived squark, such as the stop, there would be ‘squark-mesons’ q̃q and ‘squark-

baryons’ q̃qq. When they pass through a detector, they may undergo charge- and baryon-

number-changing interactions [Kra04], giving rise to quite spectacular and characteristic

experimental signals [Kra04a].

Owing to the somewhat special nature of their production, these R-hadrons do not

fit exactly into the current Pythia event generation chain, although all the separate tools

exist. Therefore the production of gluino- and stop-hadrons is simulated by two separate

add-on programs, available on the Pythia webpage, where the calling sequence is modified

as appropriate. In future versions with a modified administrative structure, the intention

is to include this capability in the standard distribution.

Finally, we note that a numbering scheme for R-hadrons is under development, for

eventual inclusion in the PDG standard. The abovementioned programs comply with the

draft proposal, but the absence of an approved standard is another reason why the programs

have not yet been fully integrated into Pythia.

8.8 Polarization

In most processes, incoming beams are assumed unpolarized. However, especially for e+e−

linear collider studies, polarized beams would provide further important information on

many new physics phenomena, and at times help to suppress backgrounds. Therefore a

few process cross sections are now available also for polarized incoming beams. The average

polarization of the two beams is then set by PARJ(131) and PARJ(132), respectively. In

some cases, noted below, MSTP(50) need also be switched on to access the formulae for

polarized beams.

Process 25, W+W− pair production, allows polarized incoming lepton beam particles.

The polarization effects are included both in the production matrix elements and in the

angular distribution of the final four fermions. Note that the matrix element used [Mah98]

is for on-shell W production, with a suppression factor added for finite width effects. This
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polarized cross section expression, evaluated at vanishing polarization, disagrees with the

standard unpolarized one, which presumably is the more accurate of the two. The difference

can be quite significant below threshold and at very high energies. This can be traced to

the simplified description of off-shell W’s in the polarized formulae. Good agreement is

obtained either by switching off the W width with MSTP(42) = 0 or by restricting the W

mass ranges (with CKIN(41) - CKIN(44)) to be close to on-shell. It is therefore necessary

to set MSTP(50) = 1 to switch from the default standard unpolarized formulae to the

polarized ones.

Also many SUSY production processes now include the effects from polarization of

the incoming fermion beams. This applies for scalar pair production, with the exception of

sneutrino pair production and h0A0 and H0A0 production, this omission being an oversight

at the time of this release, but easily remedied in the future.

The effect of polarized photons is included in the process γγ → FkFk, process 85. Here

the array values PARJ(131) and PARJ(132) are used to define the average longitudinal

polarization of the two photons.

8.9 Main processes by machine

In the previous section we have already commented on which processes have limited validity,

or have different meanings (according to conventional terminology) in different contexts.

Let us just repeat a few of the main points to be remembered for different machines.

8.9.1 e+e− collisions

The main annihilation process is number 1, e+e− → Z0, where in fact the full γ∗/Z0

interference structure is included. This process can be used, with some confidence, for c.m.

energies from about 4 GeV upwards, i.e. at DORIS/CESR/PEP-II/KEKB, PETRA/PEP,

TRISTAN, LEP, and any future linear colliders. (To get below 10 GeV, you have to change

PARP(2), however.) This is the default process obtained when MSEL = 1, i.e. when you do

not change anything yourself.

Process 141 contains a Z′0, including full interference with the standard γ∗/Z0. With

the value MSTP(44) = 4 in fact one is back at the standard γ∗/Z0 structure, i.e. the Z′0

piece has been switched off. Even so, this process may be useful, since it can simulate

e.g. e+e− → h0A0. Since the h0 may in its turn decay to Z0Z0, a decay channel of

the ordinary Z0 to h0A0, although physically correct, would be technically confusing. In

particular, it would be messy to set the original Z0 to decay one way and the subsequent

ones another. So, in this sense, the Z′0 could be used as a copy of the ordinary Z0, but

with a distinguishable label.

The process e+e− → Υ does not exist as a separate process in Pythia, but can be

simulated by using PYONIA, see section 6.2.

At LEP 2 and even higher energy machines, the simple s-channel process 1 loses out to

other processes, such as e+e− → Z0Z0 and e+e− → W+W−, i.e. processes 22 and 25. The

former process in fact includes the structure e+e− → (γ∗/Z0)(γ∗/Z0), which means that

the cross section is singular if either of the two γ∗/Z0 masses is allowed to vanish. A mass
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cut therefore needs to be introduced, and is actually also used in other processes, such as

e+e− → W+W−.

For practical applications, both with respect to cross sections and to event shapes,

it is imperative to include initial-state radiation effects. Therefore MSTP(11) = 1 is the

default, wherein exponentiated electron-inside-electron distributions are used to give the

momentum of the actually interacting electron. By radiative corrections to process 1, such

processes as e+e− → γZ0 are therefore automatically generated. If process 19 were to be

used at the same time, this would mean that radiation were to be double-counted. In the

alternative MSTP(11) = 0, electrons are assumed to deposit their full energy in the hard

process, i.e. initial-state QED radiation is not included. This option is very useful, since it

often corresponds to the ‘ideal’ events that one wants to correct back to.

Resolved electrons also means that one may have interactions between photons. This

opens up the whole field of γγ processes, which is described in section 8.3. In particular,

with ’gamma/e+’,’gamma/e-’ as beam and target particles in a PYINIT call, a flux of

photons of different virtualities is convoluted with a description of direct and resolved

photon interaction processes, including both low-p⊥ and high-p⊥ processes. This machinery

is directed to the description of the QCD processes, and does e.g. not address the production

of gauge bosons or other such particles by the interactions of resolved photons. For the

latter kind of applications, a simpler description of partons inside photons inside electrons

may be obtained with the MSTP(12) = 1 options and e± as beam and target particles.

The thrust of the Pythia programs is towards processes that involve hadron produc-

tion, one way or another. Because of generalizations from other areas, also a few completely

non-hadronic processes are available. These include Bhabha scattering, e+e− → e+e− in

process 10, and photon pair production, e+e− → γγ in process 18. However, note that

the precision that could be expected in a Pythia simulation of those processes is certainly

far less than that of dedicated programs. For one thing, electroweak loop effects are not

included. For another, nowhere is the electron mass taken into account, which means that

explicit cut-offs at some minimum p⊥ are always necessary.

8.9.2 Lepton-hadron collisions

The main option for photoproduction and Deeply Inelastic Scattering (DIS) physics is

provided by the ’gamma/lepton’ option as beam or target in a PYINIT call, see section 8.3.

The Q2 range to be covered, and other kinematics constraints, can be set by CKIN values.

By default, when the whole Q2 range is populated, obviously photoproduction dominates.

The older DIS process 10, `q → `′q′, includes γ0/Z0/W± exchange, with full inter-

ference, as described in section 8.3.2. The Z0/W± contributions are not implemented in

the ’gamma/lepton’ machinery. Therefore process 10 is still the main option for physics

at very high Q2, but has been superseded for lower Q2. Radiation off the incoming lepton

leg is included by MSTP(11) = 1 and off the outgoing one by MSTJ(41) = 2 (both are

default). Note that both QED and QCD radiation (off the e and the q legs, respectively)

are allowed to modify the x and Q2 values of the process, while the conventional approach

in the literature is to allow only the former. Therefore an option (on by default) has been
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added to preserve these values by a post-facto rescaling, MSTP(23) = 1. Further comments

on HERA applications are found in [Sjo92b, Fri00].

8.9.3 Hadron-hadron collisions

The default is to include QCD jet production by 2 → 2 processes, see section 8.2.1. Since

the differential cross section is divergent for p⊥ → 0, a lower cut-off has to be introduced.

Normally that cut-off is given by the user-set p⊥min value in CKIN(3). If CKIN(3) is chosen

smaller than a given value of the order of 2 GeV (see PARP(81) and PARP(82)), then low-p⊥
events are also switched on. The jet cross section is regularized at low p⊥, so as to obtain a

smooth joining between the high-p⊥ and the low-p⊥ descriptions, see further section 11.2.

As CKIN(3) is varied, the jump from one scenario to another is abrupt, in terms of cross

section: in a high-energy hadron collider, the cross section for jets down to a p⊥min scale of

a few GeV can well reach values much larger than the total inelastic, non-diffractive cross

section. Clearly this is nonsense; therefore either p⊥min should be picked so large that the

jet cross section be only a fraction of the total one, or else one should select p⊥min = 0 and

make use of the full description.

If one switches to MSEL = 2, also elastic and diffractive processes are switched on, see

section 8.2.4. However, the simulation of these processes is fairly primitive, and should not

be used for dedicated studies, but only to estimate how much they may contaminate the

class of non-diffractive minimum-bias events.

Most processes can be simulated in hadron colliders, since the bulk of Pythia processes

can be initiated by quarks or gluons. However, there are limits. Currently we include no

photon or lepton parton distributions, which means that a process like γq → γq is not

accessible. Further, the possibility of having Z0 and W± interacting in processes such as

71–77 has been hardwired process by process, and does not mean that there is a generic

treatment of Z0 and W± distributions.

The emphasis in the hadron-hadron process description is on high energy hadron col-

liders. The program can be used also at fixed-target energies, but the multiple interaction

model for underlying events then may break down and has to be used with caution. The

limit of ‘safe’ applicability is somewhere at around 100 GeV. Only with the simpler model

obtained for MSTP(82) = 1 can one go arbitrarily low.
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9. The process generation program elements

In the previous two sections, the physics processes and the event-generation schemes of

Pythia have been presented. Here, finally, the event-generation routines and the common-

block variables are described. However, routines and variables related to initial- and final-

state showers, beam remnants and underlying events, and fragmentation and decay are

relegated to subsequent sections on these topics.

In the presentation in this section, information less important for an efficient use of

Pythia has been put closer to the end. We therefore begin with the main event generation

routines, and follow this by the main common-block variables.

It is useful to distinguish three phases in a normal run with Pythia. In the first

phase, the initialization, the general character of the run is determined. At a minimum,

this requires the specification of the incoming hadrons and the energies involved. At the

discretion of the user, it is also possible to select specific final states, and to make a number

of decisions about details in the subsequent generation. This step is finished by a PYINIT

call, at which time several variables are initialized in accordance with the values set. The

second phase consists of the main loop over the number of events, with each new event being

generated by a call to either PYEVNT or PYEVNW (depending on which underlying-event and

parton-shower framework is desired; below we shall often not make the distinction explicit,

referring to both routines by PYEVNT generically). This event may then be analysed, using

information stored in some common blocks, and the statistics accumulated. In the final

phase, results are presented. This may often be done without the invocation of any Pythia

routines. From PYSTAT, however, it is possible to obtain a useful list of cross sections for

the different subprocesses.

9.1 The main subroutines

There are two routines that you must know: PYINIT for initialization, and either PYEVNT

or PYEVNW for the subsequent generation of each new event. In addition, the cross section

and other kinds of information available with PYSTAT are frequently useful. The other two

routines described here, PYFRAM and PYKCUT, are of more specialized interest.

CALL PYINIT(FRAME,BEAM,TARGET,WIN)

Purpose: to initialize the generation procedure. Normally it is foreseen that this call will

be followed by many PYEVNT (or PYEVNW) ones, to generate a sample of the event

kind specified by the PYINIT call. (For problems with cross section estimates in

runs of very few events per PYINIT call, see the description for PYSTAT(1) below

in this section.)

FRAME : a character variable used to specify the frame of the experiment. Upper-case and

lower-case letters may be freely mixed.

= ’CMS’ : colliding beam experiment in c.m. frame, with beam momentum in +z

direction and target momentum in −z direction.
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= ’FIXT’ : fixed-target experiment, with beam particle momentum pointing in +z

direction.

= ’3MOM’ : full freedom to specify frame by giving beam momentum in P(1,1),

P(1,2) and P(1,3) and target momentum in P(2,1), P(2,2) and P(2,3) in

common block PYJETS. Particles are assumed on the mass shell, and energies

are calculated accordingly.

= ’4MOM’ : as ’3MOM’, except also energies should be specified, in P(1,4) and

P(2,4), respectively. The particles need not be on the mass shell; effec-

tive masses are calculated from energy and momentum. (But note that

numerical precision may suffer; if you know the masses the option ’5MOM’

below is preferable.)

= ’5MOM’ : as ’3MOM’, except also energies and masses should be specified, i.e the full

momentum information in P(1,1) - P(1,5) and P(2,1) - P(2,5) should

be given for beam and target, respectively. Particles need not be on the

mass shell. Space-like virtualities should be stored as −
√
−m2. Especially

useful for physics with virtual photons. (The virtuality could be varied from

one event to the next, but then it is convenient to initialize for the lowest

virtuality likely to be encountered.) Four-momentum and mass information

must match.

= ’USER’ : a run primarily intended to involve Les Houches Accord external, user-

defined processes, see section 9.9. Information on incoming beam particles

and energies is read from the HEPRUP common block. In this option, the

BEAM, TARGET and WIN arguments are dummy.

= ’NONE’ : there will be no initialization of any processes, but only of resonance

widths and a few other process-independent variables. Subsequent to such

a call, PYEVNT cannot be used to generate events, so this option is mainly

intended for those who will want to construct their own events afterwards,

but still want to have access to some of the Pythia facilities. In this option,

the BEAM, TARGET and WIN arguments are dummy.

BEAM, TARGET : character variables to specify beam and target particles. Upper-case

and lower-case letters may be freely mixed. An antiparticle can be denoted by

‘bar’ at the end of the name (‘∼’ is a valid alternative for reasons of backwards

compatibility). It is also possible to leave out the underscore (‘ ’) directly after

‘nu’ in neutrino names, and the charge for proton and neutron. The arguments

are dummy when the FRAME argument above is either ’USER’ or ’NONE’.

= ’e-’ : electron.

= ’e+’ : positron.

= ’nu e’ : νe.

= ’nu ebar’ : νe.

= ’mu-’ : µ−.

= ’mu+’ : µ+.

= ’nu mu’ : νµ.

= ’nu mubar’ : νµ.
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= ’tau-’ : τ−.

= ’tau+’ : τ+.

= ’nu tau’ : ντ .

= ’nu taubar’ : ντ .

= ’gamma’ : photon (real, i.e. on the mass shell).

= ’gamma/e-’ : photon generated by the virtual-photon flux in an electron beam;

WIN below refers to electron, while photon energy and virtuality varies be-

tween events according to what is allowed by CKIN(61) - CKIN(78).

= ’gamma/e+’ : as above for a positron beam.

= ’gamma/mu-’ : as above for a µ− beam.

= ’gamma/mu+’ : as above for a µ+ beam.

= ’gamma/tau-’ : as above for a τ− beam.

= ’gamma/tau+’ : as above for a τ+ beam.

= ’pi0’ : π0.

= ’pi+’ : π+.

= ’pi-’ : π−.

= ’n0’ : neutron.

= ’nbar0’ : antineutron.

= ’p+’ : proton.

= ’pbar-’ : antiproton.

= ’K+’ : K+ meson; since parton distributions for strange hadrons are not avail-

able, very simple and untrustworthy recipes are used for this and subsequent

hadrons, see section 7.1.

= ’K-’ : K− meson.

= ’KS0’ : K0
S meson.

= ’KL0’ : K0
L meson.

= ’Lambda0’ : Λ baryon.

= ’Sigma-’ : Σ− baryon.

= ’Sigma0’ : Σ0 baryon.

= ’Sigma+’ : Σ+ baryon.

= ’Xi-’ : Ξ− baryon.

= ’Xi0’ : Ξ0 baryon.

= ’Omega-’ : Ω− baryon.

= ’pomeron’ : the pomeron IP; since pomeron parton distribution functions have

not been defined this option can not be used currently.

= ’reggeon’ : the reggeon IR, with comments as for the pomeron above.

WIN : related to energy of system, exact meaning depends on FRAME.

FRAME = ’CMS’ : total energy of system (in GeV).

FRAME = ’FIXT’ : momentum of beam particle (in GeV/c).

FRAME = ’3MOM’, ’4MOM’, ’5MOM’ : dummy (information is taken from the P vec-

tors, see above).

FRAME = ’USER’ : dummy (information is taken from the HEPRUP common block, see

above).
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FRAME = ’NONE’ : dummy (no information required).

CALL PYEVNT

Purpose: to generate one event of the type specified by the PYINIT call, using the tradi-

tional ‘old’ underlying-event and parton-shower model. It is also possible to have

PYEVNT call PYEVNW to access the ‘new’ model that way, see further MSTP(81).

(This is the main routine, which calls a number of other routines for specific

tasks.)

CALL PYEVNW

Purpose: to generate one event of the type specified by the PYINIT call, using the ‘new’

underlying-event and parton-shower model. (This is the main routine, which calls

a number of other routines for specific tasks.)

Warning: this routine can be used in exactly the same way as PYEVNT. Technically, one

can freely mix calls to the two routines in the same run, after the PYINIT call.

However, several of the multiple interactions and shower parameters have a differ-

ent meaning, or at least a different proposed best value, which means that caution

is recommended. For instance, a change of p⊥0 in PARP(82) is almost certainly

necessary between PYEVNT and PYEVNW, and this require a re-initialization to take

effect, so in the end one cannot mix.

CALL PYSTAT(MSTAT)

Purpose: to print out cross-sections statistics, decay widths, branching ratios, status

codes and parameter values. PYSTAT may be called at any time, after the PYINIT

call, e.g. at the end of the run, or not at all.

MSTAT : specification of desired information.

= 1 : prints a table of how many events of the different kinds that have been

generated and the corresponding cross sections. All numbers already include

the effects of cuts required by you in PYKCUT.

At the bottom of the listing is also given the total number of warnings and

errors in the current run. (These numbers are reset at each PYINIT call.)

By default only the ten first warnings and errors are written explicitly; here

one may easily see whether many further occured but were not written in

the output. The final number is the fraction of events that have failed

the fragmentation cuts, i.e. where, for one reason or another, the program

has had problems fragmenting the system and has asked for a new hard

subprocess.

Note that no errors are given on the cross sections. In most cases a cross

section is obtained by Monte Carlo integration during the course of the

– 222 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

run. (Exceptions include e.g. total and elastic hadron-hadron cross sections,

which are parameterized and thus known from the very onset.) A rule of

thumb would then be that the statistical error of a given subprocess scales

like δσ/σ ≈ 1/
√

n, where n is the number of events generated of this kind. In

principle, the numerator of this relation could be decreased by making use of

the full information accumulated during the run, i.e. also on the cross section

in those phase space points that are eventually rejected. This is actually the

way the cross section itself is calculated. However, once you introduce further

cuts so that only some fraction of the generated events survive to the final

analysis, you would be back to the simple 1/
√

n scaling rule for that number

of surviving events. Statistical errors are therefore usually better evaluated

within the context of a specific analysis. Furthermore, systematic errors

often dominate over the statistical ones.

Also note that runs with very few events, in addition to having large errors,

tend to have a bias towards overestimating the cross sections. In a typical

case, the average cross section obtained with many runs of only one event

each may be twice that of the correct answer of a single run with many

events. The reason is a ‘quit while you are ahead’ phenomenon, that an

upwards fluctuation in the differential cross section in an early try gives an

acceptable event and thus terminates the run, while a downwards one leads

to rejection and a continuation of the run.

= 2 : prints a table of the resonances defined in the program, with their particle

codes (KF), and all allowed decay channels. (If the number of generations

in MSTP(1) is 3, however, channels involving fourth-generation particles are

not displayed.) For each decay channel is shown the sequential channel

number (IDC) of the Pythia decay tables, the decay products (usually two

but sometimes three), the partial decay width, branching ratio and effective

branching ratio (in the event some channels have been excluded by you).

= 3 : prints a table with the allowed hard interaction flavours KFIN(I,J) for beam

and target particles.

= 4 : prints a table of the kinematical cuts CKIN(I) set by you in the current run.

= 5 : prints a table with all the values of the status codes MSTP(I) and the pa-

rameters PARP(I) used in the current run.

= 6 : prints a table of all subprocesses implemented in the program.

= 7 : prints two tables related to R-violating supersymmetry, where lepton and/or

baryon number is not conserved. The first is a collection of semi-inclusive

branching ratios where the entries have a form like ~chi 10 --> nu + q +

q, where a sum has been performed over all lepton and quark flavours. In

the rightmost column of the table, the number of modes that went into the

sum is given. The purpose of this table is to give a quick overview of the

branching fractions, since there are currently more than 1500 individual R-

violating processes included in the generator. Note that only the pure 1 → 3

parts of the 3-body modes are included in this sum. If a process can also
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proceed via two successive 1 → 2 branchings (i.e. the intermediate resonance

is on shell) the product of these branchings should be added to the number

given in this table. A small list at the bottom of the table shows the total

number of R-violating processes in the generator, the number with non-zero

branching ratios in the current run, and the number with branching ratios

larger than 10−3. The second table which is printed by this call merely lists

the R-violating λ, λ′, and λ′′ couplings.

CALL PYFRAM(IFRAME)

Purpose: to transform an event listing between different reference frames, if so desired.

The use of this routine assumes you do not do any boosts yourself.

IFRAME : specification of frame the event is to be boosted to.

= 1 : frame specified by you in the PYINIT call.

= 2 : c.m. frame of incoming particles.

= 3 : hadronic c.m. frame of lepton-hadron interaction events. Mainly intended

for Deeply Inelastic Scattering, but can also be used in photoproduction. Is

not guaranteed to work with the ’gamma/lepton’ options, however, and so

of limited use. Note that both the lepton and any photons radiated off the

lepton remain in the event listing, and have to be removed separately if you

only want to study the hadronic subsystem.

CALL PYKCUT(MCUT)

Purpose: to enable you to reject a given set of kinematic variables at an early stage of

the generation procedure (before evaluation of cross sections), so as not to spend

unnecessary time on the generation of events that are not wanted. The routine

will not be called unless you require is by setting MSTP(141) = 1, and never if

‘minimum-bias’-type events (including elastic and diffractive scattering) are to

be generated as well. Furthermore it is never called for user-defined external

processes. A dummy routine PYKCUT is included in the program file, so as to

avoid unresolved external references when the routine is not used.

MCUT : flag to signal effect of user-defined cuts.

= 0 : event is to be retained and generated in full.

= 1 : event is to be rejected and a new one generated.

Remark : at the time of selection, several variables in the MINT and VINT arrays in the

PYINT1 common block contain information that can be used to make the deci-

sion. The routine provided in the program file explicitly reads the variables that

have been defined at the time PYKCUT is called, and also calculates some derived

quantities. The information available includes subprocess type ISUB, Ecm, ŝ, t̂, û,

p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of these may not be relevant

for the process under study, and are then set to zero.
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9.2 Switches for event type and kinematics selection

By default, if Pythia is run for a hadron collider, only QCD 2 → 2 processes are generated,

composed of hard interactions above p⊥min =PARP(81), with low-p⊥ processes added on

so as to give the full (parameterized) inelastic, non-diffractive cross section. In an e+e−

collider, γ∗/Z0 production is the default, and in an ep one it is Deeply Inelastic Scattering.

With the help of the common block PYSUBS, it is possible to select the generation of another

process, or combination of processes. It is also allowed to restrict the generation to specific

incoming partons/particles at the hard interaction. This often automatically also restricts

final-state flavours but, in processes such as resonance production or QCD/QED production

of new flavours, switches in the Pythia program may be used to this end; see section 14.4.

The CKIN array may be used to impose specific kinematics cuts. You should here

be warned that, if kinematical variables are too strongly restricted, the generation time

per event may become very long. In extreme cases, where the cuts effectively close the

full phase space, the event generation may run into an infinite loop. The generation of

2 → 1 resonance production is performed in terms of the ŝ and y variables, and so the

ranges CKIN(1) - CKIN(2) and CKIN(7) - CKIN(8) may be arbitrarily restricted without

a significant loss of speed. For 2 → 2 processes, cos θ̂ is added as a third generation variable,

and so additionally the range CKIN(27) - CKIN(28) may be restricted without any loss of

efficiency.

Effects from initial- and final-state radiation are not included, since they are not known

at the time the kinematics at the hard interaction is selected. The sharp kinematical cut-

offs that can be imposed on the generation process are therefore smeared, both by QCD

radiation and by fragmentation. A few examples of such effects follow.

• Initial-state radiation implies that each of the two incoming partons has a non-

vanishing p⊥ when they interact. The hard scattering subsystem thus receives a

net transverse boost, and is rotated with respect to the beam directions. In a 2 → 2

process, what typically happens is that one of the scattered partons receives an in-

creased p⊥, while the p⊥ of the other parton can be reduced or increased, depending

on the detailed topology.

• Since the initial-state radiation machinery assigns space-like virtualities to the incom-

ing partons, the definitions of x in terms of energy fractions and in terms of momen-

tum fractions no longer coincide, and so the interacting subsystem may receive a net

longitudinal boost compared with näıve expectations, as part of the parton-shower

machinery.

• Initial-state radiation gives rise to additional jets, which in extreme cases may be

mistaken for either of the jets of the hard interaction.

• Final-state radiation gives rise to additional jets, which smears the meaning of the

basic 2 → 2 scattering. The assignment of soft jets is not unique. The energy of a

jet becomes dependent on the way it is identified, e.g. what jet cone size is used.

• The beam-remnant description assigns primordial k⊥ values, which also gives a net

p⊥ shift of the hard-interaction subsystem; except at low energies this effect is over-

shadowed by initial-state radiation, however. Beam remnants may also add further
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activity under the ‘perturbative’ event.

• Fragmentation will further broaden jet profiles, and make jet assignments and energy

determinations even more uncertain.

In a study of events within a given window of experimentally defined variables, it is up

to you to leave such liberal margins that no events are missed. In other words, cuts have

to be chosen such that a negligible fraction of events migrate from outside the simulated

region to inside the interesting region. Often this may lead to low efficiency in terms of

what fraction of the generated events are actually of interest to you. See also section 3.6.

In addition to the variables found in PYSUBS, also those in the PYPARS common block

may be used to select exactly what one wants to have simulated. These possibilities will

be described in the following section.

The notation used above and in the following is that ‘̂ ’ denotes internal variables in

the hard-scattering subsystem, while ‘∗’ is for variables in the c.m. frame of the event as a

whole.

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

Purpose: to allow you to run the program with any desired subset of processes, or restrict

flavours or kinematics. If the default values, denoted below by (D = . . . ), are not

satisfactory, they must be changed before the PYINIT call.

MSEL : (D = 1) a switch to select between full user control and some preprogrammed

alternatives.

= 0 : desired subprocesses have to be switched on in MSUB, i.e. full user control.

= 1 : depending on incoming particles, different alternatives are used.

Lepton–lepton: Z or W production (ISUB = 1 or 2).

Lepton-hadron: Deeply Inelastic Scattering (ISUB = 10; this option is now

out of date for most applications, superseded by the ’gamma/lepton’ ma-

chinery).

Hadron-hadron: QCD high-p⊥ processes (ISUB = 11, 12, 13, 28, 53, 68);

additionally low-p⊥ production if CKIN(3) < PARP(81) or PARP(82), de-

pending on MSTP(82) (ISUB = 95). If low-p⊥ is switched on, the other CKIN

cuts are not used.

A resolved photon counts as hadron. When the photon is not resolved, the

following cases are possible.

Photon–lepton: Compton scattering (ISUB = 34).

Photon–hadron: photon-parton scattering (ISUB = 33, 34, 54).

Photon–photon: fermion pair production (ISUB = 58).

When photons are given by the ’gamma/lepton’ argument in the PYINIT

call, the outcome depends on the MSTP(14) value. Default is a mixture of

many kinds of processes, as described in section 8.3.

= 2 : as MSEL = 1 for lepton–lepton, lepton-hadron and unresolved photons. For

hadron-hadron (including resolved photons) all QCD processes, including
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low-p⊥, single and double diffractive and elastic scattering, are included

(ISUB = 11, 12, 13, 28, 53, 68, 91, 92, 93, 94, 95). The CKIN cuts are

here not used.

For photons given with the ’gamma/lepton’ argument in the PYINIT call,

the above processes are replaced by other ones that also include the photon

virtuality in the cross sections. The principle remains to include both high-

and low-p⊥ processes, however.

= 4 : charm (cc) production with massive matrix elements (ISUB = 81, 82, 84, 85).

= 5 : bottom (bb) production with massive matrix elements (ISUB = 81, 82, 84,

85).

= 6 : top (tt) production with massive matrix elements (ISUB = 81, 82, 84, 85).

= 7 : fourth generation b′ (b′b
′
) production with massive matrix elements (ISUB

= 81, 82, 84, 85).

= 8 : fourth generation t′ (t′t
′
) production with massive matrix elements (ISUB =

81, 82, 84, 85).

= 10 : prompt photons (ISUB = 14, 18, 29).

= 11 : Z0 production (ISUB = 1).

= 12 : W± production (ISUB = 2).

= 13 : Z0 + jet production (ISUB = 15, 30).

= 14 : W± + jet production (ISUB = 16, 31).

= 15 : pair production of different combinations of γ, Z0 and W± (except γγ; see

MSEL = 10) (ISUB = 19, 20, 22, 23, 25).

= 16 : h0 production (ISUB = 3, 102, 103, 123, 124).

= 17 : h0Z0 or h0W± (ISUB = 24, 26).

= 18 : h0 production, combination relevant for e+e− annihilation (ISUB = 24, 103,

123, 124).

= 19 : h0, H0 and A0 production, excepting pair production (ISUB = 24, 103, 123,

124, 153, 158, 171, 173, 174, 176, 178, 179).

= 21 : Z′0 production (ISUB = 141).

= 22 : W′± production (ISUB = 142).

= 23 : H± production (ISUB = 143).

= 24 : R0 production (ISUB = 144).

= 25 : LQ (leptoquark) production (ISUB = 145, 162, 163, 164).

= 35 : single bottom production by W exchange (ISUB = 83).

= 36 : single top production by W exchange (ISUB = 83).

= 37 : single b′ production by W exchange (ISUB = 83).

= 38 : single t′ production by W exchange (ISUB = 83).

= 39 : all MSSM processes except Higgs production.

= 40 : squark and gluino production (ISUB = 243, 244, 258, 259, 271–280).

= 41 : stop pair production (ISUB = 261–265).

= 42 : slepton pair production (ISUB = 201–214).

= 43 : squark or gluino with chargino or neutralino, (ISUB = 237–242, 246–256).

= 44 : chargino–neutralino pair production (ISUB = 216–236).
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= 45 : sbottom production (ISUB = 281–296).

= 50 : pair production of technipions and gauge bosons by π0,±
tc /ω0

tc exchange (ISUB

= 361–377).

= 51 : standard QCD 2 → 2 processes 381–386, with possibility to introduce com-

positeness/technicolor modifications, see ITCM(5).

= 61 : charmonimum production in the NRQCD framework, (ISUB = 421–439).

= 62 : bottomonimum production in the NRQCD framework, (ISUB = 461–479).

= 63 : both charmonimum and bottomonimum production in the NRQCD frame-

work, (ISUB = 421–439, 461–479).

MSUB : (D = 500*0) array to be set when MSEL = 0 (for MSEL ≥ 1 relevant entries are set

in PYINIT) to choose which subset of subprocesses to include in the generation.

The ordering follows the ISUB code given in section 8.1 (with comments as given

there).

MSUB(ISUB) = 0 : the subprocess is excluded.

MSUB(ISUB) = 1 : the subprocess is included.

Note: when MSEL = 0, the MSUB values set by you are never changed by Pythia.

If you want to combine several different ‘subruns’, each with its own PYINIT

call, into one single run, it is up to you to remember not only to switch on

the new processes before each new PYINIT call, but also to switch off the old

ones that are no longer desired.

KFIN(I,J) : provides an option to selectively switch on and off contributions to the cross

sections from the different incoming partons/particles at the hard interaction. In

combination with the Pythia resonance decay switches, this also allows you to

set restrictions on flavours appearing in the final state.

I : is 1 for beam side of event and 2 for target side.

J : enumerates flavours according to the KF code; see section 5.1.

KFIN(I,J) = 0 : the parton/particle is forbidden.

KFIN(I,J) = 1 : the parton/particle is allowed.

Note: by default, the following are switched on: d, u, s, c, b, e−, νe, µ−, νµ, τ−,

ντ , g, γ, Z0, W+ and their antiparticles. In particular, top is off, and has to

be switched on explicitly if needed.

CKIN : kinematics cuts that can be set by you before the PYINIT call, and that affect

the region of phase space within which events are generated. Some cuts are

‘hardwired’ while most are ‘softwired’. The hardwired ones are directly related

to the kinematical variables used in the event selection procedure, and therefore

have negligible effects on program efficiency. The most important of these are

CKIN(1) - CKIN(8), CKIN(27) - CKIN(28), and CKIN(31) - CKIN(32). The

softwired ones are most of the remaining ones, that cannot be fully taken into

account in the kinematical variable selection, so that generation in constrained

regions of phase space may be slow. In extreme cases the phase space may be

so small that the maximization procedure fails to find any allowed points at all
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(although some small region might still exist somewhere), and therefore switches

off some subprocesses, or aborts altogether.

CKIN(1), CKIN(2) : (D = 2., −1. GeV) range of allowed m̂ =
√

ŝ values. If CKIN(2)

< 0., the upper limit is inactive.

CKIN(3), CKIN(4) : (D = 0., −1. GeV) range of allowed p̂⊥ values for hard 2 → 2

processes, with transverse momentum p̂⊥ defined in the rest frame of the hard

interaction. If CKIN(4) < 0., the upper limit is inactive. For processes that

are singular in the limit p̂⊥ → 0 (see CKIN(6)), CKIN(5) provides an additional

constraint. The CKIN(3) and CKIN(4) limits can also be used in 2 → 1 → 2

processes. Here, however, the product masses are not known and hence are

assumed to be vanishing in the event selection. The actual p⊥ range for massive

products is thus shifted downwards with respect to the nominal one.

Note 1: for processes that are singular in the limit p̂⊥ → 0, a careful choice of

CKIN(3) value is not only a matter of technical convenience, but a require-

ment for obtaining sensible results. One example is the hadroproduction of

a W± or Z0 gauge boson together with a jet, discussed in section 8.4.2. Here

the point is that this is a first-order process (in αs), correcting the zeroth-

order process of a W± or Z0 without any jet. A full first-order description

would also have to include virtual corrections in the low-p̂⊥ region.

Generalizing also to other processes, the simple-minded higher-order descrip-

tion breaks down when CKIN(3) is selected so small that the higher-order

process cross section corresponds to a non-negligible fraction of the lower-

order one. This number will vary depending on the process considered and

the c.m. energy used, but could easily be tens of GeV rather than the de-

fault 1 GeV provided as technical cut-off in CKIN(5). Processes singular in

p̂⊥ → 0 should therefore only be used to describe the high-p⊥ behaviour,

while the lowest-order process complemented with parton showers should

give the inclusive distribution and in particular the one at small p⊥ values.

Technically the case of QCD production of two jets is slightly more com-

plicated, and involves eikonalization to multiple parton-parton scattering,

section 11.2, but again the conclusion is that the processes have to be han-

dled with care at small p⊥ values.

Note 2: there are a few situations in which CKIN(3) may be overwritten; especially

when different subprocess classes are mixed in γp or γγ collisions, see section

8.3.

CKIN(5) : (D = 1. GeV) lower cut-off on p̂⊥ values, in addition to the CKIN(3) cut above,

for processes that are singular in the limit p̂⊥ → 0 (see CKIN(6)).

CKIN(6) : (D = 1. GeV) hard 2 → 2 processes, which do not proceed only via an

intermediate resonance (i.e. are 2 → 1 → 2 processes), are classified as singular

in the limit p̂⊥ → 0 if either or both of the two final-state products has a mass

m < CKIN(6).

CKIN(7), CKIN(8) : (D = −10., 10.) range of allowed scattering subsystem rapidities

y = y∗ in the c.m. frame of the event, where y = (1/2) ln(x1/x2). (Following the
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notation of this section, the variable should be given as y∗, but because of its

frequent use, it was called y in section 7.2.)

CKIN(9), CKIN(10) : (D = −40., 40.) range of allowed (true) rapidities for the product

with largest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.

frame of the event, i.e. max(y∗3 , y
∗
4). Note that rapidities are counted with sign,

i.e. if y∗3 = 1 and y∗4 = −2 then max(y∗3 , y
∗
4) = 1.

CKIN(11), CKIN(12) : (D = −40., 40.) range of allowed (true) rapidities for the product

with smallest rapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m. frame

of the event, i.e. min(y∗3, y
∗
4). Consistency thus requires CKIN(11) ≤ CKIN(9) and

CKIN(12) ≤ CKIN(10).

CKIN(13), CKIN(14) : (D = −40., 40.) range of allowed pseudorapidities for the product

with largest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the

c.m. frame of the event, i.e. max(η∗3 , η∗4). Note that pseudorapidities are counted

with sign, i.e. if η∗3 = 1 and η∗4 = −2 then max(η∗3 , η
∗
4) = 1.

CKIN(15), CKIN(16) : (D = −40., 40.) range of allowed pseudorapidities for the product

with smallest pseudorapidity in a 2 → 2 or a 2 → 1 → 2 process, defined in the

c.m. frame of the event, i.e. min(η∗3 , η
∗
4). Consistency thus requires CKIN(15) ≤

CKIN(13) and CKIN(16) ≤ CKIN(14).

CKIN(17), CKIN(18) : (D = −1., 1.) range of allowed cos θ∗ values for the product with

largest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m. frame

of the event, i.e. max(cos θ∗3, cos θ∗4).

CKIN(19), CKIN(20) : (D = −1., 1.) range of allowed cos θ∗ values for the product with

smallest cos θ∗ value in a 2 → 2 or a 2 → 1 → 2 process, defined in the c.m.

frame of the event, i.e. min(cos θ∗3, cos θ∗4). Consistency thus requires CKIN(19) ≤
CKIN(17) and CKIN(20) ≤ CKIN(18).

CKIN(21), CKIN(22) : (D = 0., 1.) range of allowed x1 values for the parton on side 1

that enters the hard interaction.

CKIN(23), CKIN(24) : (D = 0., 1.) range of allowed x2 values for the parton on side 2

that enters the hard interaction.

CKIN(25), CKIN(26) : (D = −1., 1.) range of allowed Feynman-x values, where xF =

x1 − x2.

CKIN(27), CKIN(28) : (D = −1., 1.) range of allowed cos θ̂ values in a hard 2 → 2

scattering, where θ̂ is the scattering angle in the rest frame of the hard interaction.

CKIN(31), CKIN(32) : (D = 2., −1. GeV) range of allowed m̂′ =
√

ŝ′ values, where m̂′

is the mass of the complete three- or four-body final state in 2 → 3 or 2 → 4

processes (while m̂, constrained in CKIN(1) and CKIN(2), here corresponds to the

one- or two-body central system). If CKIN(32) < 0., the upper limit is inactive.

CKIN(35), CKIN(36) : (D = 0., −1. GeV2) range of allowed |t̂| = −t̂ values in 2 → 2

processes. Note that for Deeply Inelastic Scattering this is nothing but the Q2

scale, in the limit that initial- and final-state radiation is neglected. If CKIN(36)

< 0., the upper limit is inactive.

CKIN(37), CKIN(38) : (D = 0., −1. GeV2) range of allowed |û| = −û values in 2 → 2

processes. If CKIN(38) < 0., the upper limit is inactive.
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CKIN(39), CKIN(40) : (D = 4., −1. GeV2) the W 2 range allowed in DIS processes, i.e.

subprocess number 10. If CKIN(40) < 0., the upper limit is inactive. Here W 2

is defined in terms of W 2 = Q2(1 − x)/x. This formula is not quite correct, in

that (i) it neglects the target mass (for a proton), and (ii) it neglects initial-state

photon radiation off the incoming electron. It should be good enough for loose

cuts, however. These cuts are not checked if process 10 is called for two lepton

beams.

CKIN(41) - CKIN(44) : (D = 12., −1., 12., −1. GeV) range of allowed mass values of the

two (or one) resonances produced in a ‘true’ 2 → 2 process, i.e. one not (only)

proceeding through a single s-channel resonance (2 → 1 → 2). (These are the

ones listed as 2 → 2 in the tables in section 8.1.) Only particles with a width

above PARP(41) are considered as bona fide resonances and tested against the

CKIN limits; particles with a smaller width are put on the mass shell without

applying any cuts. The exact interpretation of the CKIN variables depends on the

flavours of the two produced resonances.

For two resonances like Z0W+ (produced from fifj → Z0W+), which are not

identical and which are not each other’s antiparticles, one has

CKIN(41) < m1 < CKIN(42), and

CKIN(43) < m2 < CKIN(44),

where m1 and m2 are the actually generated masses of the two resonances, and 1

and 2 are defined by the order in which they are given in the production process

specification.

For two resonances like Z0Z0, which are identical, or W+W−, which are each

other’s antiparticles, one instead has

CKIN(41) < min(m1,m2) < CKIN(42), and

CKIN(43) < max(m1,m2) < CKIN(44).

In addition, whatever limits are set on CKIN(1) and, in particular, on CKIN(2)

obviously affect the masses actually selected.

Note 1: if MSTP(42) = 0, so that no mass smearing is allowed, the CKIN values have

no effect (the same as for particles with too narrow a width).

Note 2: if CKIN(42) < CKIN(41) it means that the CKIN(42) limit is inactive; cor-

respondingly, if CKIN(44) <CKIN(43) then CKIN(44) is inactive.

Note 3: if limits are active and the resonances are identical, it is up to you to ensure

that CKIN(41) ≤ CKIN(43) and CKIN(42) ≤ CKIN(44).

Note 4: for identical resonances, it is not possible to preselect which of the resonances

is the lighter one; if, for instance, one Z0 is to decay to leptons and the other

to quarks, there is no mechanism to guarantee that the lepton pair has a

mass smaller than the quark one.

Note 5: the CKIN values are applied to all relevant 2 → 2 processes equally, which may

not be what one desires if several processes are generated simultaneously.

Some caution is therefore urged in the use of the CKIN(41) - CKIN(44)

values. Also in other respects, you are recommended to take proper care: if

a Z0 is only allowed to decay into bb, for example, setting its mass range to
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be 2–8 GeV is obviously not a good idea.

CKIN(45) - CKIN(48) : (D = 12., −1., 12., −1. GeV) range of allowed mass values of the

two (or one) secondary resonances produced in a 2 → 1 → 2 process (like gg →
h0 → Z0Z0) or even a 2 → 2 → 4 (or 3) process (like qq → Z0h0 → Z0W+W−).

Note that these CKIN values only affect the secondary resonances; the primary

ones are constrained by CKIN(1), CKIN(2) and CKIN(41) - CKIN(44) (indirectly,

of course, the choice of primary resonance masses affects the allowed mass range

for the secondary ones). What is considered to be a resonance is defined by

PARP(41); particles with a width smaller than this are automatically put on

the mass shell. The description closely parallels the one given for CKIN(41)

- CKIN(44). Thus, for two resonances that are not identical or each other’s

antiparticles, one has

CKIN(45) < m1 < CKIN(46), and

CKIN(47) < m2 < CKIN(48),

where m1 and m2 are the actually generated masses of the two resonances, and

1 and 2 are defined by the order in which they are given in the decay channel

specification in the program (see e.g. output from PYSTAT(2) or PYLIST(12)).

For two resonances that are identical or each other’s antiparticles, one instead

has

CKIN(45) < min(m1,m2) < CKIN(46), and

CKIN(47) < max(m1,m2) < CKIN(48).

Notes 1 - 5: as for CKIN(41) - CKIN(44), with trivial modifications.

Note 6: setting limits on secondary resonance masses is possible in any of the chan-

nels of the allowed types (see above). However, so far only h0 → Z0Z0 and

h0 → W+W− have been fully implemented, such that an arbitrary mass

range below the näıve mass threshold may be picked. For other possible res-

onances, any restrictions made on the allowed mass range are not reflected in

the cross section; and further it is not recommendable to pick mass windows

that make a decay on the mass shell impossible.

CKIN(49) - CKIN(50) : allow minimum mass limits to be passed from PYRESD to PYOFSH.

They are used for tertiary and higher resonances, i.e. those not controlled by

CKIN(41) - CKIN(48). They should not be touched by the user.

CKIN(51) - CKIN(56) : (D = 0., −1., 0., −1., 0., −1. GeV) range of allowed transverse

momenta in a true 2 → 3 process. This means subprocesses such as 121–124 for h0

production, and their H0, A0 and H±± equivalents. CKIN(51) - CKIN(54) corre-

sponds to p⊥ ranges for scattered partons, in order of appearance, i.e. CKIN(51)

- CKIN(52) for the parton scattered off the beam and CKIN(53) - CKIN(54) for

the one scattered off the target. CKIN(55) and CKIN(56) here sets p⊥ limits for

the third product, the h0, i.e. the CKIN(3) and CKIN(4) values have no effect

for this process. Since the p⊥ of the Higgs is not one of the primary variables

selected, any constraints here may mean reduced Monte Carlo efficiency, while

for these processes CKIN(51) - CKIN(54) are ‘hardwired’ and therefore do not

cost anything. As usual, a negative value implies that the upper limit is inactive.
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CKIN(61) - CKIN(78) : allows to restrict the range of kinematics for the photons gen-

erated off the lepton beams with the ’gamma/lepton’ option of PYINIT. In each

quartet of numbers, the first two corresponds to the range allowed on incoming

side 1 (beam) and the last two to side 2 (target). The cuts are only applicable for

a lepton beam. Note that the x and Q2 (P 2) variables are the basis for the gener-

ation, and so can be restricted with no loss of efficiency. For leptoproduction (i.e.

lepton on hadron) the W is uniquely given by the one x value of the problem, so

here also W cuts are fully efficient. The other cuts may imply a slowdown of the

program, but not as much as if equivalent cuts only are introduced after events

are fully generated. See [Fri00] for details.

CKIN(61) - CKIN(64) : (D = 0.0001, 0.99, 0.0001, 0.99) allowed range for the energy

fractions x that the photon take of the respective incoming lepton energy. These

fractions are defined in the c.m. frame of the collision, and differ from energy

fractions as defined in another frame. (Watch out at HERA!) In order to avoid

some technical problems, absolute lower and upper limits are set internally at

0.0001 and 0.9999.

CKIN(65) - CKIN(68) : (D = 0., −1., 0., −1. GeV2) allowed range for the space-like

virtuality of the photon, conventionally called either Q2 or P 2, depending on

process. A negative number means that the upper limit is inactive, i.e. purely

given by kinematics. A nonzero lower limit is implicitly given by kinematics

constraints.

CKIN(69) - CKIN(72) : (D = 0., −1., 0., −1.) allowed range of the scattering angle θ

of the lepton, defined in the c.m. frame of the event. (Watch out at HERA!) A

negative number means that the upper limit is inactive, i.e. equal to π.

CKIN(73) - CKIN(76) : (D = 0.0001, 0.99, 0.0001, 0.99) allowed range for the light-cone

fraction y that the photon take of the respective incoming lepton energy. The

light-cone is defined by the four-momentum of the lepton or hadron on the other

side of the event (and thus deviates from true light-cone fraction by mass effects

that normally are negligible). The y value is related to the x and Q2 (P 2) values

by y = x + Q2/s if mass terms are neglected.

CKIN(77), CKIN(78) : (D = 2., −1. GeV) allowed range for W , i.e. either the photon–

hadron or photon–photon invariant mass. A negative number means that the

upper limit is inactive.

9.3 The general switches and parameters

The PYPARS common block contains the status code and parameters that regulate the

performance of the program. All of them are provided with sensible default values, so that

a novice user can neglect them, and only gradually explore the full range of possibilities.

Some of the switches and parameters in PYPARS will be described later, in the shower and

beam-remnants sections.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)
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Purpose: to give access to status code and parameters that regulate the performance

of the program. If the default values, denoted below by (D = . . . ), are not

satisfactory, they must in general be changed before the PYINIT call. Exceptions,

i.e. variables that can be changed for each new event, are denoted by (C).

MSTP(1) : (D = 3) maximum number of generations. Automatically set ≤ 4.

MSTP(2) : (D = 1) calculation of αs at hard interaction, in the routine PYALPS.

= 0 : αs is fixed at value PARU(111).

= 1 : first-order running αs.

= 2 : second-order running αs.

MSTP(3) : (D = 2) selection of Λ value in αs for MSTP(2) ≥ 1.

= 1 : Λ is given by PARP(1) for hard interactions, by PARP(61) for space-like

showers, by PARP(72) for time-like showers not from a resonance decay,

and by PARJ(81) for time-like ones from a resonance decay (including e.g.

γ/Z0 → qq decays, i.e. conventional e+e− physics). This Λ is assumed to be

valid for 5 flavours; for the hard interaction the number of flavours assumed

can be changed by MSTU(112).

= 2 : Λ value is chosen according to the parton-distribution-function parameteri-

zations. The choice is always based on the proton parton-distribution set

selected, i.e. is unaffected by pion and photon parton-distribution selection.

All the Λ values are assumed to refer to 4 flavours, and MSTU(112) is set

accordingly. This Λ value is used both for the hard scattering and the initial-

and final-state radiation. The ambiguity in the choice of the Q2 argument

still remains (see MSTP(32), MSTP(64) and MSTJ(44)). This Λ value is used

also for MSTP(57) = 0, but the sensible choice here would be to use MSTP(2)

= 0 and have no initial- or final-state radiation. This option does not change

the PARJ(81) value of time-like parton showers in resonance decays, so that

LEP experience on this specific parameter is not overwritten unwittingly.

Therefore PARJ(81) can be updated completely independently.

= 3 : as = 2, except that here also PARJ(81) is overwritten in accordance with the

Λ value of the proton parton-distribution-function set.

MSTP(4) : (D = 0) treatment of the Higgs sector, predominantly the neutral one.

= 0 : the h0 is given the Standard Model Higgs couplings, while H0 and A0 cou-

plings should be set by you in PARU(171) - PARU(175) and PARU(181) -

PARU(185), respectively.

= 1 : you should set couplings for all three Higgs bosons, for the h0 in PARU(161)

- PARU(165), and for the H0 and A0 as above.

= 2 : the mass of h0 in PMAS(25,1) and the tan β value in PARU(141) are used to

derive H0, A0 and H± masses, and h0, H0, A0 and H± couplings, using the

relations of the Minimal Supersymmetric extension of the Standard Model

at Born level [Gun90]. Existing masses and couplings are overwritten by the

derived values. See section 8.5.3 for discussion on parameter constraints.

= 3: as = 2, but using relations at the one-loop level. This option is not yet

implemented as such. However, if you initialize the SUSY machinery with
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IMSS(1) = 1, then the SUSY parameters will be used to calculate also Higgs

masses and couplings. These are stored in the appropriate slots, and the

value of MSTP(4) is overwritten to 1.

MSTP(7) : (D = 0) choice of heavy flavour in subprocesses 81–85. Does not apply for MSEL

= 4 - 8, where the MSEL value always takes precedence.

= 0 : for processes 81–84 (85) the ‘heaviest’ flavour allowed for gluon (photon)

splitting into a quark-antiquark (fermion–antifermion) pair, as set in the

MDME array. Note that ‘heavy’ is defined as the one with largest KF code, so

that leptons take precedence if they are allowed.

= 1 - 8 : pick this particular quark flavour; e.g., MSTP(7) = 6 means that top will

be produced.

= 11 - 18 : pick this particular lepton flavour. Note that neutrinos are not possible,

i.e. only 11, 13, 15 and 17 are meaningful alternatives. Lepton pair produc-

tion can only occur in process 85, so if any of the other processes have been

switched on they are generated with the same flavour as would be obtained

in the option MSTP(7) = 0.

MSTP(8) : (D = 0) choice of electroweak parameters to use in the decay widths of reso-

nances (W, Z, h, . . . ) and cross sections (production of W’s, Z’s, h’s, . . . ).

= 0 : everything is expressed in terms of a running αem(Q2) and a fixed sin2θW ,

i.e. GF is nowhere used.

= 1 : a replacement is made according to αem(Q2) →
√

2GFm2
W sin2θW /π in all

widths and cross sections. If GF and mZ are considered as given, this means

that sin2θW and mW are the only free electroweak parameter.

= 2 : a replacement is made as for = 1, but additionally sin2θW is constrained by

the relation sin2θW = 1 − m2
W/m2

Z. This means that mW remains as a free

parameter, but that the sin2θW value in PARU(102) is never used, except in

the vector couplings in the combination v = a−4 sin2θW e. This latter degree

of freedom enters e.g. for forward-backward asymmetries in Z0 decays.

Note: this option does not affect the emission of real photons in the initial and

final state, where αem is always used. However, it does affect also purely

electromagnetic hard processes, such as qq → γγ.

MSTP(9) : (D = 0) inclusion of top (and fourth generation) as allowed remnant flavour q′

in processes that involve q → q′ + W branchings as part of the overall process,

and where the matrix elements have been calculated under the assumption that

q′ is massless.

= 0 : no.

= 1 : yes, but it is possible, as before, to switch off individual channels by the

setting of MDME switches. Mass effects are taken into account, in a crude

fashion, by rejecting events where kinematics becomes inconsistent when the

q′ mass is included.

MSTP(11) : (D = 1) use of electron parton distribution in e+e− and ep interactions.

= 0 : no, i.e. electron carries the whole beam energy.

= 1 : yes, i.e. electron carries only a fraction of beam energy in agreement with
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next-to-leading electron parton-distribution function, thereby including the

effects of initial-state bremsstrahlung.

MSTP(12) : (D = 0) use of e− (‘sea’, i.e. from e → γ → e), e+, quark and gluon distribution

functions inside an electron.

= 0 : off.

= 1 : on, provided that MSTP(11) ≥ 1. Quark and gluon distributions are obtained

by numerical convolution of the photon content inside an electron (as given

by the bremsstrahlung spectrum of MSTP(11) = 1) with the quark and gluon

content inside a photon. The required numerical precision is set by PARP(14).

Since the need for numerical integration makes this option somewhat more

time-consuming than ordinary parton-distribution evaluation, one should

only use it when studying processes where it is needed.

Note: for all traditional photoproduction/DIS physics this option is superseded by

the ’gamma/lepton’ option for PYINIT calls, but can still be of use for some

less standard processes.

MSTP(13) : (D = 1) choice of Q2 range over which electrons are assumed to radiate

photons; affects normalization of e− (sea), e+, γ, quark and gluon distributions

inside an electron for MSTP(12) = 1.

= 1 : range set by Q2 argument of parton-distribution-function call, i.e. by Q2 scale

of the hard interaction. Therefore parton distributions are proportional to

ln(Q2/m2
e).

= 2 : range set by the user-determined Q2
max, given in PARP(13). Parton distribu-

tions are assumed to be proportional to ln((Q2
max/m

2
e)(1 − x)/x2). This is

normally most appropriate for photoproduction, where the electron is sup-

posed to go undetected, i.e. scatter less than Q2
max.

Note: the choice of effective range is especially touchy for the quark and gluon

distributions. An (almost) on-the-mass-shell photon has a VMD piece that

dies away for a virtual photon. A simple convolution of distribution functions

does not take this into account properly. Therefore the contribution from Q

values above the ρ mass should be suppressed. A choice of Qmax ≈ 1 GeV

is then appropriate for a photoproduction limit description of physics. See

also note for MSTP(12).

MSTP(14) : (D = 30) structure of incoming photon beam or target. Historically, numbers

up to 10 were set up for real photons, and subsequent ones have been added also to

allow for virtual photon beams. The reason is that the earlier options specify e.g.

direct×VMD, summing over the possibilities of which photon is direct and which

VMD. This is allowed when the situation is symmetric, i.e. for two incoming real

photons, but not if one is virtual. Some of the new options agree with previous

ones, but are included to allow a more consistent pattern. Further options above

25 have been added also to include DIS processes.

= 0 : a photon is assumed to be point-like (a direct photon), i.e. can only interact

in processes which explicitly contain the incoming photon, such as fiγ → fig

for γp interactions. In γγ interactions both photons are direct, i.e the main
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process is γγ → fifi.

= 1 : a photon is assumed to be resolved, i.e. can only interact through its con-

stituent quarks and gluons, giving either high-p⊥ parton-parton scatterings

or low-p⊥ events. Hard processes are calculated with the use of the full

photon parton distributions. In γγ interactions both photons are resolved.

= 2 : a photon is assumed resolved, but only the VMD piece is included in the

parton distributions, which therefore mainly are scaled-down versions of the

ρ0/π0 ones. Both high-p⊥ parton-parton scatterings and low-p⊥ events are

allowed. In γγ interactions both photons are VMD-like.

= 3 : a photon is assumed resolved, but only the anomalous piece of the photon

parton distributions is included. (This event class is called either anomalous

or GVMD; we will use both interchangeably, though the former is more

relevant for high-p⊥ phenomena and the latter for low-p⊥ ones.) In γγ

interactions both photons are anomalous.

= 4 : in γγ interactions one photon is direct and the other resolved. A typical

process is thus fiγ → fig. Hard processes are calculated with the use of the

full photon parton distributions for the resolved photon. Both possibilities of

which photon is direct are included, in event topologies and in cross sections.

This option cannot be used in configurations with only one incoming photon.

= 5 : in γγ interactions one photon is direct and the other VMD-like. Both pos-

sibilities of which photon is direct are included, in event topologies and in

cross sections. This option cannot be used in configurations with only one

incoming photon.

= 6 : in γγ interactions one photon is direct and the other anomalous. Both

possibilities of which photon is direct are included, in event topologies and

in cross sections. This option cannot be used in configurations with only one

incoming photon.

= 7 : in γγ interactions one photon is VMD-like and the other anomalous. Only

high-p⊥ parton-parton scatterings are allowed. Both possibilities of which

photon is VMD-like are included, in event topologies and in cross sections.

This option cannot be used in configurations with only one incoming photon.

= 10 : the VMD, direct and anomalous/GVMD components of the photon are au-

tomatically mixed. For γp interactions, this means an automatic mixture of

the three classes 0, 2 and 3 above [Sch93, Sch93a], for γγ ones a mixture of

the six classes 0, 2, 3, 5, 6 and 7 above [Sch94a]. Various restrictions exist

for this option, as discussed in section 8.3.1.

= 11 : direct×direct (see note 5); intended for virtual photons.

= 12 : direct×VMD (i.e. first photon direct, second VMD); intended for virtual

photons.

= 13 : direct×anomalous; intended for virtual photons.

= 14 : VMD×direct; intended for virtual photons.

= 15 : VMD×VMD; intended for virtual photons.

= 16 : VMD×anomalous; intended for virtual photons.
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= 17 : anomalous×direct; intended for virtual photons.

= 18 : anomalous×VDM; intended for virtual photons.

= 19 : anomalous×anomalous; intended for virtual photons.

= 20 : a mixture of the nine above components, 11–19, in the same spirit as = 10

provides a mixture for real gammas (or a virtual gamma on a hadron). For

gamma-hadron, this option coincides with = 10.

= 21 : direct×direct (see note 5).

= 22 : direct×resolved.

= 23 : resolved×direct.

= 24 : resolved×resolved.

= 25 : a mixture of the four above components, offering a simpler alternative to =

20 in cases where the parton distributions of the photon have not been split

into VMD and anomalous components. For γ-hadron, only two components

need be mixed.

= 26 : DIS×VMD/p.

= 27 : DIS×anomalous.

= 28 : VMD/p×DIS.

= 29 : anomalous×DIS.

= 30 : a mixture of all the 4 (for γ∗p) or 13 (for γ∗γ∗) components that are available,

i.e. (the relevant ones of) 11–19 and 26–29 above; is as = 20 with the DIS

processes mixed in.

Note 1: the MSTP(14) options apply for a photon defined by a ’gamma’ or

’gamma/lepton’ beam in the PYINIT call, but not to those photons implicitly

obtained in a ’lepton’ beam with the MSTP(12) = 1 option. This latter ap-

proach to resolved photons is more primitive and is no longer recommended

for QCD processes.

Note 2: for real photons our best understanding of how to mix event classes is pro-

vided by the option 10 above, which also can be obtained by combining three

(for γp) or six (for γγ) separate runs. In a simpler alternative the VMD and

anomalous classes are joined into a single resolved class. Then γp physics

only requires two separate runs, with 0 and 1, and γγ physics requires three,

with 0, 1 and 4.

Note 3: most of the new options from 11 onwards are not needed and therefore not

defined for ep collisions. The recommended ’best’ value thus is MSTP(14) =

30, which also is the new default value.

Note 4: as a consequence of the appearance of new event classes, the MINT(122) and

MSTI(9) codes are not the same for γ∗γ∗ events as for γp, γ∗p or γγ ones.

Instead the code is 3(i1−1)+ i2, where i is 1 for direct, 2 for VMD and 3 for

anomalous/GVMD and indices refer to the two incoming photons. For γ∗p

code 4 is DIS, and for γ∗γ∗ codes 10–13 corresponds to the MSTP(14) codes

26–29. As before, MINT(122) and MSTI(9) are only defined when several

processes are to be mixed, not when generating one at a time. Also the

MINT(123) code is modified (not shown here).
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Note 5: the direct×direct event class excludes lepton pair production when run with

the default MSEL = 1 option (or MSEL = 2), in order not to confuse users.

You can obtain lepton pairs as well, e.g. by running with MSEL = 0 and

switching on the desired processes by hand.

Note 6: for all non-QCD processes, a photon is assumed unresolved when MSTP(14)

= 10, 20 or 25. In principle, both the resolved and direct possibilities ought

to be explored, but this mixing is not currently implemented, so picking

direct at least will explore one of the two main alternatives rather than

none. Resolved processes can be accessed by the more primitive machinery

of having a lepton beam and MSTP(12) = 1.

MSTP(15) : (D = 0) possibility to modify the nature of the anomalous photon component

(as used with the appropriate MSTP(14) options), in particular with respect to the

scale choices and cut-offs of hard processes. These options are mainly intended

for comparative studies and should not normally be touched. Some of the issues

are discussed in [Sch93a], while others have only been used for internal studies

and are undocumented.

= 0 : none, i.e. the same treatment as for the VMD component.

= 1 : evaluate the anomalous parton distributions at a scale Q2/PARP(17)2.

= 2 : as = 1, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82)/PARP(15), depending on MSTP(82) value.

= 3 : evaluate the anomalous parton distribution functions of the photon as

fγ,anom(x,Q2, p2
0) − fγ,anom(x,Q2, r2Q2) with r =PARP(17).

= 4 : as = 3, but instead of PARP(17) use either PARP(81)/PARP(15) or

PARP(82)/PARP(15), depending on MSTP(82) value.

= 5 : use larger p⊥min for the anomalous component than for the VMD one, but

otherwise no difference.

MSTP(16) : (D = 1) choice of definition of the fractional momentum taken by a photon

radiated off a lepton. Enters in the flux factor for the photon rate, and thereby

in cross sections.

= 0 : x, i.e. energy fraction in the rest frame of the event.

= 1 : y, i.e. light-cone fraction.

MSTP(17) : (D = 4) possibility of a extra factor for processes involving resolved virtual

photons, to approximately take into account the effects of longitudinal photons.

Given on the form

R = 1 + PARP(165) r(Q2, µ2) fL(y,Q2)/fT (y,Q2).

Here the 1 represents the basic transverse contribution, PARP(165) is some ar-

bitrary overall factor, and fL/fT the (known) ratio of longitudinal to transverse

photon flux factors. The arbitrary function r depends on the photon virtual-

ity Q2 and the hard scale µ2 of the process. See [Fri00] for a discussion of the

options.

= 0 : No contribution, i.e. r = 0.

= 1 : r = 4µ2Q2/(µ2 + Q2)2.

= 2 : r = 4Q2/(µ2 + Q2).
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= 3 : r = 4Q2/(m2
ρ + Q2).

= 4 : r = 4m2
V Q2/(m2

V + Q2)2, where mV is the vector meson mass for VMD and

2k⊥ for GVMD states. Since there is no µ dependence here (as well as for

= 3 and = 5) also minimum-bias cross sections are affected, where µ would

be vanishing. Currently the actual vector meson mass in the VMD case is

replaced by mρ, for simplicity.

= 5 : r = 4Q2/(m2
V + Q2), with mV and comments as above.

Note: for a photon given by the ’gamma/lepton’ option in the PYINIT call, the y

spectrum is dynamically generated and y is thus known from event to event.

For a photon beam in the PYINIT call, y is unknown from the onset, and has

to be provided by you if any longitudinal factor is to be included. So long

as these values, in PARP(167) and PARP(168), are at their default values, 0,

it is assumed they have not been set and thus the MSTP(17) and PARP(165)

values are inactive.

MSTP(18) : (D = 3) choice of p⊥min for direct processes.

= 1 : same as for VMD and GVMD states, i.e. the p⊥min(W
2) scale. Primarily

intended for real photons.

= 2 : p⊥min is chosen to be PARP(15), i.e. the original old behaviour proposed in

[Sch93, Sch93a]. In that case, also parton distributions, jet cross sections

and αs values were dampened for small p⊥, so it may not be easy to obtain

full backwards compatibility with this option.

= 3 : as = 1, but if the Q scale of the virtual photon is above the VMD/GVMD

p⊥min(W
2), p⊥min is chosen equal to Q. This is part of the strategy to mix

in DIS processes at p⊥ below Q, e.g. in MSTP(14) = 30.

MSTP(19) : (D = 4) choice of partonic cross section in the DIS process 99.

= 0 : QPM answer 4π2αem/Q2
∑

q e2
q(xq(x,Q2) + xq(x,Q2)) (with parton distri-

butions frozen below the lowest Q allowed in the parameterization). Note

that this answer is divergent for Q2 → 0 and thus violates gauge invariance.

= 1 : QPM answer is modified by a factor Q2/(Q2 + m2
ρ) to provide a finite cross

section in the Q2 → 0 limit. A minimal regularization recipe.

= 2 : QPM answer is modified by a factor Q4/(Q2 + m2
ρ)

2 to provide a vanishing

cross section in the Q2 → 0 limit. Appropriate if one assumes that the

normal photoproduction description gives the total cross section for Q2 = 0,

without any DIS contribution.

= 3 : as = 2, but additionally suppression by a parameterized factor f(W 2, Q2)

(different for γ∗p and γ∗γ∗) that avoids double-counting the direct-process

region where p⊥ > Q. Shower evolution for DIS events is then also restricted

to be at scales below Q, whereas evolution all the way up to W is allowed in

the other options above.

= 4 : as = 3, but additionally include factor 1/(1 − x) for conversion from F2 to

σ. This is formally required, but is only relevant for small W 2 and therefore

often neglected.

MSTP(20) : (D = 3) suppression of resolved (VMD or GVMD) cross sections, introduced
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to compensate for an overlap with DIS processes in the region of intermediate Q2

and rather small W 2.

= 0 : no; used as is.

> 1 : yes, by a factor (W 2/(W 2 + Q2
1 + Q2

2))
MSTP(20) (where Q2

i = 0 for an

incoming hadron).

Note: the suppression factor is joined with the dipole suppression stored in

VINT(317) and VINT(318).

MSTP(21) : (D = 1) nature of fermion–fermion scatterings simulated in process 10 by

t-channel exchange.

= 0 : all off (!).

= 1 : full mixture of γ∗/Z0 neutral current and W± charged current.

= 2 : γ neutral current only.

= 3 : Z0 neutral current only.

= 4 : γ∗/Z0 neutral current only.

= 5 : W± charged current only.

MSTP(22) : (D = 0) special override of normal Q2 definition used for maximum of parton-

shower evolution, intended for Deeply Inelastic Scattering in lepton-hadron

events, see section 10.4.

MSTP(23) : (D = 1) for Deeply Inelastic Scattering processes (10 and 83), this option al-

lows the x and Q2 of the original hard scattering to be retained by the final elec-

tron when showers are considered (with warnings as below; partly obsolete).

= 0 : no correction procedure, i.e. x and Q2 of the scattered electron differ from

the originally generated x and Q2.

= 1 : post facto correction, i.e. the change of electron momentum, by initial and

final QCD radiation, primordial k⊥ and beam-remnant treatment, is cor-

rected for by a shuffling of momentum between the electron and hadron side

in the final state. Only process 10 is corrected, while process 83 is not.

= 2 : as = 1, except that both process 10 and 83 are treated. This option is

dangerous, especially for top, since it may well be impossible to ‘correct’

in process 83: the standard DIS kinematics definitions are based on the

assumption of massless quarks. Therefore infinite loops are not excluded.

Note 1: the correction procedure will fail for a fraction of the events, which are thus

rejected (and new ones generated in their place). The correction option is

not unambiguous, and should not be taken too seriously. For very small Q2

values, the x is not exactly preserved even after this procedure.

Note 2: this switch does not affect the recommended DIS description obtained with

a ’gamma/lepton’ beam/target in PYINIT, where x and Q2 are always con-

served.

MSTP(25) : (D = 0) angular decay correlations in Higgs decays to W+W− or Z0Z0 to four

fermions [Skj93].

= 0 : assuming the Higgs decay is pure scalar for h0 and H0 and pure pseudoscalar

for A0.

= 1 : assuming the Higgs decay is always pure scalar (CP-even).
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= 2 : assuming the Higgs decay is always pure pseudoscalar (CP-odd).

= 3 : assuming the Higgs decay is a mixture of the two (CP-even and CP-odd),

including the CP-violating interference term. The parameter η, PARP(25)

sets the strength of the CP-odd admixture, with the interference term being

proportional to η and the CP-odd one to η2.

Note : since the decay of an A0 to W+W− or Z0Z0 is vanishing at the Born level,

and no loop diagrams are included, currently this switch is only relevant for

h0 and H0. It is mainly intended to allow ‘straw man’ studies of the quantum

numbers of a Higgs state, decoupled from the issue of branching ratios.

MSTP(31) : (D = 1) parameterization of total, elastic and diffractive cross sections.

= 0 : everything is to be set by you yourself in the PYINT7 common block. For

photoproduction, additionally you need to set VINT(281). Normally you

would set these values once and for all before the PYINIT call, but if you run

with variable energies (see MSTP(171)) you can also set it before each new

PYEVNT call.

= 1 : Donnachie–Landshoff for total cross section [Don92], and Schuler–Sjöstrand

for elastic and diffractive cross sections [Sch94, Sch93a].

MSTP(32) : (D = 8) Q2 definition in hard scattering for 2 → 2 processes. For resonance

production Q2 is always chosen to be ŝ = m2
R, where mR is the mass of the

resonance. For gauge boson scattering processes V V → V V the W or Z0 squared

mass is used as scale in parton distributions. See PARP(34) for a possibility to

modify the choice below by a multiplicative factor.

The newer options 6–10 are specifically intended for processes with incoming vir-

tual photons. These are ordered from a ‘minimal’ dependence on the virtualities

to a ‘maximal’ one, based on reasonable kinematics considerations. The old de-

fault value MSTP(32) = 2 forms the starting point, with no dependence at all,

and the new default is some intermediate choice. Notation is that P 2
1 and P 2

2 are

the virtualities of the two incoming particles, p⊥ the transverse momentum of the

scattering process, and m3 and m4 the masses of the two outgoing partons. For

a direct photon, P 2 is the photon virtuality and x = 1. For a resolved photon,

P 2 still refers to the photon, rather than the unknown virtuality of the reacting

parton in the photon, and x is the momentum fraction taken by this parton.

= 1 : Q2 = 2ŝt̂û/(ŝ2 + t̂2 + û2).

= 2 : Q2 = (m2
⊥3 + m2

⊥4)/2 = p2
⊥ + (m2

3 + m2
4)/2.

= 3 : Q2 = min(−t̂,−û).

= 4 : Q2 = ŝ.

= 5 : Q2 = −t̂.

= 6 : Q2 = (1 + x1P
2
1 /ŝ + x2P

2
2 /ŝ)(p2

⊥ + m2
3/2 + m2

4/2).

= 7 : Q2 = (1 + P 2
1 /ŝ + P 2

2 /ŝ)(p2
⊥ + m2

3/2 + m2
4/2).

= 8 : Q2 = p2
⊥ + (P 2

1 + P 2
2 + m2

3 + m2
4)/2.

= 9 : Q2 = p2
⊥ + P 2

1 + P 2
2 + m2

3 + m2
4.

= 10 : Q2 = s (the full energy-squared of the process).

= 11 : Q2 = (m3 + m4)
2/4.
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= 12 : Q2 is set by the user as fixed numbers, factorization scale in PARP(193) and

renormalization scale in PARP(194).

= 13 : Q2 = p2
⊥, i.e. without any dependence on masses.

Note: options 6 and 7 are motivated by assuming that one wants a scale that

interpolates between t̂ for small t̂ and û for small û, such as Q2 = −t̂û/(t̂+û).

When kinematics for the 2 → 2 process is constructed as if an incoming

photon is massless when it is not, it gives rise to a mismatch factor 1+P 2/ŝ

(neglecting the other masses) in this Q2 definition, which is then what is

used in option 7 (with the neglect of some small cross-terms when both

photons are virtual). When a virtual photon is resolved, the virtuality of

the incoming parton can be anything from xP 2 and upwards. So option 6

uses the smallest kinematically possible value, while 7 is more representative

of the typical scale. Option 8 and 9 are more handwaving extensions of the

default option, with 9 specially constructed to ensure that the Q2 scale is

always bigger than P 2.

MSTP(33) : (D = 0) inclusion of K factors in hard cross sections for parton-parton inter-

actions (i.e. for incoming quarks and gluons).

= 0 : none, i.e. K = 1.

= 1 : a common K factor is used, as stored in PARP(31).

= 2 : separate factors are used for ordinary (PARP(31)) and colour annihilation

graphs (PARP(32)).

= 3 : A K factor is introduced by a shift in the αs Q2 argument, αs =

αs(PARP(33)Q
2).

MSTP(34) : (D = 1) use of interference term in matrix elements for QCD processes, see

section 8.2.1.

= 0 : excluded (i.e. string-inspired matrix elements).

= 1 : included (i.e. conventional QCD matrix elements).

Note: for the option MSTP(34) = 1, i.e. interference terms included, these terms

are divided between the different possible colour configurations according to

the pole structure of the (string-inspired) matrix elements for the different

colour configurations.

MSTP(35) : (D = 0) threshold behaviour for heavy-flavour production, i.e. ISUB = 81, 82,

84, 85, and also for Z and Z′ decays. The non-standard options are mainly in-

tended for top, but can be used, with less theoretical reliability, also for charm and

bottom (for Z and Z′ only top and heavier flavours are affected). The threshold

factors are given in eqs. (8.6) and (8.7).

= 0 : näıve lowest-order matrix-element behaviour.

= 1 : enhancement or suppression close to threshold, according to the colour struc-

ture of the process. The αs value appearing in the threshold factor (which

is not the same as the αs of the lowest-order 2 → 2 process) is taken to be

fixed at the value given in PARP(35). The threshold factor used in an event

is stored in PARI(81).

= 2 : as = 1, but the αs value appearing in the threshold factor is taken to be run-
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ning, with argument Q2 = mQ

√
(m̂ − 2mQ)2 + Γ2

Q. Here mQ is the nominal

heavy-quark mass, ΓQ is the width of the heavy-quark-mass distribution,

and m̂ is the invariant mass of the heavy-quark pair. The ΓQ value has to

be stored by you in PARP(36). The regularization of αs at low Q2 is given

by MSTP(36).

MSTP(36) : (D = 2) regularization of αs in the limit Q2 → 0 for the threshold factor ob-

tainable in the MSTP(35) = 2 option; see MSTU(115) for a list of the possibilities.

MSTP(37) : (D = 1) inclusion of running quark masses in Higgs production (qq → h0)

and decay (h0 → qq) couplings, obtained by calls to the PYMRUN function. Also

included for charged Higgs and technipion production and decay.

= 0 : not included, i.e. fixed quark masses are used according to the values in the

PMAS array.

= 1 : included, with running starting from the value given in the PMAS array, at a

Q0 scale of PARP(37) times the quark mass itself, up to a Q scale given by

the Higgs mass. This option only works when αs is allowed to run (so one

can define a Λ value). Therefore it is only applied if additionally MSTP(2)

≥ 1.

MSTP(38) : (D = 5) handling of quark loop masses in the box graphs gg → γγ and

gg → gγ, and in the Higgs production loop graphs qq → gh0, qg → qh0 and

gg → gh0, and their equivalents with H0 or A0 instead of h0.

= 0 : for gg → γγ and gg → gγ the program will for each flavour automatically

choose the massless approximation for light quarks and the full massive for-

mulae for heavy quarks, with a dividing line between light and heavy quarks

that depends on the actual ŝ scale. For Higgs production, all quark loop

contributions are included with the proper masses. This option is then cor-

rect only in the Standard Model Higgs scenario, and should not be used e.g.

in the MSSM.

≥1 : for gg → γγ and gg → gγ the program will use the massless approximation

throughout, assuming the presence of MSTP(38) effectively massless quark

species (however, at most 8). Normally one would use = 5 for the inclusion

of all quarks up to bottom, and = 6 to include top as well. For Higgs

production, the approximate expressions derived in the mt → ∞ limit are

used, rescaled to match the correct gg → h0/H0/A0 cross sections. This

procedure should work, approximately, also for non-standard Higgs particles.

Warning: for = 0, numerical instabilities may arise in gg → γγ and gg → gγ for

scattering at small angles. You are therefore recommended in this case to

set CKIN(27) and CKIN(28) so as to exclude the range of scattering angles

that is not of interest anyway. Numerical problems may also occur for Higgs

production with = 0, and additionally the lengthy expressions make the code

error-prone.

MSTP(39) : (D = 2) choice of Q2 scale for parton distributions and initial-state parton

showers in processes gg → QQh or qq → QQh.
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= 1 : m2
Q.

= 2 : max(m2
⊥Q,m2

⊥Q
) = m2

Q + max(p2
⊥Q, p2

⊥Q
).

= 3 : m2
h, where mh is the actual Higgs mass of the event, fluctuating from one

event to the next.

= 4 : ŝ = (ph + pQ + pQ)2.

= 5 : m2
h, where mh is the nominal, fixed Higgs mass.

= 6 : (m3 + m5)
2/4.

= 7 : (m2
⊥3 + m2

⊥4)/2.

= 8 : set by the user as fixed numbers, factorization scale in PARP(193) and renor-

malization scale in PARP(194).

MSTP(40) : (D = 0) option for Coulomb correction in process 25, W+W− pair production,

see [Kho96]. The value of the Coulomb correction factor for each event is stored

in VINT(95).

= 0 : ‘no Coulomb’. Is the often-used reference point.

= 1 : ‘unstable Coulomb’, gives the correct first-order expression valid in the non-

relativistic limit. Is the reasonable option to use as a ‘best bet’ description

of LEP 2 physics.

= 2 : ‘second-order Coulomb’ gives the correct second-order expression valid in

the non-relativistic limit. In principle this is even better than = 1, but the

differences are negligible and computer time does go up because of the need

for a numerical integration in the weight factor.

= 3 : ‘dampened Coulomb’, where the unstable Coulomb expression has been mod-

ified by a (1 − β)2 factor in front of the arctan term. This is intended as

an alternative to = 1 within the band of our uncertainty in the relativistic

limit.

= 4 : ‘stable Coulomb’, i.e. effects are calculated as if the W’s were stable. Is

incorrect, and mainly intended for comparison purposes.

Note : unfortunately the W’s at LEP 2 are not in the non-relativistic limit, so the

separation of Coulomb effects from other radiative corrections is not gauge

invariant. The options above should therefore be viewed as indicative only,

not as the ultimate answer.

MSTP(41) : (D = 2) master switch for all resonance decays (Z0, W±, t, h0, Z′0, W′±, H0,

A0, H±, LQ, R0, d∗, u∗, . . . ).

= 0 : all off.

= 1 : all on.

= 2 : on or off depending on their individual MDCY values.

Note: also for MSTP(41) = 1 it is possible to switch off the decays of specific res-

onances by using the MDCY(KC,1) switches in Pythia. However, since the

MDCY values are overwritten in the PYINIT call when MSTP(41) = 1 (or 0),

individual resonances should then be switched off after the PYINIT call.

Warning: for top, leptoquark and other colour-carrying resonances it is dangerous

to switch off decays if one later on intends to let them decay (with PYEXEC);
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see section 8.6.4.

MSTP(42) : (D = 1) mass treatment in 2 → 2 processes, where the final-state resonances

have finite width (see PARP(41)). (Does not apply for the production of a single

s-channel resonance, where the mass appears explicitly in the cross section of the

process, and thus is always selected with width.)

= 0 : particles are put on the mass shell.

= 1 : mass generated according to a Breit-Wigner.

MSTP(43) : (D = 3) treatment of Z0/γ∗ interference in matrix elements. So far imple-

mented in subprocesses 1, 15, 19, 22, 30 and 35; in other processes what is called

a Z0 is really a Z0 only, without the γ∗ piece.

= 1 : only γ∗ included.

= 2 : only Z0 included.

= 3 : complete Z0/γ∗ structure (with interference) included.

MSTP(44) : (D = 7) treatment of Z′0/Z0/γ∗ interference in matrix elements.

= 1 : only γ∗ included.

= 2 : only Z0 included.

= 3 : only Z′0 included.

= 4 : only Z0/γ∗ (with interference) included.

= 5 : only Z′0/γ∗ (with interference) included.

= 6 : only Z′0/Z0 (with interference) included.

= 7 : complete Z′0/Z0/γ∗ structure (with interference) included.

MSTP(45) : (D = 3) treatment of WW → WW structure (ISUB = 77).

= 1 : only W+W+ → W+W+ and W−W− → W−W− included.

= 2 : only W+W− → W+W− included.

= 3 : all charge combinations WW → WW included.

MSTP(46) : (D = 1) treatment of V V → V ′V ′ structures (ISUB = 71–77), where V rep-

resents a longitudinal gauge boson.

= 0 : only s-channel Higgs exchange included (where existing). With this option,

subprocesses 71–72 and 76–77 will essentially be equivalent to subprocesses

5 and 8, respectively, with the proper decay channels (i.e. only Z0Z0 or

W+W−) set via MDME. The description obtained for subprocesses 5 and 8 in

this case is more sophisticated, however; see section 8.5.2.

= 1 : all graphs contributing to V V → V ′V ′ processes are included.

= 2 : only graphs not involving Higgs exchange (either in s, t or u channel) are

included; this option then gives the näıve behaviour one would expect if no

Higgs exists, including unphysical unitarity violations at high energies.

= 3 : the strongly interacting Higgs-like model of Dobado, Herrero and Terron

[Dob91] with Padé unitarization. Note that to use this option it is necessary

to set the Higgs mass to a large number like 20 TeV (i.e. PMAS(25,1) =

20000). The parameter ν is stored in PARP(44), but should not have to be

changed.

= 4 : as = 3, but with K-matrix unitarization [Dob91].

= 5 : the strongly interacting QCD-like model of Dobado, Herrero and Terron
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[Dob91] with Padé unitarization. The parameter ν is stored in PARP(44),

but should not have to be changed. The effective techni-ρ mass in this model

is stored in PARP(45); by default it is 2054 GeV, which is the expected value

for three technicolors, based on scaling up the ordinary ρ mass appropriately.

= 6 : as = 5, but with K-matrix unitarization [Dob91]. While PARP(45) still is

a parameter of the model, this type of unitarization does not give rise to a

resonance at a mass of PARP(45).

MSTP(47) : (D = 1) (C) angular orientation of decay products of resonances (Z0, W±,

t, h0, Z′0, W′±, etc.), either when produced singly or in pairs (also from an h0

decay), or in combination with a single quark, gluon or photon.

= 0 : independent decay of each resonance, isotropic in c.m. frame of the resonance.

= 1 : correlated decay angular distributions according to proper matrix elements,

to the extent these are implemented.

MSTP(48) : (D = 0) (C) switch for the treatment of γ∗/Z0 decay for process 1 in e+e−

events.

= 0 : normal machinery.

= 1 : if the decay of the Z0 is to either of the five lighter quarks, d, u, s, c or b, the

special treatment of Z0 decay is accessed, including matrix element options,

according to section 6.1.

This option is based on the machinery of the PYEEVT and associated routines

when it comes to the description of QCD multijet structure and the angular

orientation of jets, but relies on the normal PYEVNT machinery for everything

else: cross section calculation, initial-state photon radiation, flavour compo-

sition of decays (i.e. information on channels allowed), etc.

The initial state has to be e+e−; forward-backward asymmetries would not

come out right for quark-annihilation production of the γ∗/Z0 and therefore

the machinery defaults to the standard one in such cases.

You can set the behaviour for the MSTP(48) option using the normal matrix

element related switches. This especially means MSTJ(101) for the selection

of first- or second-order matrix elements (= 1 and = 2, respectively). Further

selectivity is obtained with the switches and parameters MSTJ(102) (for the

angular orientation part only), MSTJ(103) (except the production threshold

factor part), MSTJ(106), MSTJ(108) - MSTJ(111), PARJ(121), PARJ(122),

and PARJ(125) - PARJ(129). Information can be read from MSTJ(120),

MSTJ(121), PARJ(150), PARJ(152) - PARJ(156), PARJ(168), PARJ(169),

PARJ(171).

The other e+e− switches and parameters should not be touched. In most

cases they are simply not accessed, since the related part is handled by the

PYEVNT machinery instead. In other cases they could give incorrect or mis-

leading results. Beam polarization as set by PARJ(131) - PARJ(134), for

instance, is only included for the angular orientation, but is missing for the

cross section information. PARJ(123) and PARJ(124) for the Z0 mass and

width are set in the PYINIT call based on the input mass and calculated
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widths.

The cross section calculation is unaffected by the matrix element machinery.

Thus also for negative MSTJ(101) values, where only specific jet multiplicities

are generated, the PYSTAT cross section is the full one.

MSTP(49) : (D = 1) assumed variation of the Higgs width to massive gauge boson pairs,

i.e. W+W−, Z0Z0 and W±Z0, as a function of the actual mass m̂ =
√

ŝ and the

nominal mass mh. The switch applies both to h0, H0, A0 and H± decays.

= 0 : the width is proportional to m̂3; thus the high-mass tail of the Breit-Wigner

is enhanced.

= 1 : the width is proportional to m2
hm̂. For a fixed Higgs mass mh this means a

width variation across the Breit-Wigner more in accord with other resonances

(such as the Z0). This alternative gives more emphasis to the low-mass tail,

where the parton distributions are peaked (for hadron colliders). This option

is favoured by resummation studies [Sey95a].

Note 1: the partial width of a Higgs to a fermion pair is always taken to be pro-

portional to the actual Higgs mass m̂, irrespectively of MSTP(49). Also the

width to a gluon or photon pair (via loops) is unaffected.

Note 2: this switch does not affect processes 71–77, where a fixed Higgs width is used

in order to control cancellation of divergences.

MSTP(50) : (D = 0) Switch to allow or not longitudinally polarized incoming beams, with

the two polarizations stored in PARJ(131) and PARJ(132), respectively. Most

cross section expressions with polarization reduce to the unpolarized behaviour for

the default PARJ(131) = PARJ(132) = 0., and then this switch is superfluous

and not implemented. Currently MSTP(50) is only used in process 25, ff →
W+W−, for reasons explained in section 8.8.

= 0 : no polarization effects, no matter what PARJ(131) and PARJ(132) values

are set.

= 1 : include polarization information in the cross section of the process and for

angular correlations.

MSTP(51) : (D = 7) choice of proton parton-distribution set; see also MSTP(52).

= 1 : CTEQ 3L (leading order).

= 2 : CTEQ 3M (MS).

= 3 : CTEQ 3D (DIS).

= 4 : GRV 94L (leading order).

= 5 : GRV 94M (MS).

= 6 : GRV 94D (DIS).

= 7 : CTEQ 5L (leading order).

= 8 : CTEQ 5M1 (MS; slightly updated version of CTEQ 5M).

= 11 : GRV 92L (leading order).

= 12 : EHLQ set 1 (leading order; 1986 updated version).

= 13 : EHLQ set 2 (leading order; 1986 updated version).

= 14 : Duke–Owens set 1 (leading order).

= 15 : Duke–Owens set 2 (leading order).
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= 16 : simple ansatz with all parton distributions of the form c/x, with c some

constant; intended for internal debug use only.

Note 1: distributions 11–15 are obsolete and should not be used for current physics

studies. They are only implemented to have some sets in common between

Pythia 5 and 6, for cross-checks.

Note 2: since all parameterizations have some region of applicability, the parton

distributions are assumed frozen below the lowest Q2 covered by the pa-

rameterizations. In some cases, evolution is also frozen above the maximum

Q2.

MSTP(52) : (D = 1) choice of proton parton-distribution-function library.

= 1 : the internal Pythia one, with parton distributions according to the

MSTP(51) above.

= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET num-

bers to be given as MSTP(51) = 1000×NGROUP + NSET, or similarly for the

LHAPDF one [Gie02].

Note 1: to make use of option 2, it is necessary to link Pdflib/LHAPDF. Addi-

tionally, on most computers, the three dummy routines PDFSET, STRUCTM

and (for virtual photons) STRUCTP at the end of the Pythia file should be

removed or commented out.

Warning: for external parton distribution libraries, Pythia does not check whether

MSTP(51) corresponds to a valid code, or if special x and Q2 restrictions

exist for a given set, such that crazy values could be returned. This puts an

extra responsibility on you.

Note 2: when Pdflib/LHAPDF is used, Pythia can initialize either with a four-

or a five-flavour Λ, depending on how NFL in the /W50511/ commonblock is

set, extracting either QCDL4 or QCDL5 from the /W50512/ commonblock.

MSTP(53) : (D = 3) choice of pion parton-distribution set; see also MSTP(54).

= 1 : Owens set 1.

= 2 : Owens set 2.

= 3 : GRV LO (updated version).

MSTP(54) : (D = 1) choice of pion parton-distribution-function library.

= 1 : the internal Pythia one, with parton distributions according to the

MSTP(53) above.

= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET num-

bers to be given as MSTP(53) = 1000×NGROUP + NSET, or similarly for the

LHAPDF one [Gie02].

Note: to make use of option 2, it is necessary to link Pdflib/LHAPDF. Addition-

ally, on most computers, the three dummy routines PDFSET, STRUCTM and

STRUCTP at the end of the Pythia file should be removed or commented out.

Warning: for external parton distribution libraries, Pythia does not check whether

MSTP(53) corresponds to a valid code, or if special x and Q2 restrictions

exist for a given set, such that crazy values could be returned. This puts an

extra responsibility on you.
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MSTP(55) : (D = 5) choice of the parton-distribution set of the photon; see also MSTP(56)

and MSTP(60).

= 1 : Drees–Grassie.

= 5 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).

= 6 : SaS 1M (in ms scheme, with Q0 = 0.6 GeV).

= 7 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).

= 8 : SaS 2M (in ms scheme, with Q0 = 2 GeV).

= 9 : SaS 1D (in DIS scheme, with Q0 = 0.6 GeV).

= 10 : SaS 1M (in ms scheme, with Q0 = 0.6 GeV).

= 11 : SaS 2D (in DIS scheme, with Q0 = 2 GeV).

= 12 : SaS 2M (in ms scheme, with Q0 = 2 GeV).

Note 1: sets 5–8 use the parton distributions of the respective set, and nothing else.

These are appropriate for most applications, e.g. jet production in γp and

γγ collisions. Sets 9–12 instead are appropriate for γ∗γ processes, i.e. DIS

scattering on a photon, as measured in F γ
2 . Here the anomalous contribu-

tion for c and b quarks are handled by the Bethe-Heitler formulae, and the

direct term is artificially lumped with the anomalous one, so that the event

simulation more closely agrees with what will be experimentally observed

in these processes. The agreement with the F γ
2 parameterization is still not

perfect, e.g. in the treatment of heavy flavours close to threshold.

Note 2: sets 5–12 contain both VMD pieces and anomalous pieces, separately pa-

rameterized. Therefore the respective piece is automatically called, whatever

MSTP(14) value is used to select only a part of the allowed photon interac-

tions. For other sets (set 1 above or Pdflib/LHAPDF sets), usually there

is no corresponding subdivision. Then an option like MSTP(14) = 2 (VMD

part of photon only) is based on a rescaling of the pion distributions, while

MSTP(14) = 3 gives the SaS anomalous parameterization.

Note 3: formally speaking, the k0 (or p0) cut-off in PARP(15) need not be set in

any relation to the Q0 cut-off scales used by the various parameterizations.

Indeed, due to the familiar scale choice ambiguity problem, there could well

be some offset between the two. However, unless you know what you are

doing, it is recommended that you let the two agree, i.e. set PARP(15) =

0.6 for the SaS 1 sets and = 2. for the SaS 2 sets.

MSTP(56) : (D = 1) choice of photon parton-distribution-function library.

= 1 : the internal Pythia one, with parton distributions according to the

MSTP(55) above.

= 2 : the Pdflib one [Plo93], with the Pdflib (version 4) NGROUP and NSET num-

bers to be given as MSTP(55) = 1000×NGROUP + NSET, or similarly for the

LHAPDF one [Gie02]. When the VMD and anomalous parts of the photon

are split, like for MSTP(14) = 10, it is necessary to specify pion set to be

used for the VMD component, in MSTP(53) and MSTP(54), while MSTP(55)

here is irrelevant.

= 3 : when the parton distributions of the anomalous photon are requested, the
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homogeneous solution is provided, evolved from a starting value PARP(15) to

the requested Q scale. The homogeneous solution is normalized so that the

net momentum is unity, i.e. any factors of αem/2π and charge have been left

out. The flavour of the original q is given in MSTP(55) (1, 2, 3, 4 or 5 for d, u,

s, c or b); the value 0 gives a mixture according to squared charge, with the

exception that c and b are only allowed above the respective mass threshold

(Q > mq). The four-flavour Λ value is assumed given in PARP(1); it is

automatically recalculated for 3 or 5 flavours at thresholds. This option is

not intended for standard event generation, but is useful for some theoretical

studies.

Note: to make use of option 2, it is necessary to link Pdflib/LHAPDF. Addition-

ally, on most computers, the three dummy routines PDFSET, STRUCTM and

STRUCTP at the end of the Pythia file should be removed or commented out.

Warning 1: for external parton-distribution libraries, Pythia does not check

whether MSTP(55) corresponds to a valid code, or if special x and Q2 re-

strictions exist for a given set, such that crazy values could be returned.

This puts an extra responsibility on you.

Warning 2: so much of the machinery for virtual photons is based on a subdivision of

the photon according to the SaS prescription that a usage of Pdflib cannot

be recommended for such; in some cases unphysical results may arise from

mismatches between what Pdflib delivers and what is assumed internally.

MSTP(57) : (D = 1) choice of Q2 dependence in parton-distribution functions.

= 0 : parton distributions are evaluated at nominal lower cut-off value Q2
0, i.e. are

made Q2-independent.

= 1 : the parameterized Q2 dependence is used.

= 2 : the parameterized parton-distribution behaviour is kept at large Q2 and x,

but modified at small Q2 and/or x, so that parton distributions vanish in

the limit Q2 → 0 and have a theoretically motivated small-x shape [Sch93a].

This option is only valid for the p and n. It is obsolete within the current

’gamma/lepton’ framework.

= 3 : as = 2, except that also the π± is modified in a corresponding manner.

A VMD photon is not mapped to a pion, but is treated with the same

photon parton distributions as for other MSTP(57) values, but with properly

modified behaviour for small x or Q2. This option is obsolete within the

current ’gamma/lepton’ framework.

MSTP(58) : (D = min(5, 2×MSTP(1))) maximum number of quark flavours used in parton

distributions, and thus also for initial-state space-like showers. If some distribu-

tions (notably t) are absent in the parameterization selected in MSTP(51), these

are obviously automatically excluded.

MSTP(59) : (D = 1) choice of electron-inside-electron parton distribution.

= 1 : the recommended standard for LEP 1, next-to-leading exponentiated, see

[Kle89], p. 34.

= 2 : the recommended ‘β’ scheme for LEP 2, also next-to-leading exponentiated,
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see [Bee96], p. 130.

MSTP(60) : (D = 7) extension of the SaS real-photon distributions to off-shell photons,

especially for the anomalous component. See [Sch96] for an explanation of the

options. The starting point is the expression in eq. (7.4), which requires a nu-

merical integration of the anomalous component, however, and therefore is not

convenient. Approximately, the dipole damping factor can be removed and com-

pensated by a suitably shifted lower integration limit, whereafter the integral

simplifies. Different ‘goodness’ criteria for the choice of the shifted lower limit is

represented by the options 2–7 below.

= 1 : dipole dampening by integration; very time-consuming.

= 2 : P 2
0 = max(Q2

0, P
2).

= 3 : P ′2
0 = Q2

0 + P 2.

= 4 : Peff that preserves momentum sum.

= 5 : Pint that preserves momentum and average evolution range.

= 6 : Peff , matched to P0 in P 2 → Q2 limit.

= 7 : Pint, matched to P0 in P 2 → Q2 limit.

MSTP(61) : (D = 2) (C) master switch for initial-state QCD and QED radiation.

= 0 : off.

= 1 : on.

= 1 : on for QCD radiation in hadronic events and QED radiation in leptonic ones.

= 2 : on for QCD and QED radiation in hadronic events and QED radiation in

leptonic ones.

MSTP(62) - MSTP(70) : (C) further switches for initial-state radiation, see section 10.4.

MSTP(71) : (D = 1) (C) master switch for final-state QCD and QED radiation.

= 0 : off.

= 1 : on.

Note: additional switches (e.g. for conventional/coherent showers) are available in

MSTJ(38) - MSTJ(50) and PARJ(80) - PARJ(90), see section 10.4.

MSTP(72): (C) further switch for initial-state radiation, see section 10.4.

MSTP(81) : (D = 1) master switch for multiple interactions.

= 0 : off.

= 1 : on.

MSTP(82) - MSTP(86) : further switches for multiple interactions, see section 11.6.

MSTP(91) - MSTP(95) : switches for beam-remnant treatment, see section 11.6.

MSTP(101) : (D = 3) (C) structure of diffractive system.

= 1 : forward moving diquark + interacting quark.

= 2 : forward moving diquark + quark joined via interacting gluon (‘hairpin’ con-

figuration).

= 3 : a mixture of the two options above, with a fraction PARP(101) of the former

type.

MSTP(102) : (D = 1) (C) decay of a ρ0 meson produced by ‘elastic’ scattering of an in-

coming γ, as in γp → ρ0p, or the same with the hadron diffractively excited.

= 0 : the ρ0 is allowed to decay isotropically, like any other ρ0.
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= 1 : the decay ρ0 → π+π− is done with an angular distribution proportional to

sin2 θ in its rest frame, where the z axis is given by the direction of motion

of the ρ0. The ρ0 decay is then done as part of the hard process, i.e. also

when MSTP(111) = 0.

MSTP(110) : (D = 0) switch to allow some or all resonance widths to be modified by the

factor PARP(110). This is not intended for serious physics studies. The main ap-

plication is rather to generate events with an artificially narrow resonance width in

order to study the detector-related smearing effects on the mass resolution.

> 0 : rescale the particular resonance with KF = MSTP(110). If the resonance has

an antiparticle, this one is affected as well.

= -1 : rescale all resonances, except t, t, Z0 and W±.

= -2 : rescale all resonances.

Warning: only resonances with a width evaluated by PYWIDT are affected, and pref-

erentially then those with MWID value 1 or 3. For other resonances the

appearance of effects or not depends on how the cross sections have been

implemented. So it is important to check that indeed the mass distribu-

tion is affected as expected. Also beware that, if a sequential decay chain is

involved, the scaling may become more complicated. Furthermore, depend-

ing on implementational details, a cross section may or may not scale with

PARP(110) (quite apart from differences related to the convolution with par-

ton distributions etc.). All in all, it is then an option to be used only with

open eyes, and for very specific applications.

MSTP(111) : (D = 1) (C) master switch for fragmentation and decay, as obtained with a

PYEXEC call.

= 0 : off.

= 1 : on.

= -1 : only choose kinematical variables for hard scattering, i.e. no jets are defined.

This is useful, for instance, to calculate cross sections (by Monte Carlo in-

tegration) without wanting to simulate events; information obtained with

PYSTAT(1) will be correct.

MSTP(112) : (D = 1) (C) cuts on partonic events; only affects an exceedingly tiny fraction

of events. Normally this concerns what happens in the PYPREP routine, if a colour

singlet subsystem has a very small invariant mass and attempts to collapse it to

a single particle fail, see section 12.4.1.

= 0 : no cuts (can be used only with independent fragmentation, at least in prin-

ciple).

= 1 : string cuts (as normally required for fragmentation).

MSTP(113) : (D = 1) (C) recalculation of energies of partons from their momenta and

masses, to be done immediately before and after fragmentation, to partly com-

pensate for some numerical problems appearing at high energies.

= 0 : not performed.

= 1 : performed.

MSTP(115) : (D = 0) (C) choice of colour rearrangement scenario for process 25, W+W−
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pair production, when both W’s decay hadronically. (Also works for process

22, Z0Z0 production, except when the Z’s are allowed to fluctuate to very small

masses.) See section 12.4.2 for details.

= 0 : no reconnection.

= 1 : scenario I, reconnection inspired by a type I superconductor, with the recon-

nection probability related to the overlap volume in space and time between

the W+ and W− strings. Related parameters are found in PARP(115) -

PARP(119), with PARP(117) of special interest.

= 2 : scenario II, reconnection inspired by a type II superconductor, with reconnec-

tion possible when two string cores cross. Related parameter in PARP(115).

= 3 : scenario II’, as model II but with the additional requirement that a recon-

nection will only occur if the total string length is reduced by it.

= 5 : the GH scenario, where the reconnection can occur that reduces the total

string length (λ measure) most. PARP(120) gives the fraction of such event

where a reconnection is actually made; since almost all events could allow a

reconnection that would reduce the string length, PARP(120) is almost the

same as the reconnection probability.

= 11 : the intermediate scenario, where a reconnection is made at the ‘origin’ of

events, based on the subdivision of all radiation of a qq system as coming

either from the q or the q. PARP(120) gives the assumed probability that

a reconnection will occur. A somewhat simpleminded model, but not quite

unrealistic.

= 12 : the instantaneous scenario, where a reconnection is allowed to occur before

the parton showers, and showering is performed inside the reconnected sys-

tems with maximum virtuality set by the mass of the reconnected systems.

PARP(120) gives the assumed probability that a reconnection will occur. Is

completely unrealistic, but useful as an extreme example with very large

effects.

MSTP(121) : (D = 0) calculation of kinematics selection coefficients and differential cross

section maxima for included (by you or default) subprocesses.

= 0 : not known; to be calculated at initialization.

= 1 : not known; to be calculated at initialization; however, the maximum value

then obtained is to be multiplied by PARP(121) (this may be useful if a

violation factor has been observed in a previous run of the same kind).

= 2 : known; kinematics selection coefficients stored by you in COEF(ISUB,J) (J =

1–20) in common block PYINT2 and maximum of the corresponding differen-

tial cross section times Jacobians in XSEC(ISUB,1) in common block PYINT5.

This is to be done for each included subprocess ISUB before initialization,

with the sum of all XSEC(ISUB,1) values, except for ISUB = 95, stored in

XSEC(0,1).

MSTP(122) : (D = 1) initialization and differential cross section maximization print-out.

Also, less importantly, level of information on where in phase space a cross section

maximum has been violated during the run.
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= 0 : none.

= 1 : short message at initialization; only when an error (i.e. not a warning) is

generated during the run.

= 2 : detailed message, including full maximization., at initialization; always dur-

ing run.

MSTP(123) : (D = 2) reaction to violation of maximum differential cross section or to

occurence of negative differential cross sections (except when allowed for external

processes, i.e. when IDWTUP < 0).

= 0 : stop generation, print message.

= 1 : continue generation, print message for each subsequently larger violation.

= 2 : as = 1, but also increase value of maximum.

MSTP(124) : (D = 1) (C) frame for presentation of event.

= 1 : as specified in PYINIT.

= 2 : c.m. frame of incoming particles.

= 3 : hadronic c.m. frame for DIS events, with warnings as given for PYFRAM.

MSTP(125) : (D = 1) (C) documentation of partonic process, see section 5.3.2 for de-

tails.

= 0 : only list ultimate string/particle configuration.

= 1 : additionally list short summary of the hard process.

= 2 : list complete documentation of intermediate steps of parton-shower evolu-

tion.

MSTP(126) : (D = 100) number of lines at the beginning of event record that are reserved

for event-history information; see section 5.3.2. This value should never be re-

duced, but may be increased at a later date if more complicated processes are

included.

MSTP(127) : (D = 0) possibility to continue run even if none of the requested processes

have non-vanishing cross sections.

= 0 : no, the run will be stopped in the PYINIT call.

= 1 : yes, the PYINIT execution will finish normally, but with the flag MSTI(53)

= 1 set to signal the problem. If nevertheless PYEVNT is called after this,

the run will be stopped, since no events can be generated. If instead a new

PYINIT call is made, with changed conditions (e.g. modified supersymmetry

parameters in a SUSY run), it may now become possible to initialize normally

and generate events.

MSTP(128) : (D = 0) storing of copy of resonance decay products in the documentation

section of the event record, and mother pointer (K(I,3)) relation of the actual

resonance decay products (stored in the main section of the event record) to the

documentation copy.

= 0 : products are stored also in the documentation section, and each product

stored in the main section points back to the corresponding entry in the

documentation section.

= 1 : products are stored also in the documentation section, but the products

stored in the main section point back to the decaying resonance copy in the
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main section.

= 2 : products are not stored in the documentation section; the products stored

in the main section point back to the decaying resonance copy in the main

section.

MSTP(129) : (D = 10) for the maximization of 2 → 3 processes (ISET(ISUB) = 5) each

phase-space point in τ , y and τ ′ is tested MSTP(129) times in the other dimensions

(at randomly selected points) to determine the effective maximum in the (τ , y,

τ ′) point.

MSTP(131) : (D = 0) master switch for pile-up events, i.e. several independent hadron-

hadron interactions generated in the same bunch–bunch crossing, with the events

following one after the other in the event record. See section 11.5 for details.

= 0 : off, i.e. only one event is generated at a time.

= 1 : on, i.e. several events are allowed in the same event record. Information on

the processes generated may be found in MSTI(41) - MSTI(50).

MSTP(132) - MSTP(134) : further switches for pile-up events, see section 11.6.

MSTP(141) : (D = 0) calling of PYKCUT in the event-generation chain, for inclusion of

user-specified cuts.

= 0 : not called.

= 1 : called.

MSTP(142) : (D = 0) calling of PYEVWT in the event-generation chain, either to give

weighted events or to modify standard cross sections. See PYEVWT description

in section 9.1 for further details.

= 0 : not called.

= 1 : called; the distribution of events among subprocesses and in kinematics vari-

ables is modified by the factor WTXS, set by you in the PYEVWT call, but

events come with a compensating weight PARI(10) = 1./WTXS, such that

total cross sections are unchanged.

= 2 : called; the cross section itself is modified by the factor WTXS, set by you in

the PYEVWT call.

MSTP(143) : (D = 0) calling of UPVETO in the event-generation chain, to give the possibly

to abort the generation of an event.

= 0 : not called, so no events are aborted (for this reason).

= 1 : yes, UPVETO is called, from inside the PYEVNT routine (but not from PYEVNW),

and a user can then decide whether to abort the current event or not.

MSTP(145) : (D = 0) choice of polarization state for NRQCD production of charmonium

or bottomonium, processes in the ranges 421–439 and 461–479.

= 0 : unpolarized squared partonic amplitude.

= 1 : helicity or density matrix elements, as chosen by MSTP(146) and MSTP(147).

Only intended for experts.

MSTP(146) : (D = 1) choice of polarization reference frame when MSTP(145) = 1.

= 1 : recoil (recommended since it matches how Pythia defines particle directions,

which the others do not obviously do).

= 2 : Gottfried–Jackson.
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= 3 : target.

= 4 : Collins–Soper.

MSTP(147) : (D = 0) particular helicity or density matrix component when MSTP(145) =

1.

= 0 : helicity 0.

= 1 : helicity ±1.

= 2 : helicity ±2.

= 3 : density matrix element ρ0,0.

= 4 : density matrix element ρ1,1.

= 5 : density matrix element ρ1,0.

= 6 : density matrix element ρ1,−1.

MSTP(148) : (D = 0) possibility to allow final-state shower evolution of the cc[3S
(8)
1 ] and

bb[3S
(8)
1 ] states produced in the NRQCD production of charmonium or bottomo-

nium. Switching it on may exaggerate shower effects, since not all QQ[3S
(8)
1 ]

comes from the fragmentation component where radiation is expected.

= 0 : off.

= 1 : on.

MSTP(149) : (D = 0) if the QQ[3S
(8)
1 ] states are allowed to radiate, MSTP(148) = 1, it

determines the kinematics of the QQ[3S
(8)
1 ] → QQ[3S

(8)
1 ] + g branching.

= 0 : always pick the QQ[3S
(8)
1 ] to be the harder, i.e. z > 0.5.

= 1 : allow z < 0.5 and z > 0.5 equally.

MSTP(151) : (D = 0) introduce smeared position of primary vertex of events.

= 0 : no, i.e. the primary vertex of each event is at the origin.

= 1 : yes, with Gaussian distributions separately in x, y, z and t. The respective

widths of the Gaussians have to be given in PARP(151) - PARP(154). Also

pile-up events obtain separate primary vertices. No provisions are made for

more complicated beam-spot shapes, e.g. with a spread in z that varies as

a function of t. Note that a large beam spot combined with some of the

MSTJ(22) options may lead to many particles not being allowed to decay at

all.

MSTP(161) : (D = 0) unit number of file on which PYUPIN should write its initialization

info, and from which UPINIT should read it back in, in cases where the Les

Houches Accord is used to store Pythia hard processes.

MSTP(162) : (D = 0) unit number of file on which PYUPEV should write its event info,

and from which UPEVNT should read it back in, in cases where the Les Houches

Accord is used to store Pythia hard processes.

MSTP(171) : (D = 0) possibility of variable energies from one event to the next. For

further details see section 9.8.

= 0 : no; i.e. the energy is fixed at the initialization call.

= 1 : yes; i.e. a new energy has to be given for each new event.

Warning: variable energies cannot be used in conjunction with the internal genera-

tion of a virtual photon flux obtained by a PYINIT call with ’gamma/lepton’

– 257 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

argument. The reason is that a variable-energy machinery is now used in-

ternally for the γ-hadron or γγ subsystem, with some information saved at

initialization for the full energy.

MSTP(172) : (D = 2) options for generation of events with variable energies, applicable

when MSTP(171) = 1.

= 1 : an event is generated at the requested energy, i.e. internally a loop is per-

formed over possible event configurations until one is accepted. If the re-

quested c.m. energy of an event is below PARP(2) the run is aborted. Cross-

section information can not be trusted with this option, since it depends on

how you decided to pick the requested energies.

= 2 : only one event configuration is tried. If that is accepted, the event is gen-

erated in full. If not, no event is generated, and the status code MSTI(61)

= 1 is returned. You are then expected to give a new energy, looping until

an acceptable event is found. No event is generated if the requested c.m.

energy is below PARP(2), instead MSTI(61) = 1 is set to signal the failure.

In principle, cross sections should come out correctly with this option.

MSTP(173) : (D = 0) possibility for you to give in an event weight to compensate for a

biased choice of beam spectrum.

= 0 : no, i.e. event weight is unity.

= 1 : yes; weight to be given for each event in PARP(173), with maximum weight

given at initialization in PARP(174).

MSTP(181) : (R) Pythia version number.

MSTP(182) : (R) Pythia subversion number.

MSTP(183) : (R) last year of change for Pythia.

MSTP(184) : (R) last month of change for Pythia.

MSTP(185) : (R) last day of change for Pythia.

PARP(1) : (D = 0.25 GeV) nominal ΛQCD used in running αs for hard scattering (see

MSTP(3)).

PARP(2) : (D = 10. GeV) lowest c.m. energy for the event as a whole that the program

will accept to simulate.

PARP(13) : (D = 1. GeV2) Q2
max scale, to be set by you for defining maximum scale

allowed for photoproduction when using the option MSTP(13) = 2.

PARP(14) : (D = 0.01) in the numerical integration of quark and gluon parton distri-

butions inside an electron, the successive halvings of evaluation-point spacing

is interrupted when two values agree in relative size, |new−old|/(new+old), to

better than PARP(14). There are hardwired lower and upper limits of 2 and 8

halvings, respectively.

PARP(15) : (D = 0.5 GeV) lower cut-off p0 used to define minimum transverse momentum

in branchings γ → qq in the anomalous event class of γp interactions, i.e. sets

the dividing line between the VMD and GVMD event classes.

PARP(16) : (D = 1.) the anomalous parton-distribution functions of the photon are taken

to have the charm and bottom flavour thresholds at virtuality PARP(16)×m2
q.
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PARP(17) : (D = 1.) rescaling factor used for the Q argument of the anomalous parton

distributions of the photon, see MSTP(15).

PARP(18) : (D = 0.4 GeV) scale kρ, such that the cross sections of a GVMD state of scale

k⊥ is suppressed by a factor k2
ρ/k

2
⊥ relative to those of a VMD state. Should be

of order mρ/2, with some finetuning to fit data.

PARP(25) : (D = 0.) parameter η describing the admixture of CP-odd Higgs decays for

MSTP(25) = 3.

PARP(31) : (D = 1.5) common K factor multiplying the differential cross section for hard

parton-parton processes when MSTP(33) = 1 or 2, with the exception of colour

annihilation graphs in the latter case.

PARP(32) : (D = 2.0) special K factor multiplying the differential cross section in hard

colour annihilation graphs, including resonance production, when MSTP(33) = 2.

PARP(33) : (D = 0.075) this factor is used to multiply the ordinary Q2 scale in αs at the

hard interaction for MSTP(33) = 3. With the default value, which is only to be

taken as an example, the effective K factor thus obtained for jet production is in

accordance with the NLO results in [Ell86], modulo the danger of double-counting

because of parton-shower corrections to jet rates.

PARP(34) : (D = 1.) the Q2 scale defined by MSTP(32) is multiplied by PARP(34) when

it is used as argument for parton distributions and αs at the hard interaction. It

does not affect αs when MSTP(33) = 3, nor does it change the Q2 argument of

parton showers.

PARP(35) : (D = 0.20) fix αs value that is used in the heavy-flavour threshold factor when

MSTP(35) = 1.

PARP(36) : (D = 0. GeV) the width ΓQ for the heavy flavour studied in processes ISUB

= 81 or 82; to be used for the threshold factor when MSTP(35) = 2.

PARP(37) : (D = 1.) for MSTP(37) = 1 this regulates the point at which the refer-

ence on-shell quark mass in Higgs and technicolor couplings is assumed de-

fined in PYMRUN calls; specifically the running quark mass is assumed to coin-

cide with the fix one at an energy scale PARP(37) times the fix quark mass, i.e.

mrunning(PARP(37)×mfix) = mfix. See discussion at eq. (7.46) on ambiguity of

PARP(37) choice.

PARP(38) : (D = 0.70 GeV3) the squared wave function at the origin, |R(0)|2, of the J/ψ

wave function. Used for processes 86 and 106–108. See ref. [Glo88].

PARP(39) : (D = 0.006 GeV3) the squared derivative of the wave function at the origin,

|R′(0)|2/m2, of the χc wave functions. Used for processes 87–89 and 104–105.

See ref. [Glo88].

PARP(41) : (D = 0.020 GeV) in the process of generating mass for resonances, and op-

tionally to force that mass to be in a given range, only resonances with a total

width in excess of PARP(41) are generated according to a Breit-Wigner shape (if

allowed by MSTP(42)), while narrower resonances are put on the mass shell.

PARP(42) : (D = 2. GeV) minimum mass of resonances assumed to be allowed when

evaluating total width of h0 to Z0Z0 or W+W− for cases when the h0 is so light

that (at least) one Z/W is forced to be off the mass shell. Also generally used as
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safety check on minimum mass of resonance. Note that some CKIN values may

provide additional constraints.

PARP(43) : (D = 0.10) precision parameter used in numerical integration of width for a

channel with at least one daughter off the mass shell.

PARP(44) : (D = 1000.) the ν parameter of the strongly interacting Z/W model of

Dobado, Herrero and Terron [Dob91]; see MSTP(46) = 3.

PARP(45) : (D = 2054. GeV) the effective techni-ρ mass parameter of the strongly in-

teracting model of Dobado, Herrero and Terron [Dob91]; see MSTP(46) = 5. On

physical grounds it should not be chosen smaller than about 1 TeV or larger than

about the default value.

PARP(46) : (D = 123. GeV) the Fπ decay constant that appears inversely quadratically

in all techni-η partial decay widths [Eic84, App92].

PARP(47) : (D = 246. GeV) vacuum expectation value v used in the DHT scenario

[Dob91] to define the width of the techni-ρ; this width is inversely proportional

v2.

PARP(48) : (D = 50.) the Breit-Wigner factor in the cross section is set to vanish for

masses that deviate from the nominal one by more than PARP(48) times the

nominal resonance width (i.e. the width evaluated at the nominal mass). Is used

in most processes with a single s-channel resonance, but there are some excep-

tions, notably γ∗/Z0 and W±. The reason for this option is that the conventional

Breit-Wigner description is at times not really valid far away from the resonance

position, e.g. because of interference with other graphs that should then be in-

cluded. The wings of the Breit-Wigner can therefore be removed.

PARP(50) : (D = 0.054) dimensionless coupling, which enters quadratically in all partial

widths of the excited graviton G∗ resonance, is κmG∗ =
√

2x1k/MPl, where

x1 ≈ 3.83 is the first zero of the J1 Bessel function and MPl is the modified

Planck mass scale [Ran99, Bij01].

PARP(61) - PARP(65) : (C) parameters for initial-state radiation, see section 10.4.

PARP(71) - PARP(72) : (C) parameter for final-state radiation, see section 10.4.

PARP(78) - PARP(90) : parameters for multiple interactions, see section 11.6.

PARP(91) - PARP(100) : parameters for beam-remnant treatment, see section 11.6.

PARP(101) : (D = 0.50) fraction of diffractive systems in which a quark is assumed kicked

out by the pomeron rather than a gluon; applicable for option MSTP(101) = 3.

PARP(102) : (D = 0.28 GeV) the mass spectrum of diffractive states (in single and dou-

ble diffractive scattering) is assumed to start PARP(102) above the mass of the

particle that is diffractively excited. In this connection, an incoming γ is taken

to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ.

PARP(103) : (D = 1.0 GeV) if the mass of a diffractive state is less than PARP(103) above

the mass of the particle that is diffractively excited, the state is forced to decay

isotropically into a two-body channel. In this connection, an incoming γ is taken

to have the selected VMD meson mass, i.e. mρ, mω, mφ or mJ/ψ. If the mass is

higher than this threshold, the standard string fragmentation machinery is used.

The forced two-body decay is always carried out, also when MSTP(111) = 0.
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PARP(104) : (D = 0.8 GeV) minimum energy above threshold for which hadron-hadron

total, elastic and diffractive cross sections are defined. Below this energy, an

alternative description in terms of specific few-body channels would have been

required, and this is not modelled in Pythia.

PARP(110) : (D = 1.) a rescaling factor for resonance widths, applied when MSTP(110)

is switched on.

PARP(111) : (D = 2. GeV) used to define the minimum invariant mass of the remnant

hadronic system (i.e. when interacting partons have been taken away), together

with original hadron masses and extra parton masses. For a hadron or resolved

photon beam, this also implies a further constraint that the x of an interacting

parton be below 1 − 2 × PARP(111)/Ecm.

PARP(115) : (D = 1.5 fm) (C) the average fragmentation time of a string, giving the

exponential suppression that a reconnection cannot occur if strings decayed before

crossing. Is implicitly fixed by the string constant and the fragmentation function

parameters, and so a significant change is not recommended.

PARP(116) : (D = 0.5 fm) (C) width of the type I string in reconnection calculations,

giving the radius of the Gaussian distribution in x and y separately.

PARP(117) : (D = 0.6) (C) kI, the main free parameter in the reconnection probability

for scenario I; the probability is given by PARP(117) times the overlap volume,

up to saturation effects.

PARP(118), PARP(119) : (D = 2.5, 2.0) (C) fr and ft, respectively, used in the Monte

Carlo sampling of the phase space volume in scenario I. There is no real reason

to change these numbers.

PARP(120) : (D = 1.0) (D) (C) fraction of events in the GH, intermediate and instan-

taneous scenarios where a reconnection is allowed to occur. For the GH one

a further suppression of the reconnection rate occurs from the requirement of

reduced string length in a reconnection.

PARP(121) : (D = 1.) the maxima obtained at initial maximization are multiplied by

this factor if MSTP(121) = 1; typically PARP(121) would be given as the product

of the violation factors observed (i.e. the ratio of final maximum value to initial

maximum value) for the given process(es).

PARP(122) : (D = 0.4) fraction of total probability that is shared democratically between

the COEF coefficients open for the given variable, with the remaining fraction

distributed according to the optimization results of PYMAXI.

PARP(131) : parameter for pile-up events, see section 11.6.

PARP(141) - PARP(150) : (D = 10*1.) matrix elements for charmonium and bottomo-

nium production in the non-relativistic QCD framework (NRQCD). Current val-

ues are dummy only, and will be updated soon. These values are used in processes

421–439 and 461–479.

PARP(141) : 〈OJ/ψ[3S
(1)
1 ]〉.

PARP(142) : 〈OJ/ψ[3S
(8)
1 ]〉.

PARP(143) : 〈OJ/ψ[1S
(8)
0 ]〉.

PARP(144) : 〈OJ/ψ[3P
(8)
0 ]〉/m2

c .
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PARP(145) : 〈Oχc0 [3P
(1)
0 ]〉/m2

c .

PARP(146) : 〈OΥ[3S
(1)
1 ]〉.

PARP(147) : 〈OΥ[3S
(8)
1 ]〉.

PARP(148) : 〈OΥ[1S
(8)
0 ]〉.

PARP(149) : 〈OΥ[3P
(8)
0 ]〉/m2

b.

PARP(150) : 〈Oχb0[3P
(1)
0 ]〉/m2

b.

PARP(151) - PARP(154) : (D = 4*0.) (C) regulate the assumed beam-spot size. For

MSTP(151) = 1 the x, y, z and t coordinates of the primary vertex of each event

are selected according to four independent Gaussians. The widths of these Gaus-

sians are given by the four parameters, where the first three are in units of mm

and the fourth in mm/c.

PARP(161) - PARP(164) : (D = 2.20, 23.6, 18.4, 11.5) couplings f2
V /4π of the photon to

the ρ0, ω, φ and J/ψ vector mesons.

PARP(165) : (D = 0.5) a simple multiplicative factor applied to the cross section for

the transverse resolved photons to take into account the effects of longitudinal

resolved photons, see MSTP(17). No preferred value, but typically one could use

PARP(165) = 1 as main contrast to the no-effect = 0, with the default arbitrarily

chosen in the middle.

PARP(167), PARP(168) : (D = 2*0) the longitudinal energy fraction y of an incoming

photon, side 1 or 2, used in the R expression given for MSTP(17) to evaluate

fL(y,Q2)/fT (y,Q2). Need not be supplied when a photon spectrum is generated

inside a lepton beam, but only when a photon is directly given as argument in

the PYINIT call.

PARP(171) : to be set, event-by-event, when variable energies are allowed, i.e. when

MSTP(171) = 1. If PYINIT is called with FRAME = ’CMS’ (= ’FIXT’), PARP(171)

multiplies the c.m. energy (beam energy) used at initialization. For the options

’3MOM’, ’4MOM’ and ’5MOM’, PARP(171) is dummy, since there the momenta are

set in the P array. It is also dummy for the ’USER’ option, where the choice of

variable energies is beyond the control of Pythia.

PARP(173) : event weight to be given by you when MSTP(173) = 1.

PARP(174) : (D = 1.) maximum event weight that will be encountered in PARP(173)

during the course of a run with MSTP(173) = 1; to be used to optimize the

efficiency of the event generation. It is always allowed to use a larger bound than

the true one, but with a corresponding loss in efficiency.

PARP(181) - PARP(189) : (D = 0.1, 0.01, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.3) Yukawa

couplings of leptons to H++, assumed same for H++
L and H++

R . Is a symmetric

3 × 3 array, where PARP(177+3*i+j) gives the coupling to a lepton pair with

generation indices i and j. Thus the default matrix is dominated by the diagonal

elements and especially by the ττ one.

PARP(190) : (D = 0.64) gL = e/ sin θW .

PARP(191) : (D = 0.64) gR, assumed same as gL.

PARP(192) : (D = 5 GeV) vL vacuum expectation value of the left-triplet. The corre-
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sponding vR is assumed given by vR =
√

2MWR
/gR and is not stored explicitly.

PARP(193) : (D = 1D4 GeV2) factorization scale Q2 for parton densities, to be set by

user when MSTP(32) = 12 for 2 → 2 processes or MSTP(39) = 8 for 2 → 3 ones.

PARP(194) : (D = 1D4 GeV2) renormalization scale Q2, to be set by user when MSTP(32)

= 12 for 2 → 2 processes or MSTP(39) = 8 for 2 → 3 ones. For process 161 it

also sets the scale of running quark masses.

9.4 Further couplings

In this section we collect information on the two routines for running αs and αem, and on

other couplings of standard and non-standard particles found in the PYDAT1 and PYTCSM

common blocks. Although originally begun for applications within the traditional particle

sector, this section of PYDAT1 has rapidly expanded towards the non-standard aspects, and

is thus more of interest for applications to specific processes. It could therefore equally

well have been put somewhere else in this manual. Several other couplings indeed appear

in the PARP array in the PYPARS common block, see section 9.3, and the choice between

the two has largely been dictated by availability of space. The improved simulation of the

TechniColor Strawman Model, described in [Lan02, Lan02a], and the resulting proliferation

of model parameters, has led to the introduction of the new PYTCSM common block.

ALEM = PYALEM(Q2)

Purpose: to calculate the running electromagnetic coupling constant αem. Expressions

used are described in ref. [Kle89]. See MSTU(101), PARU(101), PARU(103) and

PARU(104).

Q2 : the momentum transfer scale Q2 at which to evaluate αem.

ALPS = PYALPS(Q2)

Purpose: to calculate the running strong coupling constant αs, e.g. in matrix elements and

resonance decay widths. (The function is not used in parton showers, however,

where formulae rather are written in terms of the relevant Λ values.) The first-

and second-order expressions are given by eqs. (6.9) and (6.14). See MSTU(111)

- MSTU(118) and PARU(111) - PARU(118) for options.

Q2 : the momentum transfer scale Q2 at which to evaluate αs.

PM = PYMRUN(KF,Q2)

Purpose: to give running masses of d, u, s, c, b and t quarks according to eq. (7.46). For

all other particles, the PYMASS function is called by PYMRUN to give the normal

mass. Such running masses appear e.g. in couplings of fermions to Higgs and

technipion states.

KF : flavour code.
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Q2 : the momentum transfer scale Q2 at which to evaluate αs.

Note: the nominal values, valid at a reference scale

Q2
ref = max((PARP(37)mnominal)

2, 4Λ2),

are stored in PARF(91) - PARF(96).

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the

performance of the program as a whole. Here only those related to couplings are

described; the main description is found in section 14.3.

MSTU(101) : (D = 1) procedure for αem evaluation in the PYALEM function.

= 0 : αem is taken fixed at the value PARU(101).

= 1 : αem is running with the Q2 scale, taking into account corrections from

fermion loops (e, µ, τ , d, u, s, c, b).

= 2 : αem is fixed, but with separate values at low and high Q2. For Q2 below

(above) PARU(104) the value PARU(101) (PARU(103)) is used. The former

value is then intended for real photon emission, the latter for electroweak

physics, e.g. of the W/Z gauge bosons.

MSTU(111) : (I, D=1) order of αs evaluation in the PYALPS function. Is overwritten in

PYEEVT, PYONIA or PYINIT calls with the value desired for the process under

study.

= 0 : αs is fixed at the value PARU(111). As extra safety, Λ =PARU(117) is set in

PYALPS so that the first-order running αs agrees with the desired fixed αs for

the Q2 value used.

= 1 : first-order running αs is used.

= 2 : second-order running αs is used.

MSTU(112) : (D = 5) the nominal number of flavours assumed in the αs expression, with

respect to which Λ is defined.

MSTU(113) : (D = 3) minimum number of flavours that may be assumed in αs expression,

see MSTU(112).

MSTU(114) : (D = 5) maximum number of flavours that may be assumed in αs expression,

see MSTU(112).

MSTU(115) : (D = 0) treatment of αs singularity for Q2 → 0 in PYALPS calls. (Relevant

e.g. for QCD 2 → 2 matrix elements in the p⊥ → 0 limit, but not for showers,

where PYALPS is not called.)

= 0 : allow it to diverge like 1/ ln(Q2/Λ2).

= 1 : soften the divergence to 1/ ln(1 + Q2/Λ2).

= 2 : freeze Q2 evolution below PARU(114), i.e. the effective argument is

max(Q2,PARU(114)).

MSTU(118) : (I) number of flavours nf found and used in latest PYALPS call.

PARU(101) : (D = 0.00729735=1/137.04) αem, the electromagnetic fine structure constant
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at vanishing momentum transfer.

PARU(102) : (D = 0.232) sin2θW , the weak mixing angle of the standard electroweak

model.

PARU(103) : (D = 0.007764=1/128.8) typical αem in electroweak processes; used for Q2 >

PARU(104) in the option MSTU(101) = 2 of PYALEM. Although it can technically

be used also at rather small Q2, this αem value is mainly intended for high Q2,

primarily Z0 and W± physics.

PARU(104) : (D = 1 GeV2) dividing line between ‘low’ and ‘high’ Q2 values in the option

MSTU(101) = 2 of PYALEM.

PARU(105) : (D = 1.16639E-5 GeV−2) GF, the Fermi constant of weak interactions.

PARU(108) : (I) the αem value obtained in the latest call to the PYALEM function.

PARU(111) : (D = 0.20) fix αs value assumed in PYALPS when MSTU(111) = 0 (and also

in parton showers when αs is assumed fix there).

PARU(112) : (I, D=0.25 GeV) Λ used in running αs expression in PYALPS. Like MSTU(111),

this value is overwritten by the calling physics routines, and is therefore purely

nominal.

PARU(113) : (D = 1.) the flavour thresholds, for the effective number of flavours nf to

use in the αs expression, are assumed to sit at Q2 =PARU(113)×m2
q, where mq is

the quark mass. May be overwritten from the calling physics routine.

PARU(114) : (D = 4 GeV2) Q2 value below which the αs value is assumed constant for

MSTU(115) = 2.

PARU(115) : (D = 10.) maximum αs value that PYALPS will ever return; is used as a last

resort to avoid singularities.

PARU(117) : (I) Λ value (associated with MSTU(118) effective flavours) obtained in latest

PYALPS call.

PARU(118) : (I) αs value obtained in latest PYALPS call.

PARU(121) - PARU(130) : couplings of a new Z′0; for fermion default values are given

by the Standard Model Z0 values, assuming sin2θW = 0.23. Since a genera-

tion dependence is now allowed for the Z′0 couplings to fermions, the variables

PARU(121) - PARU(128) only refer to the first generation, with the second gen-

eration in PARJ(180) - PARJ(187) and the third in PARJ(188) - PARJ(195)

following exactly the same pattern. Note that e.g. the Z′0 width contains squared

couplings, and thus depends quadratically on the values below.

PARU(121), PARU(122) : (D = −0.693, −1.) vector and axial couplings of down type

quarks to Z′0.

PARU(123), PARU(124) : (D = 0.387, 1.) vector and axial couplings of up type

quarks to Z′0.

PARU(125), PARU(126) : (D = −0.08, −1.) vector and axial couplings of leptons to

Z′0.

PARU(127), PARU(128) : (D = 1., 1.) vector and axial couplings of neutrinos to Z′0.

PARU(129) : (D = 1.) the coupling Z ′0 → W+W− is taken to be PARU(129)×(the

Standard Model Z0 → W+W− coupling)×(mW/mZ′)2. This gives a Z′0 →
W+W− partial width that increases proportionately to the Z′0 mass.
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PARU(130) : (D = 0.) in the decay chain Z′0 → W+W− → 4 fermions, the angular

distribution in the W decays is supposed to be a mixture, with fraction 1. -

PARU(130) corresponding to the same angular distribution between the four

final fermions as in Z0 → W+W− (mixture of transverse and longitudinal

W’s), and fraction PARU(130) corresponding to h0 → W+W− the same way

(longitudinal W’s).

PARU(131) - PARU(136) : couplings of a new W′±; for fermions default values are given

by the Standard Model W± values (i.e. V − A). Note that e.g. the W′± width

contains squared couplings, and thus depends quadratically on the values be-

low.

PARU(131), PARU(132) : (D = 1., −1.) vector and axial couplings of a quark-

antiquark pair to W′±; is further multiplied by the ordinary CKM factors.

PARU(133), PARU(134) : (D = 1., −1.) vector and axial couplings of a lepton-

neutrino pair to W′±.

PARU(135) : (D = 1.) the coupling W′± → Z0W± is taken to be PARU(135)×(the

Standard Model W± → Z0W± coupling)×(mW/mW ′)2. This gives a W′± →
Z0W± partial width that increases proportionately to the W′ mass.

PARU(136) : (D = 0.) in the decay chain W′± → Z0W± → 4 fermions, the angular

distribution in the W/Z decays is supposed to be a mixture, with fraction

1-PARU(136) corresponding to the same angular distribution between the

four final fermions as in W± → Z0W± (mixture of transverse and longitu-

dinal W/Z’s), and fraction PARU(136) corresponding to H± → Z0W± the

same way (longitudinal W/Z’s).

PARU(141) : (D = 5.) tan β parameter of a two Higgs doublet scenario, i.e. the ratio of

vacuum expectation values. This affects mass relations and couplings in the Higgs

sector. If the Supersymmetry simulation is switched on, IMSS(1) nonvanishing,

PARU(141) will be overwritten by RMSS(5) at initialization, so it is the latter

variable that should be set.

PARU(142) : (D = 1.) the Z0 → H+H− coupling is taken to be PARU(142)×(the MSSM

Z0 → H+H− coupling).

PARU(143) : (D = 1.) the Z′0 → H+H− coupling is taken to be PARU(143)×(the MSSM

Z0 → H+H− coupling).

PARU(145) : (D = 1.) quadratically multiplicative factor in the Z′0 → Z0h0 partial width

in left-right-symmetric models, expected to be unity (see [Coc91]).

PARU(146) : (D = 1.) sin(2α) parameter, enters quadratically as multiplicative factor in

the W′± → W±h0 partial width in left-right-symmetric models (see [Coc91]).

PARU(151) : (D = 1.) multiplicative factor in the LQ → q` squared Yukawa coupling,

and thereby in the LQ partial width and the q` → LQ and other cross sections.

Specifically, λ2/(4π) =PARU(151)×αem, i.e. it corresponds to the k factor of

[Hew88].

PARU(161) - PARU(168) : (D = 5*1., 3*0.) multiplicative factors that can be used to

modify the default couplings of the h0 particle in Pythia. Note that the fac-

tors enter quadratically in the partial widths. The default values correspond
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to the couplings given in the minimal one-Higgs-doublet Standard Model, and

are therefore not realistic in a two-Higgs-doublet scenario. The default values

should be changed appropriately by you. Also the last two default values should

be changed; for these the expressions of the minimal supersymmetric Standard

Model (MSSM) are given to show parameter normalization. Alternatively, the

SUSY machinery can generate all the couplings for IMSS(1), see MSTP(4).

PARU(161) : h0 coupling to down type quarks.

PARU(162) : h0 coupling to up type quarks.

PARU(163) : h0 coupling to leptons.

PARU(164) : h0 coupling to Z0.

PARU(165) : h0 coupling to W±.

PARU(168) : h0 coupling to H± in γγ → h0 loops, in MSSM sin(β − α) +

cos(2β) sin(β + α)/(2 cos2θW ).

PARU(171) - PARU(178) : (D = 7*1., 0.) multiplicative factors that can be used to mod-

ify the default couplings of the H0 particle in Pythia. Note that the factors enter

quadratically in partial widths. The default values for PARU(171) - PARU(175)

correspond to the couplings given to h0 in the minimal one-Higgs-doublet Stan-

dard Model, and are therefore not realistic in a two-Higgs-doublet scenario. The

default values should be changed appropriately by you. Also the last two default

values should be changed; for these the expressions of the minimal supersymmet-

ric Standard Model (MSSM) are given to show parameter normalization. Alter-

natively, the SUSY machinery can generate all the couplings for IMSS(1), see

MSTP(4).

PARU(171) : H0 coupling to down type quarks.

PARU(172) : H0 coupling to up type quarks.

PARU(173) : H0 coupling to leptons.

PARU(174) : H0 coupling to Z0.

PARU(175) : H0 coupling to W±.

PARU(176) : H0 coupling to h0h0, in MSSM cos(2α) cos(β +α)−2 sin(2α) sin(β +α).

PARU(177) : H0 coupling to A0A0, in MSSM cos(2β) cos(β + α).

PARU(178) : H0 coupling to H± in γγ → H0 loops, in MSSM cos(β − α) −
cos(2β) cos(β + α)/(2 cos2θW ).

PARU(181) - PARU(190) : (D = 3*1., 2*0., 2*1., 3*0.) multiplicative factors that can

be used to modify the default couplings of the A0 particle in Pythia. Note

that the factors enter quadratically in partial widths. The default values for

PARU(181) - PARU(183) correspond to the couplings given to h0 in the mini-

mal one-Higgs-doublet Standard Model, and are therefore not realistic in a two-

Higgs-doublet scenario. The default values should be changed appropriately by

you. PARU(184) and PARU(185) should be vanishing at the tree level, in the

absence of CP-violating phases in the Higgs sector, and are so set; normaliza-

tion of these couplings agrees with what is used for h0 and H0. Also the other

default values should be changed; for these the expressions of the Minimal Super-

symmetric Standard Model (MSSM) are given to show parameter normalization.
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Alternatively, the SUSY machinery can generate all the couplings for IMSS(1),

see MSTP(4).

PARU(181) : A0 coupling to down type quarks.

PARU(182) : A0 coupling to up type quarks.

PARU(183) : A0 coupling to leptons.

PARU(184) : A0 coupling to Z0.

PARU(185) : A0 coupling to W±.

PARU(186) : A0 coupling to Z0h0 (or Z∗ to A0h0), in MSSM cos(β − α).

PARU(187) : A0 coupling to Z0H0 (or Z∗ to A0H0), in MSSM sin(β − α).

PARU(188) : As PARU(186), but coupling to Z′0 rather than Z0.

PARU(189) : As PARU(187), but coupling to Z′0 rather than Z0.

PARU(190) : A0 coupling to H± in γγ → A0 loops, 0 in MSSM.

PARU(191) - PARU(195) : (D = 4*0., 1.) multiplicative factors that can be used to

modify the couplings of the H± particle in Pythia. Currently only PARU(195)

is in use. See above for related comments.

PARU(195) : H± coupling to W±h0 (or W∗± to H±h0), in MSSM cos(β − α).

PARU(197): (D = 0.) H0 coupling to W±H∓ within a two-Higgs-doublet model.

PARU(198): (D = 0.) A0 coupling to W±H∓ within a two-Higgs-doublet model.

PARJ(180) - PARJ(187) : couplings of the second generation fermions to the Z ′0, fol-

lowing the same pattern and with the same default values as the first one in

PARU(121) - PARU(128).

PARJ(188) - PARJ(195) : couplings of the third generation fermions to the Z ′0, following

the same pattern and with the same default values as the first one in PARU(121)

- PARU(128).

COMMON/PYTCSM/ITCM(0:99),RTCM(0:99)

Purpose: to give access to a number of switches and parameters which regulate the sim-

ulation of the TechniColor Strawman Model [Lan02, Lan02a], plus a few further

parameters related to the simulation of compositeness, mainly in earlier incarna-

tions of TechniColor.

ITCM(1) : (D = 4) NTC , number of technicolors; fixes the relative values of gem and getc.

ITCM(2) : (D = 0) Topcolor model.

= 0 : Standard Topcolor. Third generation quark couplings to the coloron are

proportional to cot θ3, see RTCM(21) below; first two generations are propor-

tional to − tan θ3.

= 1 : Flavor Universal Topcolor. All quarks couple with strength proportional to

cot θ3.

ITCM(5) : (D = 0) presence of anomalous couplings in Standard Model processes, see

section 8.6.5 for further details.

= 0 : absent.
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= 1 : left–left isoscalar model, with only u and d quarks composite (at the probed

scale).

= 2 : left–left isoscalar model, with all quarks composite.

= 3 : helicity-non-conserving model, with only u and d quarks composite (at the

probed scale).

= 4 : helicity-non-conserving model, with all quarks composite.

= 5 : coloured technihadrons, affecting the standard QCD 2 → 2 cross sections by

the exchange of Coloron or Colored Technirho, see section 8.6.7.

RTCM(1) : (D = 82 GeV) FT , the Technicolor decay constant.

RTCM(2) : (D = 4/3) QU , charge of up-type technifermion; the down-type technifermion

has a charge QD = QU − 1.

RTCM(3) : (D = 1/3) sin χ, where χ is the mixing angle between isotriplet technipion

interaction and mass eigenstates.

RTCM(4) : (D = 1/
√

6) sin χ′, where χ′ is the mixing angle between the isosinglet π′0
tc

interaction and mass eigenstates.

RTCM(5) : (D = 1) Clebsch for technipi decays to charm. Appears squared in decay rates.

RTCM(6) : (D = 1) Clebsch for technipi decays to bottom. Appears squared in decay

rates.

RTCM(7) : (D = 0.0182) Clebsch for technipi decays to top, estimated to be mb/mt.

Appears squared in decay rates.

RTCM(8) : (D = 1) Clebsch for technipi decays to τ . Appears squared in decay rates.

RTCM(9) : (D = 0) squared Clebsch for isotriplet technipi decays to gluons.

RTCM(10) : (D = 4/3) squared Clebsch for isosinglet technipi decays to gluons.

RTCM(11) : (D = 0.05) technirho–techniomega mixing parameters. Allows for isospin-

violating decays of the techniomega.

RTCM(12) : (D = 200 GeV) vector technimeson decay parameter. Affects the decay rates

of vector technimesons into technipi plus transverse gauge boson.

RTCM(13) : (D = 200 GeV) axial mass parameter for technivector decays to transverse

gauge bosons and technipions.

RTCM(21) : (D =
√

0.08) tangent of Topcolor mixing angle, in the scenario with coloured

technihadrons described in section 8.6.7 and switched on with ITCM(5) = 5. For

ITCM(2) = 0, the coupling of the V8 to light quarks is suppressed by RTCM(21)2

whereas the coupling to heavy (b and t) quarks is enhanced by 1/RTCM(21)2. For

ITCM(21) = 1, the coupling to quarks is universal, and given by 1/RTCM(21)2.

RTCM(22) : (D = 1/
√

2) sine of isosinglet technipi mixing with Topcolor currents.

RTCM(23) : (D = 0) squared Clebsch for colour-octet technipi decays to charm.

RTCM(24) : (D = 0) squared Clebsch for colour-octet technipi decays to bottom.

RTCM(25) : (D = 0) squared Clebsch for colour-octet technipi decays to top.

RTCM(26) : (D = 5/3) squared Clebsch for colour-octet technipi decays to gluons.

RTCM(27) : (D = 250 GeV) colour-octet technirho decay parameter for decays to technipi

plus gluon.

RTCM(28) : (D = 250 GeV) hard mixing parameter between colour-octet technirhos.
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RTCM(29) : (D = 1/
√

2) magnitude of (1, 1) element of the U(2) matrices that diagonalize

U-type technifermion condensates.

RTCM(30) : (D = 0 Radians) phase for the element described above, RTCM(29).

RTCM(31) : (D = 1/
√

2) Magnitude of (1, 1) element of the U(2) matrices that diagonalize

D-type technifermion condensates.

RTCM(32) : (D = 0 Radians) phase for the element described above, RTCM(31).

RTCM(33) : (D = 1) if ΓV8
(ŝ) > RTCM(33)

√
ŝ, then ΓV8

(ŝ) is redefined to be RTCM(33)
√

ŝ.

It thus prevents the coloron from becoming wider than its mass.

RTCM(41) : (D = 1000 GeV) compositeness scale Λ, used in processes involving excited

fermions, and for Standard Model processes when ITCM(5) is between 1 and 4.

RTCM(42) : (D = 1.) sign of the interference term between the standard cross section and

the compositeness term (η parameter); should be ±1; used for Standard Model

processes when ITCM(5) is between 1 and 4.

RTCM(43) - RTCM(45) : (D = 3*1.) strength of the SU(2), U(1) and SU(3) couplings,

respectively, in an excited fermion scenario; cf. f , f ′ and fs of [Bau90].

RTCM(46) : (D = 0.) anomalous magnetic moment of the W± in process 20; η = κ − 1,

where η = 0 (κ = 1) is the Standard Model value.

9.5 Supersymmetry common-blocks and routines

The parameters available to the SUSY user are stored in the common block PYMSSM. In

general, options are set by the IMSS array, while real valued parameters are set by RMSS.

The entries IMSS(0) and RMSS(0) are not used, but are available for compatibility with the

C programming language. Note also that most options are only used by Pythia’s internal

SUSY machinery and are ineffective when external spectrum calculations are used, see

section 8.7.5.

COMMON/PYMSSM/IMSS(0:99),RMSS(0:99)

Purpose: to give access to parameters that allow the simulation of the MSSM.

IMSS(1) : (D = 0) level of MSSM simulation.

= 0 : No MSSM simulation.

= 1 : A general MSSM simulation. The parameters of the model are set by the

array RMSS.

= 2 : An approximate SUGRA simulation using the analytic formulae of [Dre95]

to reduce the number of free parameters. In this case, only five input pa-

rameters are used. RMSS(1) is the common gaugino mass m1/2, RMSS(8) is

the common scalar mass m0, RMSS(4) fixes the sign of the higgsino mass µ,

RMSS(16) is the common trilinear coupling A, and RMSS(5) is tan β = v2/v1.

= 11 : Read spectrum from a SUSY Les Houches Accord (SLHA) conformant file.

The Logical Unit Number on which the file is opened should be put in

IMSS(21). If a decay table should also be read in, the corresponding Unit

Number (normally the same as the spectrum file) should be put in IMSS(22).
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Cross sections are still calculated by Pythia, as are decays for those sparti-

cles and higgs bosons for which a decay table is not found on the file.

= 12 : Invoke a runtime interface to Isasusy [Bae93] for determining SUSY mass

spectrum and mixing parameters. This provides a more precise solution of

the renormalization group equations than is offered by the option = 2 above.

The interface automatically asks the SUGRA routine (part of Isasusy) to solve

the RGE’s for the weak scale mass spectrum and mixing parameters. The

mSUGRA input parameters should be given in RMSS as usual, i.e.: RMSS(1) =

m1/2, RMSS(4) = sign(µ), RMSS(5) = tan β, RMSS(8) = m0, and RMSS(16)

= A. As before, we are using the conventions of [Hab85, Gun86a] everywhere.

Cross sections and decay widths are still calculated by Pythia, using the

output provided by Isasusy. Note that since Pythia cannot always be

expected to be linked with the Isajet library, two dummy routines and a

dummy function are included. These are SUGRA, SSMSSM and VISAJE, located

towards the very bottom of the Pythia source code. These routines must

be removed and Pythia recompiled before a proper linking with Isajet can

be achieved. Furthermore, the common-block sizes and variable positions

accessed in the SUGRA routine have to match those of the Isajet version

used, see section 8.7.5.

= 13 : File-based run-time Isasusy interface, i.e. using an Isajet input file. The

contents of the input file should be identical to what would normally be typed

when using the Isajet RGE executable stand-alone (normally isasugra.x).

The input file should be opened by the user in his/her main program and

the Logical Unit Number should be stored in IMSS(20), where Pythia will

look for it during initialization. Pythia will then pass the parameters to

the SUGRA subroutine in Isajet for RGE evolution and will afterwards ex-

tract the electroweak scale mass and coupling spectra to its own common

blocks. For example, the first line of the input file should contain the model

code: 1 for mSUGRA, 2 for mGMSB, 3 for non-universal SUGRA, 4 for

SUGRA with truly unified gauge couplings, 5 for non-minimal GMSB, 6 for

SUGRA+right-handed neutrino, 7 for anomaly-mediated SUSY breaking.

The ensuing lines should contain the input parameters.

While option IMSS(1) = 12 above can only be used for mSUGRA scenarios,

but then is easy to use, the current option allows the full range of Isajet

models to be accessed.

IMSS(2) : (D = 0) treatment of U(1), SU(2), and SU(3) gaugino mass parameters.

= 0 : The gaugino parameters M1,M2 and M3 are set by RMSS(1), RMSS(2), and

RMSS(3), i.e. there is no forced relation between them.

= 1 : The gaugino parameters are fixed by the relation (3/5)M1/α1 = M2/α2 =

M3/α3 = X and the parameter RMSS(1). If IMSS(1) = 2, then RMSS(1) is

treated as the common gaugino mass m1/2 and RMSS(20) is the GUT scale

coupling constant αGUT , so that X = m1/2/αGUT .

= 2 : M1 is set by RMSS(1), M2 by RMSS(2) and M3 = M2α3/α2. In such a
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scenario, the U(1) gaugino mass behaves anomalously.

IMSS(3) : (D = 0) treatment of the gluino mass parameter.

= 0 : The gluino mass parameter M3 is used to calculate the gluino pole mass with

the formulae of [Kol96]. The effects of squark loops can significantly shift

the mass.

= 1 : M3 is the gluino pole mass. The effects of squark loops are assumed to have

been included in this value.

IMSS(4) : (D = 1) treatment of the Higgs sector.

= 0 : The Higgs sector is determined by the approximate formulae of [Car95] and

the pseudoscalar mass MA set by RMSS(19).

= 1 : The Higgs sector is determined by the exact formulae of [Car95] and the

pseudoscalar mass MA set by RMSS(19). The pole mass for MA is not the

same as the input parameter.

= 2 : The Higgs sector is fixed by the mixing angle α set by RMSS(18) and the

mass values PMAS(I,1), where I = 25, 35, 36, and 37.

= 3 : Call FeynHiggs [Hei99] for a precise calculation of Higgs masses. For the

time being, it can be invoked either when using an SLHA SUSY spectrum,

i.e. for IMSS(1) = 11, or when using the run-time interface to Isasusy, i.e.

for IMSS(1) = 12, 13. When FeynHiggs is to be linked, the three dummy

routines FHSETFLAGS, FHSETPARA and FHHIGGSCORR need first be removed

from the Pythia library.

IMSS(5) : (D = 0) allows you to set the t̃, b̃ and τ̃ masses and mixing by hand.

= 0 : no, the program calculates itself.

= 1 : yes, calculate from given input. The parameters RMSS(26) - RMSS(28)

specify the mixing angle (in radians) for the sbottom, stop, and stau. The

parameters RMSS(10) - RMSS(14) specify the two stop masses, the one sbot-

tom mass (the other being fixed by the other parameters) and the two stau

masses. Note that the masses RMSS(10), RMSS(11) and RMSS(13) corre-

spond to the left-left entries of the diagonalized matrices, while RMSS(12)

and RMSS(14) correspond to the right-right entries. Note that these entries

need not be ordered in mass.

IMSS(7) : (D = 0) treatment of the scalar masses in an extension of SUGRA models.

The presence of additional U(1) symmetries at high energy scales can modify

the boundary conditions for the scalar masses at the unification scale.

= 0 : No additional D-terms are included. In SUGRA models, all scalars have the

mass m0 at the unification scale.

= 1 : RMSS(23) - RMSS(25) are the values of DX ,DY and DS at the unification

scale in the model of [Mar94]. The boundary conditions for the scalar masses

are shifted based on their quantum numbers under the additional U(1)

symmetries.

IMSS(8) : (D = 0) treatment of the τ̃ mass eigenstates.

= 0 : The τ̃ mass eigenstates are calculated using the parameters

RMSS(13, 14, 17).
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= 1 : The τ̃ mass eigenstates are identical to the interaction eigenstates, so they

are treated identically to ẽ and µ̃ .

IMSS(9) : (D = 0) treatment of the right-handed squark mass eigenstates for the first

two generations.

= 0 : The q̃R masses are fixed by RMSS(9). d̃R and ũR are identical except for

Electroweak D-term contributions.

= 1 : The masses of d̃R and ũR are fixed by RMSS(9) and RMSS(22) respectively.

IMSS(10) : (D = 0) allowed decays for χ̃2.

= 0 : The second lightest neutralino χ̃2 decays with a branching ratio calculated

from the MSSM parameters.

= 1 : χ̃2 is forced to decay only to χ̃1γ, regardless of the actual branching ratio.

This can be used for detailed studies of this particular final state.

IMSS(11) : (D = 0) choice of the lightest superpartner (LSP).

= 0 : χ̃1 is the LSP.

= 1 : χ̃1 is the next to lightest superparter (NLSP) and the gravitino is the LSP.

The χ̃1 decay length is calculated from the gravitino mass set by RMSS(21)

and the χ̃1 mass and mixing.

IMSS(13) : (D = 0) possibility to extend the particle content recognized by Pythia to

that of the Next-to-Minimal Supersymmetric Standard Model (NMSSM).

= 0 : MSSM particle content.

= 1 : NMSSM particle content

Note: at present, = 1 merely allows Pythia to recognize the NMSSM particles.

Pythia does not contain any internal machinery for doing calculations in

the NMSSM. Thus, the basic scattering processes should be generated by an

external program and handed to Pythia via the LHA interface for parton-

level events. This should then be combined with either setting the NMSSM

resonance decays by hand, or by reading in an SLHA decay table prepared

by an external decay package.

IMSS(20) : (D = 0) Logical Unit Number on which the SUSY model parameter file is

opened, for file-based run-time interface to the Isajet SUSY RGE machinery,

see IMSS(1) = 13.

IMSS(21) : (D = 0) Logical Unit Number for SLHA spectrum read-in. Only used if

IMSS(1) = 11.

IMSS(22) : (D = 0) Read-in of SLHA decay table.

= 0 : No decays are read in. The internal Pythia machinery is used to calculate

decay rates.

> 0 : Read decays from SLHA file on unit number IMSS(22). During initialization,

decay tables in the file will replace the values calculated by Pythia. Particles

for which the file does not contain a decay table will thus still have their

decays calculated by Pythia. Any decay lines associated with a zero width

mother are ignored, giving a fast way of switching off decays without having

to comment out all the decay lines. In normal usage one would expect

IMSS(22) to be equal to IMSS(21), to ensure that the spectrum and decays
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are consistent with each other, but this is not a strict requirement.

IMSS(23) : (D = 0) writing of MSSM spectrum data.

= 0 : Don’t write out spectrum.

> 0 : Write out spectrum in SLHA format (calculated by Pythia or otherwise)

to file on unit number IMSS(23).

IMSS(24) : (D = 0) writing of MSSM particle decay table.

= 0 : Don’t write out decay table.

> 0 : Write out decay table in SLHA format to file on unit number IMSS(24). Not

implemented in the code yet. In normal usage one would expect IMSS(24) to

be equal to IMSS(23), to ensure that the spectrum and decays are consistent

with each other, but this is not a strict requirement.

IMSS(51) : (D = 0) Lepton number violation on/off (LLE type couplings).

= 0 : All LLE couplings off. LLE decay channels off.

= 1 : All LLE couplings set to common value given by 10-RMSS(51).

= 2 : LLE couplings set to generation-hierarchical ‘natural’ values with common

normalization RMSS(51) (see section 8.7.7).

= 3 : All LLE couplings set to zero, but LLE decay channels not switched off. Non-

zero couplings should be entered individually into the array RVLAM(I,J,K).

Because of the antisymmetry in I and J, only entries with I < J need be

entered.

IMSS(52) : (D = 0) Lepton number violation on/off (LQD type couplings).

= 0 : All LQD couplings off. LQD decay channels off.

= 1 : All LQD couplings set to common value given by 10-RMSS(52) .

= 2 : LQD couplings set to generation-hierarchical ‘natural’ values with common

normalization RMSS(52) (see section 8.7.7).

= 3 : All LQD couplings set to zero, but LQD decay channels not switched

off. Non-zero couplings should be entered individually into the array

RVLAMP(I,J,K).

IMSS(53) : (D = 0) Baryon number violation on/off

= 0 : All UDD couplings off. UDD decay channels off.

= 1 : All UDD couplings set to common value given by 10-RMSS(53) .

= 2 : UDD couplings set to generation-hierarchical ‘natural’ values with common

normalization RMSS(53) (see section 8.7.7).

= 3 : All UDD couplings set to zero, but UDD decay channels not switched

off. Non-zero couplings should be entered individually into the array

RVLAMB(I,J,K). Because of the antisymmetry in J and K, only entries with

J < K need be entered.

RMSS(1) : (D = 80. GeV) If IMSS(1) = 1 M1, then U(1) gaugino mass. If IMSS(1) =

2, then the common gaugino mass m1/2.

RMSS(2) : (D = 160. GeV) M2, the SU(2) gaugino mass.

RMSS(3) : (D = 500. GeV) M3, the SU(3) (gluino) mass parameter.

RMSS(4) : (D = 800. GeV) µ, the higgsino mass parameter. If IMSS(1) = 2, only the
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sign of µ is used.

RMSS(5) : (D = 2.) tan β, the ratio of Higgs expectation values.

RMSS(6) : (D = 250. GeV) Left slepton mass M˜̀
L
. The sneutrino mass is fixed by a sum

rule.

RMSS(7) : (D = 200. GeV) Right slepton mass M˜̀
R
.

RMSS(8) : (D = 800. GeV) Left squark mass Mq̃L
. If IMSS(1) = 2, the common scalar

mass m0.

RMSS(9) : (D = 700. GeV) Right squark mass Mq̃R
. Md̃R

when IMSS(9) = 1.

RMSS(10) : (D = 800. GeV) Left squark mass for the third generation Mq̃L
. When

IMSS(5) = 1, it is instead the t̃2 mass, and Mq̃L
is a derived quantity.

RMSS(11) : (D = 700. GeV) Right sbottom mass Mb̃R
. When IMSS(5) = 1, it is instead

the b̃1 mass.

RMSS(12) : (D = 500. GeV) Right stop mass Mt̃R
If negative, then it is assumed that

M2
t̃R

< 0. When IMSS(5) = 1 , it is instead the t̃1 mass.

RMSS(13) : (D = 250. GeV) Left stau mass Mτ̃L
.

RMSS(14) : (D = 200. GeV) Right stau mass Mτ̃R
.

RMSS(15) : (D = 800. GeV) Bottom trilinear coupling Ab. When IMSS(5) = 1, it is a

derived quantity.

RMSS(16) : (D = 400. GeV) Top trilinear coupling At. If IMSS(1) = 2, the common

trilinear coupling A. When IMSS(5) = 1, it is a derived quantity.

RMSS(17) : (D = 0.) Tau trilinear coupling Aτ . When IMSS(5) = 1, it is a derived

quantity.

RMSS(18) : (D = 0.1) Higgs mixing angle α. This is only used when all of the Higgs

parameters are set by you, i.e IMSS(4) = 2.

RMSS(19) : (D = 850. GeV) Pseudoscalar Higgs mass parameter MA.

RMSS(20) : (D = 0.041) GUT scale coupling constant αGUT.

RMSS(21) : (D = 1.0 eV) The gravitino mass. Note nonconventional choice of units for

this particular mass.

RMSS(22) : (D = 800. GeV) ũR mass when IMSS(9) = 1.

RMSS(23) : (D = 104 GeV2) DX contribution to scalar masses when IMSS(7) = 1.

RMSS(24) : (D = 104 GeV2) DY contribution to scalar masses when IMSS(7) = 1.

RMSS(25) : (D = 104 GeV2) DS contribution to scalar masses when IMSS(7) = 1.

RMSS(26) : (D = 0.0 radians) when IMSS(5) = 1 it is the sbottom mixing angle.

RMSS(27) : (D = 0.0 radians) when IMSS(5) = 1 it is the stop mixing angle.

RMSS(28) : (D = 0.0 radians) when IMSS(5) = 1 it is the stau mixing angle.

RMSS(29) : (D = 2.4 × 1018 GeV) The Planck mass, used for calculating decays to light

gravitinos.

RMSS(30) - RMSS(33) : (D = 0.0, 0.0, 0.0, 0.0) complex phases for the mass parame-

ters in RMSS(1) - RMSS(4), where the latter represent the moduli of the mass

parameters for the case of nonvanishing phases.

RMSS(40), RMSS(41) : used for temporary storage of the corrections ∆mt and ∆mb,

respectively, in the calculation of Higgs properties.

– 275 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

RMSS(51) : (D = 0.0) when IMSS(51) = 1 it is the negative logarithm of the common

value for all lepton-number-violating λ couplings (LLE). When IMSS(51) = 2

it is the constant of proportionality for generation-hierarchical λ couplings. See

section 8.7.7.

RMSS(52) : (D = 0.0) when IMSS(52) = 1 it is the negative logarithm of the common

value for all lepton-number-violating λ′ couplings (LQD). When IMSS(52) = 2

it is the constant of proportionality for generation-hierarchical λ′ couplings. See

section 8.7.7.

RMSS(53) : (D = 0.0) when IMSS(53) = 1 it is the negative logarithm of the common

value for all baryon-number-violating λ′′ couplings (UDD). When IMSS(53) = 2

it is the constant of proportionality for generation-hierarchical λ′′ couplings. See

section 8.7.7.

COMMON/PYSSMT/ZMIX(4,4),UMIX(2,2),VMIX(2,2),SMZ(4),SMW(2),

&SFMIX(16,4),ZMIXI(4,4),UMIXI(2,2),VMIXI(2,2)

Purpose: to provide information on the neutralino, chargino, and sfermion mixing pa-

rameters. The variables should not be changed by you.

ZMIX(4,4) : the real part of the neutralino mixing matrix in the Bino–neutral Wino–Up

higgsino–Down higgsino basis.

UMIX(2,2) : the real part of the chargino mixing matrix in the charged Wino–charged

higgsino basis.

VMIX(2,2) : the real part of the charged conjugate chargino mixing matrix in the wino–

charged higgsino basis.

SMZ(4) : the signed masses of the neutralinos.

SMW(2) : the signed masses of the charginos.

SFMIX(16,4) : the sfermion mixing matrices T in the L–R basis, identified by the cor-

responding fermion, i.e. SFMIX(6,I) is the stop mixing matrix. The four entries

for each sfermion are T11,T12,T21, and T22.

ZMIXI(4,4) : the imaginary part of the neutralino mixing matrix in the Bino–neutral

Wino–Up higgsino–Down higgsino basis.

UMIXI(2,2) : the imaginary part of the chargino mixing matrix in the charged Wino–

charged higgsino basis.

VMIXI(2,2) : the imaginary part of the charged conjugate chargino mixing matrix in the

wino–charged higgsino basis.

COMMON/PYMSRV/RVLAM(3,3,3), RVLAMP(3,3,3), RVLAMB(3,3,3)

Purpose: to provide information on lepton- and baryon-number-violating couplings.

RVLAM(3,3,3) : the lepton-number-violating λijk couplings. See IMSS(51), RMSS(51).

RVLAMP(3,3,3) : the lepton-number-violating λ′
ijk couplings. See IMSS(52), RMSS(52).

RVLAMB(3,3,3) : the baryon-number-violating λ′′
ijk couplings. See IMSS(53), RMSS(53).
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The following subroutines and functions need not be accessed by the user, but are

described for completeness.

SUBROUTINE PYAPPS : uses approximate analytic formulae to determine the full set of

MSSM parameters from SUGRA inputs.

SUBROUTINE PYGLUI : calculates gluino decay modes.

SUBROUTINE PYGQQB : calculates three-body decays of gluinos into neutralinos or charg-

inos and third generation fermions. These routines are valid for large values of

tan β.

SUBROUTINE PYCJDC : calculates the chargino decay modes.

SUBROUTINE PYHEXT : calculates the non–Standard Model decay modes of the Higgs

bosons.

SUBROUTINE PYHGGM : determines the Higgs boson mass spectrum using several inputs.

SUBROUTINE PYINOM : finds the mass eigenstates and mixing matrices for the charginos

and neutralinos.

SUBROUTINE PYMSIN : initializes the MSSM simulation.

SUBROUTINE PYSLHA : to read in or write out SUSY Les Houches Accord spectra and

decay tables. Can also be used stand-alone, before the call to PYINIT, to read in

SLHA decay tables for specific particles. See section 14.4 for how to do this.

SUBROUTINE PYNJDC : calculates neutralino decay modes.

SUBROUTINE PYPOLE : computes the Higgs boson masses using a renormalization group

improved leading-log approximation and two-loop leading-log corrections.

SUBROUTINE PYSFDC : calculates sfermion decay modes.

SUBROUTINE PYSUBH : computes the Higgs boson masses using only renormalization group

improved formulae.

SUBROUTINE PYTBDY : samples the phase space for three-body decays of neutralinos,

charginos, and the gluino.

SUBROUTINE PYTHRG : computes the masses and mixing matrices of the third generation

sfermions.

SUBROUTINE PYRVSF : R-violating sfermion decay widths.

SUBROUTINE PYRVNE : R-violating neutralino decay widths.

SUBROUTINE PYRVCH : R-violating chargino decay widths.

SUBROUTINE PYRVGW : calculates R-violating 3-body widths using PYRVI1, PYRVI2,

PYRVI3, PYRVG1, PYRVG2, PYRVG3, PYRVG4, PYRVR, and PYRVS.

FUNCTION PYRVSB : calculates R-violating 2-body widths.

SUBROUTINE SUGRA : dummy routine, to avoid linking problems when Isajet is not

linked; see IMSS(1) = 12.

SUBROUTINE SSMSSM : dummy routine, to avoid linking problems when Isajet is not

linked; see IMSS(1) = 12.

FUNCTION VISAJE : dummy routine, to avoid linking problems when Isajet is not linked;

see IMSS(1) = 12.

9.6 General event information

When an event is generated with PYEVNT, some information on it is stored in the MSTI and
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PARI arrays of the PYPARS common block (often copied directly from the internal MINT and

VINT variables). Further information is stored in the complete event record; see section

5.2.

Part of the information is only relevant for some subprocesses; by default everything

irrelevant is set to 0. Kindly note that, like the CKIN constraints described in section 9.2,

kinematical variables normally (i.e. where it is not explicitly stated otherwise) refer to the

näıve hard scattering, before initial- and final-state radiation effects have been included.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to provide information on latest event generated or, in a few cases, on statistics

accumulated during the run.

MSTI(1) : specifies the general type of subprocess that has occurred, according to the

ISUB code given in section 8.1.

MSTI(2) : whenever MSTI(1) (together with MSTI(15) and MSTI(16)) are not enough to

specify the type of process uniquely, MSTI(2) provides an ordering of the different

possibilities. This is particularly relevant for the different colour-flow topologies

possible in QCD 2 → 2 processes, but easily generalizes e.g. if a quark is replaced

by a squark. With i =MSTI(15), j =MSTI(16) and k =MSTI(2), the QCD

possibilities are, in the classification scheme of [Ben84] (cf. section 8.2.1):

ISUB = 11, i = j, qiqi → qiqi;

k = 1 : colour configuration A.

k = 2 : colour configuration B.

ISUB = 11, i 6= j, qiqj → qiqj ;

k = 1 : only possibility.

ISUB = 12, qiqi → qlql;

k = 1 : only possibility.

ISUB = 13, qiqi → gg;

k = 1 : colour configuration A.

k = 2 : colour configuration B.

ISUB = 28, qig → qig;

k = 1 : colour configuration A.

k = 2 : colour configuration B.

ISUB = 53, gg → qlql;

k = 1 : colour configuration A.

k = 2 : colour configuration B.

ISUB = 68, gg → gg;

k = 1 : colour configuration A.

k = 2 : colour configuration B.

k = 3 : colour configuration C.

ISUB = 83, fq → f ′Q (by t-channel W exchange; does not distinguish colour flows

but result of user selection);
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k = 1 : heavy flavour Q is produced on side 1.

k = 2 : heavy flavour Q is produced on side 2.

MSTI(3) : the number of partons produced in the hard interactions, i.e. the number n of

the 2 → n matrix elements used; it is sometimes 3 or 4 when a basic 2 → 1 or

2 → 2 process has been folded with two 1 → 2 initial branchings (like qiqj →
qkqlh

0).

MSTI(4) : number of documentation lines at the beginning of the common block PYJETS

that are given with K(I,1) = 21; 0 for MSTP(125) = 0.

MSTI(5) : number of events generated to date in current run. In runs with the variable-

energy option, MSTP(171) = 1 and MSTP(172) = 2, only those events that sur-

vive (i.e. that do not have MSTI(61) = 1) are counted in this number. That is,

MSTI(5) may be less than the total number of PYEVNT calls.

MSTI(6) : current frame of event, cf. MSTP(124).

MSTI(7), MSTI(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2 → 2 or 2 → 1 → 2 processes (else = 0).

MSTI(9) : event class used in current event for γp or γγ events. The code depends on

which process is being studied.

= 0 : for other processes than the ones listed below.

For γp or γ∗p events, generated with the MSTP(14) = 10 or MSTP(14) = 30 options:

= 1 : VMD.

= 2 : direct.

= 3 : anomalous.

= 4 : DIS (only for γ∗p, i.e. MSTP(14) = 30).

For real γγ events, i.e. MSTP(14) = 10:

= 1 : VMD×VMD.

= 2 : VMD×direct.

= 3 : VMD×anomalous .

= 4 : direct×direct.

= 5 : direct×anomalous.

= 6 : anomalous×anomalous.

For virtual γ∗γ∗ events, i.e. MSTP(14) = 30, where the two incoming photons are not

equivalent and the order therefore matters:

= 1 : direct×direct.

= 2 : direct×VMD.

= 3 : direct×anomalous.

= 4 : VMD×direct.

= 5 : VMD×VMD.

= 6 : VMD×anomalous.

= 7 : anomalous×direct.

= 8 : anomalous×VMD.

= 9 : anomalous×anomalous.

= 10 : DIS×VMD.

= 11 : DIS×anomalous.
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= 12 : VMD×DIS.

= 13 : anomalous×DIS.

MSTI(10) : is 1 if cross section maximum was violated in current event, and 0 if not.

MSTI(11) : KF flavour code for beam (side 1) particle.

MSTI(12) : KF flavour code for target (side 2) particle.

MSTI(13), MSTI(14) : KF flavour codes for side 1 and side 2 initial-state shower initiators.

MSTI(15), MSTI(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction.

MSTI(17), MSTI(18) : flag to signal if particle on side 1 or side 2 has been scattered

diffractively; 0 if no, 1 if yes.

MSTI(21) - MSTI(24) : KF flavour codes for outgoing partons from the hard interaction.

The number of positions actually used is process-dependent, see MSTI(3); trailing

positions not used are set = 0. For events with many outgoing partons, e.g. in

external processes, also MSTI(25) and MSTI(26) could be used.

MSTI(25), MSTI(26) : KF flavour codes of the products in the decay of a single s-channel

resonance formed in the hard interaction. Are thus only used when MSTI(3) =

1 and the resonance is allowed to decay.

MSTI(31) : number of hard or semi-hard scatterings that occurred in the current event

in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MSTI(32) : information on whether a reconnection occurred in the current event; is 0

normally but 1 in case of reconnection.

MSTI(41) : the number of pile-up events generated in the latest PYEVNT call (including

the first, ‘hard’ event).

MSTI(42) - MSTI(50) : ISUB codes for the events 2–10 generated in the pile-up-events

scenario. The first event ISUB code is stored in MSTI(1). If MSTI(41) is less than

10, only as many positions are filled as there are pile-up events. If MSTI(41) is

above 10, some ISUB codes will not appear anywhere.

MSTI(51) : normally 0 but set to 1 if a UPEVNT call did not return an event, such that

PYEVNT could not generate an event. For further details, see section 9.9.

MSTI(52) : counter for the number of times the current event configuration failed in the

generation machinery. For accepted events this is always 0, but the counter can

be used inside UPEVNT to check on anomalous occurrences. For further details,

see section 9.9.

MSTI(53) : normally 0, but 1 if no processes with non-vanishing cross sections were found

in a PYINIT call, for the case that MSTP(127) = 1.

MSTI(61) : status flag set when events are generated. It is only of interest for runs with

variable energies, MSTP(171) = 1, with the option MSTP(172) = 2.

= 0 : an event has been generated.

= 1 : no event was generated, either because the c.m. energy was too low or be-

cause the Monte Carlo phase space point selection machinery rejected the

trial point. A new energy is to be picked by you.

MSTI(71), MSTI(72) : KF code for incoming lepton beam or target particles, when a

flux of virtual photons are generated internally for ’gamma/lepton’ beams, while
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MSTI(11) and MSTI(12) is then the photon code.

PARI(1) : total integrated cross section for the processes under study, in mb. This number

is obtained as a by-product of the selection of hard-process kinematics, and is thus

known with better accuracy when more events have been generated. The value

stored here is based on all events until the latest one generated.

PARI(2) : for unweighted events, MSTP(142) = 0 or = 2, it is the ratio PARI(1)/MSTI(5),

i.e. the ratio of total integrated cross section and number of events generated.

Histograms should then be filled with unit event weight and, at the end of the

run, multiplied by PARI(2) and divided by the bin width to convert results to

mb/(dimension of the horizontal axis). For weighted events, MSTP(142) = 1,

MSTI(5) is replaced by the sum of PARI(10) values. Histograms should then be

filled with event weight PARI(10) and, as before, be multiplied by PARI(2) and

divided by the bin width at the end of the run. In runs with the variable-energy

option, MSTP(171) = 1 and MSTP(172) = 2, only those events that survive (i.e.

that do not have MSTI(61) = 1) are counted.

PARI(7) : an event weight, normally 1 and thus uninteresting, but for external processes

with IDWTUP = -1, -2 or -3 it can be −1 for events with negative cross section,

with IDWTUP = 4 it can be an arbitrary non-negative weight of dimension mb, and

with IDWTUP = -4 it can be an arbitrary weight of dimension mb. (The difference

being that in most cases a rejection step is involved to bring the accepted events to

a common weight normalization, up to a sign, while no rejection need be involved

in the last two cases.)

PARI(9) : is weight WTXS returned from PYEVWT call when MSTP(142) ≥ 1, otherwise is 1.

PARI(10) : is compensating weight 1./WTXS that should be associated to events when

MSTP(142) = 1, else is 1.

PARI(11) : Ecm, i.e. total c.m. energy (except when using the ’gamma/lepton’ machinery,

see PARI(101).

PARI(12) : s, i.e. squared total c.m. energy (except when using the ’gamma/lepton’ ma-

chinery, see PARI(102).

PARI(13) : m̂ =
√

ŝ, i.e. mass of the hard-scattering subsystem.

PARI(14) : ŝ of the hard subprocess (2 → 2 or 2 → 1).

PARI(15) : t̂ of the hard subprocess (2 → 2 or 2 → 1 → 2).

PARI(16) : û of the hard subprocess (2 → 2 or 2 → 1 → 2).

PARI(17) : p̂⊥ of the hard subprocess (2 → 2 or 2 → 1 → 2), evaluated in the rest frame

of the hard interaction.

PARI(18) : p̂2
⊥ of the hard subprocess; see PARI(17).

PARI(19) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or 2 → 4

processes (while m̂, given in PARI(13), here corresponds to the one- or two-body

central system). Kinematically m̂ ≤ m̂′ ≤ Ecm.

PARI(20) : ŝ′ = m̂′2; see PARI(19).

PARI(21) : Q of the hard-scattering subprocess. The exact definition is process-

dependent, see MSTP(32).
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PARI(22) : Q2 of the hard-scattering subprocess; see PARI(21).

PARI(23) : Q of the outer hard-scattering subprocess. Agrees with PARI(21) for a 2 → 1

or 2 → 2 process. For a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the W/Z

mass scale, and for subprocesses 121 and 122 by the heavy-quark mass.

PARI(24) : Q2 of the outer hard-scattering subprocess; see PARI(23).

PARI(25) : Q scale used as maximum virtuality in parton showers. Is equal to PARI(23),

except for Deeply Inelastic Scattering processes when MSTP(22) ≥ 1.

PARI(26) : Q2 scale in parton showers; see PARI(25).

PARI(31), PARI(32) : the momentum fractions x of the initial-state parton-shower ini-

tiators on side 1 and 2, respectively.

PARI(33), PARI(34) : the momentum fractions x taken by the partons at the hard in-

teraction, as used e.g. in the parton-distribution functions.

PARI(35) : Feynman-x, xF = x1 − x2 = PARI(33)−PARI(34).
PARI(36) : τ = ŝ/s = x1 x2 = PARI(33)×PARI(34).
PARI(37) : y = (1/2) ln(x1/x2), i.e. rapidity of the hard-interaction subsystem in the c.m.

frame of the event as a whole.

PARI(38) : τ ′ = ŝ′/s = PARI(20)/PARI(12).

PARI(39), PARI(40) : the primordial k⊥ values selected in the two beam remnants.

PARI(41) : cos θ̂, where θ̂ is the scattering angle of a 2 → 2 (or 2 → 1 → 2) interaction,

defined in the rest frame of the hard-scattering subsystem.

PARI(42) : x⊥, i.e. scaled transverse momentum of the hard-scattering subprocess, x⊥ =

2p̂⊥/Ecm = 2 PARI(17)/PARI(11).

PARI(43), PARI(44) : xL3 and xL4, i.e. longitudinal momentum fractions of the two

scattered partons, in the range −1 < xL < 1, in the c.m. frame of the event as a

whole.

PARI(45), PARI(46) : x3 and x4, i.e. scaled energy fractions of the two scattered partons,

in the c.m. frame of the event as a whole.

PARI(47), PARI(48) : y∗3 and y∗4, i.e. rapidities of the two scattered partons in the c.m.

frame of the event as a whole.

PARI(49), PARI(50) : η∗3 and η∗4 , i.e. pseudorapidities of the two scattered partons in

the c.m. frame of the event as a whole.

PARI(51), PARI(52) : cos θ∗3 and cos θ∗4, i.e. cosines of the polar angles of the two scat-

tered partons in the c.m. frame of the event as a whole.

PARI(53), PARI(54) : θ∗3 and θ∗4, i.e. polar angles of the two scattered partons, defined

in the range 0 < θ∗ < π, in the c.m. frame of the event as a whole.

PARI(55), PARI(56) : azimuthal angles φ∗
3 and φ∗

4 of the two scattered partons, defined

in the range −π < φ∗ < π, in the c.m. frame of the event as a whole.

PARI(61) : multiple interaction enhancement factor for current event. A large value cor-

responds to a central collision and a small value to a peripheral one.

PARI(65) : sum of the transverse momenta of partons generated at the hardest interaction

of the event, excluding initial- and final-state radiation, i.e. 2×PARI(17). Only

intended for 2 → 2 or 2 → 1 → 2 processes, i.e. not implemented for 2 → 3 ones.

PARI(66) : sum of the transverse momenta of all partons generated at the hardest inter-
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action, including initial- and final-state radiation, resonance decay products, and

primordial k⊥.

PARI(67) : scalar sum of transverse momenta of partons generated at hard interactions,

excluding the hardest one, along with its initial- and final-state radiation (see

PARI(66)). Is non-vanishing only in the multiple-interaction scenarios. In the

new scenario the initial- and final-state radiation associated with further interac-

tions is included.

PARI(68) : currently equal to PARI(67).

PARI(69) : sum of transverse momenta of all partons generated in hard interactions

(PARI(66) + PARI(68)) and, additionally, of all beam-remnant partons.

PARI(71), PARI(72) : sum of the momentum fractions x taken by initial-state parton-

shower initiators on side 1 and and side 2, excluding those of the hardest inter-

action. Is non-vanishing only in the multiple-interaction scenario.

PARI(73), PARI(74) : sum of the momentum fractions x taken by the partons at the

hard interaction on side 1 and side 2, excluding those of the hardest interaction.

Is non-vanishing only in the multiple-interaction scenario.

PARI(75), PARI(76) : the x value of a photon that branches into quarks or gluons, i.e.

x at interface between initial-state QED and QCD cascades, for the old photo-

production machinery.

PARI(77), PARI(78) : the χ values selected for beam remnants that are split into two

objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is

vanishing if no splitting is needed.

PARI(81) : size of the threshold factor (enhancement or suppression) in the latest event

with heavy-flavour production; see MSTP(35).

PARI(91) : average multiplicity n of pile-up events, see MSTP(133). Only relevant for

MSTP(133) = 1 or 2.

PARI(92) : average multiplicity 〈n〉 of pile-up events as actually simulated, i.e. with mul-

tiplicity = 0 events removed and the high-end tail truncated. Only relevant for

MSTP(133) = 1 or 2.

PARI(93) : for MSTP(133) = 1 it is the probability that a beam crossing will produce a

pile-up event at all, i.e. that there will be at least one hadron-hadron interaction;

for MSTP(133) = 2 the probability that a beam crossing will produce a pile-up

event with one hadron-hadron interaction of the desired rare type. See section

11.5.

PARI(101) : c.m. energy for the full collision, while PARI(11) gives the γ-hadron or

γγ subsystem energy; used for virtual photons generated internally with the

’gamma/lepton’ option.

PARI(102) : full squared c.m. energy, while PARI(12) gives the subsystem squared energy;

used for virtual photons generated internally with the ’gamma/lepton’ option.

PARI(103), PARI(104) : x values, i.e. respective photon energy fractions of the incoming

lepton in the c.m. frame of the event; used for virtual photons generated internally

with the ’gamma/lepton’ option.

PARI(105), PARI(106) : Q2 or P 2, virtuality of the respective photon (thus the square
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of VINT(3), VINT(4)); used for virtual photons generated internally with the

’gamma/lepton’ option.

PARI(107), PARI(108) : y values, i.e. respective photon light-cone energy fraction of

the incoming lepton; used for virtual photons generated internally with the

’gamma/lepton’ option.

PARI(109), PARI(110) : θ, scattering angle of the respective lepton in the c.m. frame of

the event; used for virtual photons generated internally with the ’gamma/lepton’

option.

PARI(111), PARI(112) : φ, azimuthal angle of the respective scattered lepton in the

c.m. frame of the event; used for virtual photons generated internally with the

’gamma/lepton’ option.

PARI(113), PARI(114): the R factor defined at MSTP(17), giving a cross section enhance-

ment from the contribution of resolved longitudinal photons.

9.7 How to generate weighted events

By default Pythia generates unweighted events, i.e. all events in a run are on an equal

footing. This means that corners of phase space with low cross sections are poorly popu-

lated, as it should be. However, sometimes one is interested in also exploring such corners,

in order to gain a better understanding of physics. A typical example would be the jet cross

section in hadron collisions, which is dropping rapidly with increasing jet p⊥, and where it

is interesting to trace this drop over several orders of magnitude. Experimentally this may

be solved by prescaling event rates already at the trigger level, so that all high-p⊥ events

are saved but only a fraction of the lower-p⊥ ones. In this section we outline procedures to

generate events in a similar manner.

Basically two approaches can be used. One is to piece together results from different

subruns, where each subrun is restricted to some specific region of phase space. Within each

subrun all events then have the same weight, but subruns have to be combined according to

their relative cross sections. The other approach is to let each event come with an associated

weight, that can vary smoothly as a function of p⊥. These two alternatives correspond to

stepwise or smoothly varying prescaling factors in the experimental analogue. We describe

them one after the other.

The phase space can be sliced in many different ways. However, for the jet rate and

many other processes, the most natural variable would be p⊥ itself. (For production of

a lepton pair by s-channel resonances, the invariant mass would be a better choice.) It

is not possible to specify beforehand the jet p⊥’s an event will contain, since this is a

combination of the p̂⊥ of the hard scattering process with additional showering activity,

with hadronization, with underlying event and with the jet clustering approach actually

used. However, one would expect a strong correlation between the p̂⊥ scale and the jet

p⊥’s. Therefore the full p̂⊥ range can be subdivided into a set of ranges by using the

CKIN(3) and CKIN(4) variables as lower and upper limits. This could be done e.g. for

adjacent non-overlapping bins 10–20,20–40,40–70, etc.

Only if one would like to cover also very small p⊥ is there a problem with this strategy:

since the näıve jet cross section is divergent for p̂⊥ → 0, a unitarization procedure is implied
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by setting CKIN(3) = 0 (or some other low value). This unitarization then disregards the

actual CKIN(3) and CKIN(4) values and generates events over the full phase space. In

order not to double-count, then events above the intended upper limit of the first bin have

to be removed by brute force.

A simple but complete example of a code performing this task (with some primitive

histogramming) is the following:

C...All real arithmetic in double precision.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

C...Three Pythia functions return integers, so need declaring.

INTEGER PYK,PYCHGE,PYCOMP

C...EXTERNAL statement links PYDATA on most platforms.

EXTERNAL PYDATA

C...The event record.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Selection of hard-scattering subprocesses.

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Bins of pT.

DIMENSION PTBIN(10)

DATA PTBIN/0D0,10D0,20D0,40D0,70D0,110D0,170D0,250D0,350D0,1000D0/

C...Main parameters of run: c.m. energy and number of events per bin.

ECM=2000D0

NEV=1000

C...Histograms.

CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)

CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)

CALL PYBOOK(3,’log10(dsigma/dpThat)’,100,0D0,500D0)

CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)

CALL PYBOOK(5,’log10(dsigma/dpTjet)’,100,0D0,500D0)

CALL PYBOOK(11,’dn_ev/dpThat, dummy’,100,0D0,500D0)

CALL PYBOOK(12,’dn/dpTjet, dummy’,100,0D0,500D0)

C...Loop over pT bins and initialize.

DO 300 IBIN=1,9

CKIN(3)=PTBIN(IBIN)

CKIN(4)=PTBIN(IBIN+1)

CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events. Remove unwanted ones in first pT bin.
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DO 200 IEV=1,NEV

CALL PYEVNT

PTHAT=PARI(17)

IF(IBIN.EQ.1.AND.PTHAT.GT.PTBIN(IBIN+1)) GOTO 200

C...Store pThat. Cluster jets and store variable number of pTjet.

CALL PYFILL(1,PTHAT,1D0)

CALL PYFILL(11,PTHAT,1D0)

CALL PYCELL(NJET)

DO 100 IJET=1,NJET

CALL PYFILL(12,P(N+IJET,5),1D0)

100 CONTINUE

C...End of event loop.

200 CONTINUE

C...Normalize cross section to pb/GeV and add up.

FAC=1D9*PARI(1)/(DBLE(NEV)*5D0)

CALL PYOPER(2,’+’,11,2,1D0,FAC)

CALL PYOPER(4,’+’,12,4,1D0,FAC)

C...End of loop over pT bins.

300 CONTINUE

C...Take logarithm and plot.

CALL PYOPER(2,’L’,2,3,1D0,0D0)

CALL PYOPER(4,’L’,4,5,1D0,0D0)

CALL PYNULL(11)

CALL PYNULL(12)

CALL PYHIST

END

The alternative to slicing the phase space is to used weighted events. This is possible

by making use of the PYEVWT routine:

CALL PYEVWT(WTXS)

Purpose: to allow you to reweight event cross sections, by process type and kinematics of

the hard scattering. There exists two separate modes of usage, described in the

following.

For MSTP(142) = 1, it is assumed that the cross section of the process is correctly

given by default in Pythia, but that one wishes to generate events biased to a
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specific region of phase space. While the WTXS factor therefore multiplies the

näıve cross section in the choice of subprocess type and kinematics, the produced

event comes with a compensating weight PARI(10) = 1./WTXS, which should be

used when filling histograms etc. In the PYSTAT(1) table, the cross sections are

unchanged (up to statistical errors) compared with the standard cross sections,

but the relative composition of events may be changed and need no longer be in

proportion to relative cross sections. A typical example of this usage is if one

wishes to enhance the production of high-p⊥ events; then a weight like WTXS=

(p⊥/p⊥0)
2 (with p⊥0 some fixed number) might be appropriate. See PARI(2) for

a discussion of overall normalization issues.

For MSTP(142) = 2, on the other hand, it is assumed that the true cross section

is really to be modified by the multiplicative factor WTXS. The generated events

therefore come with unit weight, just as usual. This option is really equivalent to

replacing the basic cross sections coded in Pythia, but allows more flexibility:

no need to recompile the whole of Pythia.

The routine will not be called unless MSTP(142)≥ 1, and never if ‘minimum-bias’-

type events (including elastic and diffractive scattering) are to be generated as

well. Further, cross sections for additional multiple interactions or pile-up events

are never affected. A dummy routine PYEVWT is included in the program file, so

as to avoid unresolved external references when the routine is not used.

WTXS: multiplication factor to ordinary event cross section; to be set (by you) in PYEVWT

call.

Remark : at the time of selection, several variables in the MINT and VINT arrays in the

PYINT1 common block contain information that can be used to make the deci-

sion. The routine provided in the program file explicitly reads the variables that

have been defined at the time PYEVWT is called, and also calculates some derived

quantities. The given list of information includes subprocess type ISUB, Ecm, ŝ,

t̂, û, p̂⊥, x1, x2, xF, τ , y, τ ′, cos θ̂, and a few more. Some of these may not be

relevant for the process under study, and are then set to zero.

Warning: the weights only apply to the hard-scattering subprocesses. There is no way

to reweight the shape of initial- and final-state showers, fragmentation, or other

aspects of the event.

There are some limitations to the facility. PYEVWT is called at an early stage of the

generation process, when the hard kinematics is selected, well before the full event is

constructed. It then cannot be used for low-p⊥, elastic or diffractive events, for which no

hard kinematics has been defined. If such processes are included, the event weighting is

switched off. Therefore it is no longer an option to run with CKIN(3) = 0.

Which weight expression to use may take some trial and error. In the above case,

a reasonable ansatz seems to be a weight behaving like p̂6
⊥, where four powers of p̂⊥ are

motivated by the partonic cross section behaving like 1/p̂4
⊥, and the remaining two by the

fall-off of parton densities. An example for the same task as above one would then be:

C...All real arithmetic in double precision.
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IMPLICIT DOUBLE PRECISION(A-H, O-Z)

C...Three Pythia functions return integers, so need declaring.

INTEGER PYK,PYCHGE,PYCOMP

C...EXTERNAL statement links PYDATA on most platforms.

EXTERNAL PYDATA

C...The event record.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

C...Selection of hard-scattering subprocesses.

COMMON/PYSUBS/MSEL,MSELPD,MSUB(500),KFIN(2,-40:40),CKIN(200)

C...Parameters.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

C...Main parameters of run: c.m. energy, pTmin and number of events.

ECM=2000D0

CKIN(3)=5D0

NEV=10000

C...Histograms.

CALL PYBOOK(1,’dn_ev/dpThat’,100,0D0,500D0)

CALL PYBOOK(2,’dsigma/dpThat’,100,0D0,500D0)

CALL PYBOOK(3,’log10(dsigma/dpThat)’,100,0D0,500D0)

CALL PYBOOK(4,’dsigma/dpTjet’,100,0D0,500D0)

CALL PYBOOK(5,’log10(dsigma/dpTjet)’,100,0D0,500D0)

C...Initialize with weighted events.

MSTP(142)=1

CALL PYINIT(’CMS’,’p’,’pbar’,ECM)

C...Loop over events; read out pThat and event weight.

DO 200 IEV=1,NEV

CALL PYEVNT

PTHAT=PARI(17)

WT=PARI(10)

C...Store pThat. Cluster jets and store variable number of pTjet.

CALL PYFILL(1,PTHAT,1D0)

CALL PYFILL(2,PTHAT,WT)

CALL PYCELL(NJET)

DO 100 IJET=1,NJET

CALL PYFILL(4,P(N+IJET,5),WT)

100 CONTINUE

C...End of event loop.
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200 CONTINUE

C...Normalize cross section to pb/GeV, take logarithm and plot.

FAC=1D9*PARI(2)/5D0

CALL PYFACT(2,FAC)

CALL PYFACT(4,FAC)

CALL PYOPER(2,’L’,2,3,1D0,0D0)

CALL PYOPER(4,’L’,4,5,1D0,0D0)

CALL PYHIST

END

C*************************************************************

SUBROUTINE PYEVWT(WTXS)

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

INTEGER PYK,PYCHGE,PYCOMP

C...Common block.

COMMON/PYINT1/MINT(400),VINT(400)

C...Read out pThat^2 and set weight.

PT2=VINT(48)

WTXS=PT2**3

RETURN

END

Note that, in PYEVWT one cannot look for p̂⊥ in PARI(17), since this variable is only set at

the end of the event generation. Instead the internal VINT(48) is used. The dummy copy

of the PYEVWT routine found in the Pythia code shows what is available and how to access

this.

The above solutions do not work if the weighting should also depend on the shower

evolution, i.e. not only on the hard process. Such a rejection/acceptance ‘weight’ is partic-

ularly convenient when trying to combine matrix-element-generated events of different jet

multiplicities (in addition to whatever is the basic process) without doublecounting, e.g.

using the L–CKKW or MLM matching prescriptions [Cat01]. To handle such situations, a

routine UPVETO has been introduced. The name is intended to emphasize the logical place

along with the UPINIT and UPEVNT routines for the handling of external user processes (see

section 9.9), but it can also be used for internal Pythia processes.
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CALL UPVETO(IVETO)

Purpose: to allow the user the possibility to abort the generation of an event imme-

diately after parton showers but before underlying event and handronization is

considered. The routine is called only if MSTP(143) = 1, and only for the old,

virtuality-ordered showers in PYEVNT, i.e. has not been implemented for the p⊥-

ordered showers in PYEVNW.

IVETO : specifies choice made by user.

= 0 : retain current event and generate it in full.

= 1 : abort generation of current event and move to next.

Note 1: if resonances like W±, Z0, t, Higgs and SUSY particles are handed undecayed

from UPEVNT, or are generated internally in Pythia, they will also be undecayed

at this stage; if decayed their decay products will have been allowed to shower.

Note 2: all partons at the end of the shower phase are stored in the HEPEVT commonblock,

see section 5.4. The interesting information is:

NHEP : the number of such partons, in entries 1 through NHEP,

ISTHEP(I) : where all intermediate products have code 2 and all the final ones (at

the time UPVETO is called) code 1,

IDHEP(I) : the particle identity code according to PDG conventions,

JMOHEP(1,I) : the mother position,

PHEP(J,I) : the (px, py, pz, E,m) of the particle.

The rest of the HEPEVT variables are zeroed.

Note 3: the cross section of processes, as shown with CALL PYSTAT(1), is reduced when

events are aborted. Such events are also counted in the ”fraction of events that

fail fragmentation cuts” in the last line of this table.

In the HEPEVT event record, all intermediate and ‘final’ particles of the hard pro-

cess itself, i.e. of the matrix-element calculation, are listed as documentation lines, with

ISTHEP(I) = 2. The ‘final’-state particles that actually are defined when UPVETO is called,

after shower evolution but before multiple interactions have been added, have ISTHEP(I) =

1. These point back to the one of the ISTHEP(I) = 2 partons they originate from, as first

mother. If a system does not radiate, the same set of partons will be repeated twice, once

with ISTHEP(I) = 2 and once with ISTHEP(I) = 1. A more typical example would be

that a set of partons with ISTHEP(I) = 1 point back to the same ‘mother’ with ISTHEP(I)

= 2. Note that all the intermediate stages of the shower evolution are not shown, only the

original mother and all the final daughters. If the mother index is zero for an ISTHEP(I)

= 1 parton, it comes from initial-state radiation.

Of course, the separation of which radiation comes from where is often gauge-

dependent, i.e. model-dependent, and so should not be over-stressed. For instance, in

a t → bW+ → bud decay sequence, the gluon radiation off the b is rather unambiguous,

while u and d form part of the same radiating system, although some sensible separation

is provided by the program.
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9.8 How to run with varying energies

It is possible to use Pythia in a mode where the energy can be varied from one event to

the next, without the need to re-initialize with a new PYINIT call. This allows a significant

speed-up of execution, although it is not as fast as running at a fixed energy. It can not

be used for everything — we will come to the fine print at the end — but it should be

applicable for most tasks.

The master switch to access this possibility is in MSTP(171). By default it is off, so

you must set MSTP(171) = 1 before initialization. There are two submodes of running,

with MSTP(172) being 1 or 2. In the former mode, Pythia will generate an event at the

requested energy. This means that you have to know which energy you want beforehand.

In the latter mode, Pythia will often return without having generated an event — with

flag MSTI(61) = 1 to signal that — and you are then requested to give a new energy. The

energy spectrum of accepted events will then, in the end, be your näıve input spectrum

weighted with the cross-section of the processes you study. We will come back to this.

The energy can be varied, whichever frame is given in the PYINIT call. (Except for

’USER’, where such information is fed in via the HEPEUP common block and thus beyond

the control of Pythia.) When the frame is ’CMS’, PARP(171) should be filled with the

fractional energy of each event, i.e. Ecm =PARP(171)×WIN, where WIN is the nominal

c.m. energy of the PYINIT call. Here PARP(171) should normally be smaller than unity,

i.e. initialization should be done at the maximum energy to be encountered. For the

’FIXT’ frame, PARP(171) should be filled by the fractional beam energy of that one,

i.e. Ebeam =PARP(171)×WIN. For the ’3MOM’, ’4MOM’ and ’5MOM’ options, the two four-

momenta are given in for each event in the same format as used for the PYINIT call. Note

that there is a minimum c.m. energy allowed, PARP(2). If you give in values below this, the

program will stop for MSTP(172) = 1, and will return with MSTI(61) = 1 for MSTP(172)

= 1.

To illustrate the use of the MSTP(172) = 2 facility, consider the case of beamstrahlung

in e+e− linear colliders. This is just for convenience; what is said here can be translated

easily into other situations. Assume that the beam spectrum is given by D(z), where z

is the fraction retained by the original e after beamstrahlung. Therefore 0 ≤ z ≤ 1 and

the integral of D(z) is unity. This is not perfectly general; one could imagine branchings

e− → e−γ → e−e+e−, which gives a multiplication in the number of beam particles. This

could either be expressed in terms of a D(z) with integral larger than unity or in terms

of an increased luminosity. We will assume the latter, and use D(z) properly normalized.

Given a nominal s = 4E2
beam, the actual s′ after beamstrahlung is given by s′ = z1z2s. For

a process with a cross section σ(s) the total cross section is then

σtot =

∫ 1

0

∫ 1

0
D(z1)D(z2)σ(z1z2s) dz1 dz2 . (9.1)

The cross section σ may in itself be an integral over a number of additional phase space

variables. If the maximum of the differential cross section is known, a correct procedure to

generate events is

1. pick z1 and z2 according to D(z1) dz1 and D(z2) dz2, respectively;
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2. pick a set of phase space variables of the process, for the given s′ of the event;

3. evaluate σ(s′) and compare with σmax;

4. if event is rejected, then return to step 1 to generate new variables;

5. else continue the generation to give a complete event.

You as a user are assumed to take care of step 1, and present the resulting kinematics with

incoming e+ and e− of varying energy. Thereafter Pythia will do steps 2–5, and either

return an event or put MSTI(61) = 1 to signal failure in step 4.

The maximization procedure does search in phase space to find σmax, but it does not

vary the s′ energy in this process. Therefore the maximum search in the PYINIT call should

be performed where the cross section is largest. For processes with increasing cross section

as a function of energy this means at the largest energy that will ever be encountered,

i.e. s′ = s in the case above. This is the ‘standard’ case, but often one encounters other

behaviours, where more complicated procedures are needed. One such case would be the

process e+e− → Z∗0 → Z0h0, which is known to have a cross section that increases near

the threshold but is decreasing asymptotically. If one already knows that the maximum,

for a given Higgs mass, appears at 300 GeV, say, then the PYINIT call should be made with

that energy, even if subsequently one will be generating events for a 500 GeV collider.

In general, it may be necessary to modify the selection of z1 and z2 and assign a

compensating event weight. For instance, consider a process with a cross section behaving

roughly like 1/s. Then the σtot expression above may be rewritten as

σtot =

∫ 1

0

∫ 1

0

D(z1)

z1

D(z2)

z2
z1z2σ(z1z2s) dz1 dz2 . (9.2)

The expression z1z2σ(s′) is now essentially flat in s′, i.e. not only can σmax be found at

a convenient energy such as the maximum one, but additionally the Pythia generation

efficiency (the likelihood of surviving step 4) is greatly enhanced. The price to be paid is

that z has to be selected according to D(z)/z rather than according to D(z). Note that

D(z)/z is not normalized to unity. One therefore needs to define

ID =

∫ 1

0

D(z)

z
dz , (9.3)

and a properly normalized

D′(z) =
1

ID

D(z)

z
. (9.4)

Then

σtot =

∫ 1

0

∫ 1

0
D′(z1)D′(z2)I2

D z1z2σ(z1z2s) dz1 dz2 . (9.5)

Therefore the proper event weight is I2
D z1z2. This weight should be stored by you, for each

event, in PARP(173). The maximum weight that will be encountered should be stored in

PARP(174) before the PYINIT call, and not changed afterwards. It is not necessary to know

the precise maximum; any value larger than the true maximum will do, but the inefficiency

will be larger the cruder the approximation. Additionally you must put MSTP(173) = 1

for the program to make use of weights at all. Often D(z) is not known analytically;
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therefore ID is also not known beforehand, but may have to be evaluated (by you) during

the course of the run. Then you should just use the weight z1z2 in PARP(173) and do the

overall normalization yourself in the end. Since PARP(174) = 1 by default, in this case you

need not set this variable specially. Only the cross sections are affected by the procedure

selected for overall normalization, the events themselves still are properly distributed in s′

and internal phase space.

Above it has been assumed tacitly that D(z) → 0 for z → 0. If not, D(z)/z is divergent,

and it is not possible to define a properly normalized D′(z) = D(z)/z. If the cross section

is truly diverging like 1/s, then a D(z) which is nonvanishing for z → 0 does imply an

infinite total cross section, whichever way things are considered. In cases like that, it is

necessary to impose a lower cut on z, based on some physics or detector consideration.

Some such cut is anyway needed to keep away from the minimum c.m. energy required for

Pythia events, see above.

The most difficult cases are those with a very narrow and high peak, such as the

Z0. One could initialize at the energy of maximum cross section and use D(z) as is,

but efficiency might turn out to be very low. One might then be tempted to do more

complicated transforms of the kind illustrated above. As a rule it is then convenient to

work in the variables τz = z1z2 and yz = (1/2) ln(z1/z2), cf. section 7.2.

Clearly, the better the behaviour of the cross section can be modelled in the choice

of z1 and z2, the better the overall event generation efficiency. Even under the best of

circumstances, the efficiency will still be lower than for runs with fix energy. There is also

a non-negligible time overhead for using variable energies in the first place, from kinematics

reconstruction and (in part) from the phase space selection. One should therefore not use

variable energies when not needed, and not use a large range of energies
√

s′ if in the end

only a smaller range is of experimental interest.

This facility may be combined with most other aspects of the program. For instance,

it is possible to simulate beamstrahlung as above and still include bremsstrahlung with

MSTP(11) = 1. Further, one may multiply the overall event weight of PARP(173) with a

kinematics-dependent weight given by PYEVWT, although it is not recommended (since the

chances of making a mistake are also multiplied). However, a few things do not work.

• It is not possible to use pile-up events, i.e. you must have MSTP(131) = 0.

• The possibility of giving in your own cross-section optimization coefficients, option

MSTP(121) = 2, would require more input than with fixed energies, and this option

should therefore not be used. You can still use MSTP(121) = 1, however.

• The multiple interactions scenario with MSTP(82) ≥ 2 only works approximately for

energies different from the initialization one. If the c.m. energy spread is smaller than

a factor 2, say, the approximation should be reasonable, but if the spread is larger

one may have to subdivide into subruns of different energy bins. The initialization

should be made at the largest energy to be encountered — whenever multiple inter-

actions are possible (i.e. for incoming hadrons and resolved photons) this is where

the cross sections are largest anyway, and so this is no further constraint. There is

no simple possibility to change PARP(82) during the course of the run, i.e. an energy-
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independent p⊥0 must be assumed. By contrast, for MSTP(82) = 1 p⊥min =PARP(81)

can be set differently for each event, as a function of c.m. energy. Initialization should

then be done with PARP(81) as low as it is ever supposed to become.

9.9 How to include external processes

Despite a large repertory of processes in Pythia, the number of interesting missing ones

clearly is even larger, and with time this discrepancy is likely to increase. There are

several reasons why it is not practicable to imagine a Pythia which has ‘everything’.

One is the amount of time it takes to implement a process for the few Pythia authors,

compared with the rate of new cross section results produced by the rather larger matrix-

element calculations community. Another is the length of currently produced matrix-

element expressions, which would make the program very bulky. A third argument is

that, whereas the phase space of 2 → 1 and 2 → 2 processes can be set up once and for

all according to a reasonably flexible machinery, processes with more final-state particles

are less easy to generate. To achieve a reasonable efficiency, it is necessary to tailor the

phase-space selection procedure to the dynamics of the given process, and to the desired

experimental cuts.

At times, simple solutions may be found. Some processes may be seen just as trivial

modifications of already existing ones. For instance, you might want to add some extra

term, corresponding to contact interactions, to the matrix elements of a Pythia 2 → 2

process. In that case it is not necessary to go through the machinery below, but instead you

can use the PYEVWT routine (section 9.7) to introduce an additional weight for the event,

defined as the ratio of the modified to the unmodified differential cross sections. If you use

the option MSTP(142) = 2, this weight is considered as part of the ‘true’ cross section of

the process, and the generation is changed accordingly.

A Pythia expert could also consider implementing a new process along the lines of the

existing ones, hardwired in the code. Such a modification would have to be ported anytime

the Pythia program is upgraded, however (unless it is made available to the Pythia

authors and incorporated into the public distribution). For this and other reasons, we

will not consider this option in detail, but only provide a few generic remarks. The first

step is to pick a process number ISUB among ones not in use. The process type needs

to be set in ISET(ISUB) and, if the final state consists of massive particles, these should

be specified in KFPR(ISUB,1) and KFPR(ISUB,2). Output is improved if a process name

is set in PROC(ISUB). The second and main step is to code the cross section of the hard-

scattering subprocess in the PYSIGH routine. Usually the best starting point is to use the

code of an existing similar process as a template for the new code required. The third step

is to program the selection of the final state in PYSCAT, normally a simple task, especially

if again a similar process (especially with respect to colour flow) can be used as template.

In many cases the steps above are enough, in others additional modifications are required

to PYRESD to handle process-specific non-isotropic decays of resonances. Further code may

also be required e.g. if a process can proceed via an intermediate resonance that can be on

the mass shell.
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The recommended solution, if a desired process is missing, is instead to include it into

Pythia as an ‘external’ process. In this section we will describe how it is possible to specify

the parton-level state of some hard-scattering process in a common block. (‘Parton-level’

is not intended to imply a restriction to quarks and gluons as interacting particles, but

only that quarks and gluons are given rather than the hadrons they will produce in the

observable final state.) Pythia will read this common block, and add initial- and final-

state showers, beam remnants and underlying events, fragmentation and decays, to build

up an event in as much detail as an ordinary Pythia one. Another common block is to

be filled with information relevant for the run as a whole, where beams and processes are

specified.

Such a facility has been available since long ago, and has been used e.g. together

with the CompHEP package. CompHEP [Puk99] is mainly intended for the automatic

computation of matrix elements, but also allows the sampling of phase space according

to these matrix elements and thereby the generation of weighted or unweighted events.

These events can be saved on disk and thereafter read back in to Pythia for subsequent

consideration [Bel00].

At the Les Houches 2001 workshop it was decided to develop a common standard,

that could be used by all matrix-elements-based generators to feed information into any

complete event generator — the Les Houches Accord (LHA) [Boo01]. It is similar to, but in

its details different from, the approach previously implemented in Pythia. Furthermore,

it uses the same naming convention: all names in common blocks end with UP, short for

User(-defined) Process. This produces some clashes. Therefore the old facility, existing

up to and including Pythia 6.1, has been completely removed and replaced by the new

one. Currently not every last detail of the standard has yet been implemented. In the

description below we will emphasize such restrictions, as well as the solutions to aspects

not specified by the standard.

In particular, even with the common-block contents defined, it is not clear where they

are to be filled, i.e. how the external supplier of parton-level events should synchronize with

Pythia. The solution adopted here — recommended in the standard — is to introduce two

subroutines, UPINIT and UPEVNT. The first is called by PYINIT at initialization to obtain

information about the run itself, and the other called by PYEVNT each time a new event

configuration is to be fed in. We begin by describing these two steps and their related

common blocks, before proceeding with further details and examples. The description is

cast in a Pythia-oriented language, but for the common-block contents it closely matches

the generator-neutral standard in [Boo01]. Restrictions to or extensions of the standard

should be easily recognized, but in case you are vitally dependent on following the standard

exactly, you should of course check [Boo01].

Note that the UPVETO routine, introduced above in section 9.7, is a third member of

the UP.... family of routines. While not part of the LHA, it offers extra functionality that

allows the user to combine parton configuration input at different orders of perturbation

theory, in such a way that the matrix-elements description and the shower activity do not

doublecount emissions.
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9.9.1 Run information

When PYINIT is called in the main program, with ’USER’ as first argument (which makes

the other arguments dummy), it signals that external processes are to be implemented.

Then PYINIT, as part of its initialization tasks, will call the routine UPINIT.

CALL UPINIT

Purpose: routine to be provided by you when you want to implement external processes,

wherein the contents of the HEPRUP common block are set. This information

specifies the character of the run, both beams and processes, see further below.

Note 1: alternatively, the HEPRUP common block could be filled already before PYINIT

is called, in which case UPINIT could be empty. We recommend UPINIT as the

logical place to collect the relevant information, however.

Note 2: a dummy copy of UPINIT is distributed with the program, in order to avoid

potential problems with unresolved external references. This dummy should not

be linked when you supply your own UPINIT routine. The code can be used to

read initialization information previously written by PYUPIN, however.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP

COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),

&LPRUP(MAXPUP)

Purpose: to contain the initial information necessary for the subsequent generation of

complete events from externally provided parton configurations. The IDBMUP,

EBMUP, PDFGUP and PDFSUP variables specify the nature of the two incoming

beams. IDWTUP is a master switch, selecting the strategy to be used to mix

different processes. NPRUP gives the number of different external processes to

mix, and XSECUP, XERRUP, XMAXUP and LPRUP information on each of these. The

contents in this common block must remain unchanged by the user during the

course of the run, once set in the initialization stage.

This common block should be filled in the UPINIT routine or, alternatively, be-

fore the PYINIT call. During the run, Pythia may update the XMAXUP values as

required.

MAXPUP : the maximum number of distinguishable processes that can be defined. (Each

process in itself could consist of several subprocesses that have been distinguished

in the parton-level generator, but where this distinction is not carried along.)

IDBMUP : the PDG codes of the two incoming beam particles (or, in alternative terminol-

ogy, the beam and target particles).
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In Pythia, this replaces the information normally provided by the BEAM and

TARGET arguments of the PYINIT call. Only particles which are acceptable BEAM

or TARGET arguments may also be used in IDBMUP. The ’gamma/lepton’ options

are not available.

EBMUP : the energies, in GeV, of the two incoming beam particles. The first (second)

particle is taken to travel in the +z (−z) direction.

The standard also allows non-collinear and varying-energy beams to be specified,

see ISTUP = -9 below, but this is not yet implemented in Pythia.

PDFGUP, PDFSUP : the author group (PDFGUP) and set (PDFSUP) of the parton distribu-

tions of the two incoming beams, as used in the generation of the parton-level

events. Numbers are based on the Pdflib [Plo93] lists, and should extend to

LHAPDF [Gie02]. This enumeration may not always be up to date, but it pro-

vides the only unique integer labels for parton distributions that we have. Where

no codes are yet assigned to the parton distribution sets used, one should do as

best as one can, and be prepared for more extensive user interventions to inter-

pret the information. For lepton beams, or when the information is not provided

for other reasons, one should put PDFGUP = PDFSUP = -1.

By knowing which set has been used, it is possible to reweight cross sections event

by event, to correspond to another set.

Note that Pythia does not access the PDFGUP or PDFSUP values in its description

of internal processes or initial-state showers. If you want this to happen, you

have to manipulate the MSTP(51) - MSTP(56) switches. For instance, to access

Pdflib for protons, put MSTP(51) = 1000*PDFGUP + PDFSUP and MSTP(52) = 2

in UPINIT. (And remove the dummy Pdflib routines, as described for MSTP(52).)

Also note that PDFGUP and PDFSUP allow an independent choice of parton distri-

butions on the two sides of the event, whereas Pythia only allows one single

choice for all protons, another for all pions and a third for all photons.

Pythia implements one extension not specified in the LHA: If you set PDFGUP(i)

= -9 for either of the two incoming beams, i = 1 or = 2, this signals that beam

remnants are already included in the specified final state and should not be pro-

vided by Pythia. As a consequence, neither initial-state radiation nor multiple

interactions are applied to the given particle configuration, since these would rede-

fine the beam remnants. What remains is resonance decays, final-state radiation,

hadronization and ordinary decays (unless explicitly switched off, of course). One

application could be to plug in parton-level configurations already generated by

some other initial-state shower algorithm. A more typical example would be a

generator for diffractive Higgs production, pp → ppH, where Pythia would be

used to address the Higgs decay with associated showers and handronization.

Note that, in accordance with the general rules, it is necessary to provide the two

incoming protons as the first two particles of the /HEPEUP/ event record, with

status code −1. (Although this here happens to be redundant, given the beam

information provided at initialization.)

IDWTUP : master switch dictating how event weights and cross sections should be inter-
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preted. Several different models are presented in detail below. There will be

tradeoffs between these, e.g. a larger flexibility to mix and re-mix several dif-

ferent processes could require a larger administrative machinery. Therefore the

best strategy would vary, depending on the format of the input provided and

the output desired. In some cases, parton-level configurations have already been

generated with one specific model in mind, and then there may be no choice.

IDWTUP significantly affects the interpretation of XWGTUP, XMAXUP and XSECUP, as

described below, but the basic nomenclature is the following. XWGTUP is the event

weight for the current parton-level event, stored in the HEPEUP common block.

For each allowed external process i, XMAXUP(i) gives the maximum event weight

that could be encountered, while XSECUP(i) is the cross section of the process.

Here i is an integer in the range between 1 and NPRUP; see the LPRUP description

below for comments on alternative process labels.

= 1 : parton-level events come with a weight when input to Pythia, but are then

accepted or rejected, so that fully generated events at output have a com-

mon weight, customarily defined as +1. The event weight XWGTUP is a non-

negative dimensional quantity, in pb (converted to mb in Pythia), with a

mean value converging to the total cross section of the respective process.

For each process i, the XMAXUP(i) value provides an upper estimate of how

large XWGTUP numbers can be encountered. There is no need to supply an

XSECUP(i) value; the cross sections printed with PYSTAT(1) are based en-

tirely on the averages of the XWGTUP numbers (with a small correction for

the fraction of events that PYEVNT fails to generate in full for some reason).

The strategy is that PYEVNT selects which process i should be generated next,

based on the relative size of the XMAXUP(i) values. The UPEVNT routine has

to fill the HEPEUP common block with a parton-level event of the requested

type, and give its XWGTUP event weight. The event is accepted by PYEVNT

with probability XWGTUP/XMAXUP(i). In case of rejection, PYEVNT selects a

new process i and asks for a new event. This ensures that processes are

mixed in proportion to their average XWGTUP values.

This model presumes that UPEVNT is able to return a parton-level event of

the process type requested by PYEVNT. It works well if each process is associ-

ated with an input stream of its own, either a subroutine generating events

‘on the fly’ or a file of already generated events. It works less well if parton-

level events from different processes already are mixed in a single file, and

therefore cannot easily be returned in the order wanted by PYEVNT. In the

latter case one should either use another model or else consider reducing the

level of ambition: even if you have mixed several different subprocesses on a

file, maybe there is no need for Pythia to know this finer classification, in

which case we may get back to a situation with one ‘process’ per external

file. Thus the subdivision into processes should be a matter of convenience,

not a strait-jacket. Specifically, the shower and hadronization treatment of

a parton-level event is independent of the process label assigned to it.
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If the events of some process are already available unweighted, then a cor-

rect mixing of this process with others is ensured by putting XWGTUP =

XMAXUP(i), where both of these numbers now is the total cross section of

the process.

Each XMAXUP(i) value must be known from the very beginning, e.g. from

an earlier exploratory run. If a larger value is encountered during the course

of the run, a warning message will be issued and the XMAXUP(i) value (and

its copy in XSEC(ISUB,1)) increased. Events generated before this time will

have been incorrectly distributed, both in the process composition and in

the phase space of the affected process, so that a bad estimate of XMAXUP(i)

may require a new run with a better starting value.

The model described here agrees with the one used for internal Pythia

processes, and these can therefore freely be mixed with the external ones.

Internal processes are switched on with MSUB(ISUB) = 1, as usual, either

before the PYINIT call or in the UPINIT routine. One cannot use MSEL to

select a predefined set of processes, for technical reasons, wherefore MSEL =

0 is hardcoded when external processes are included.

A reweighting of events is feasible, e.g. by including a kinematics-dependent

K factor into XWGTUP, so long as XMAXUP(i) is also properly modified to

take this into account. Optionally it is also possible to produce events with

non-unit weight, making use the PYEVWT facility, see section 9.7. This works

exactly the same way as for internal Pythia processes, except that the event

information available inside PYEVWT would be different for external processes.

You may therefore wish to access the HEPEUP common block inside your own

copy of PYEVWT, where you calculate the event weight.

In summary, this option provides maximal flexibility, but at the price of po-

tentially requiring the administration of several separate input streams of

parton-level events.

= -1 : same as = 1 above, except that event weights may be either positive or neg-

ative on input, and therefore can come with an output weight of +1 or −1.

This weight is uniquely defined by the sign of XWGTUP. It is also stored in

PARI(7). The need for negative-weight events arises in some next-to-leading-

order calculations, but there are inherent dangers, discussed in section 9.9.5

below.

In order to allow a correct mixing between processes, a process of inde-

terminate cross section sign has to be split up in two, where one always

gives a positive or vanishing XWGTUP, and the other always gives it negative

or vanishing. The XMAXUP(i) value for the latter process should give the

negative XWGTUP of largest magnitude that will be encountered. PYEVNT se-

lects which process i that should be generated next, based on the relative

size of the |XMAXUP(i)| values. A given event is accepted with probability

|XWGTUP|/|XMAXUP(i)|.

= 2 : parton-level events come with a weight when input to Pythia, but are then
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accepted or rejected, so that events at output have a common weight, custom-

arily defined as +1. The non-negative event weight XWGTUP and its maximum

value XMAXUP(i) may or may not be dimensional quantities; it does not mat-

ter since only the ratio XWGTUP/XMAXUP(i) will be used. Instead XSECUP(i)

contains the process cross section in pb (converted to mb in Pythia). It is

this cross section that appears in the PYSTAT(1) table, only modified by the

small fraction of events that PYEVNT fails to generate in full for some reason.

The strategy is that PYEVNT selects which process i should be generated next,

based on the relative size of the XSECUP(i) values. The UPEVNT routine has

to fill the HEPEUP common block with a parton-level event of the requested

type, and give its XWGTUP event weight. The event is accepted by PYEVNT

with probability XWGTUP/XMAXUP(i). In case of rejection, the process num-

ber i is retained and PYEVNT asks for a new event of this kind. This ensures

that processes are mixed in proportion to their XSECUP(i) values.

This model presumes that UPEVNT is able to return a parton-level event of

the process type requested by PYEVNT, with comments exactly as for the =

1 option.

If the events of some process are already available unweighted, then a cor-

rect mixing of this process with others is ensured by putting XWGTUP =

XMAXUP(i).

Each XMAXUP(i) and XSECUP(i) value must be known from the very be-

ginning, e.g. from an earlier integration run. If a larger value is encoun-

tered during the course of the run, a warning message will be issued and the

XMAXUP(i) value increased. This will not affect the process composition, but

events generated before this time will have been incorrectly distributed in

the phase space of the affected process, so that a bad estimate of XMAXUP(i)

may require a new run with a better starting value.

While the generation model is different from the normal internal Pythia

one, it is sufficiently close that internal processes can be freely mixed with

the external ones, exactly as described for the = 1 option. In such a mix,

internal processes are selected according to their equivalents of XMAXUP(i)

and at rejection a new i is selected, whereas external ones are selected ac-

cording to XSECUP(i) with i retained when an event is rejected.

A reweighting of individual events is no longer simple, since this would

change the XSECUP(i) value nontrivially. Thus a new integration run with

the modified event weights would be necessary to obtain new XSECUP(i)

and XMAXUP(i) values. An overall rescaling of each process separately can

be obtained by modifying the XSECUP(i) values accordingly, however, e.g.

by a relevant K factor.

In summary, this option is similar to the = 1 one. The input of XSECUP(i)

allows good cross section knowledge also in short test runs, but at the price

of a reduced flexibility to reweight events.

= -2 : same as = 2 above, except that event weights may be either positive or neg-
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ative on input, and therefore can come with an output weight of +1 or −1.

This weight is uniquely defined by the sign of XWGTUP. It is also stored in

PARI(7). The need for negative-weight events arises in some next-to-leading-

order calculations, but there are inherent dangers, discussed in section 9.9.5

below.

In order to allow a correct mixing between processes, a process of indeter-

minate cross section sign has to be split up in two, where one always gives a

positive or vanishing XWGTUP, and the other always gives it negative or van-

ishing. The XMAXUP(i) value for the latter process should give the negative

XWGTUP of largest magnitude that will be encountered, and XSECUP(i) should

give the integrated negative cross section. PYEVNT selects which process i

that should be generated next, based on the relative size of the |XSECUP(i)|

values. A given event is accepted with probability |XWGTUP|/|XMAXUP(i)|.

= 3 : parton-level events come with unit weight when input to Pythia, XWGTUP

= 1, and are thus always accepted. This makes the XMAXUP(i) superfluous,

while XSECUP(i) should give the cross section of each process.

The strategy is that that the next process type i is selected by the user

inside UPEVNT, at the same time as the HEPEUP common block is filled with

information about the parton-level event. This event is then unconditionally

accepted by PYEVNT, except for the small fraction of events that PYEVNT fails

to generate in full for some reason.

This model allows UPEVNT to read events from a file where different processes

already appear mixed. Alternatively, you are free to devise and implement

your own mixing strategy inside UPEVNT, e.g. to mimic the ones already

outlined for PYEVNT in = 1 and = 2 above.

The XSECUP(i) values should be known from the beginning, in order for

PYSTAT(1) to produce a sensible cross section table. This is the only place

where it matters, however. That is, the processing of events inside Pythia

is independent of this information.

In this model it is not possible to mix with internal Pythia processes, since

not enough information is available to perform such a mixing.

A reweighting of events is completely in the hands of the UPEVNT author. In

the case that all events are stored in a single file, and all are to be handed

on to PYEVNT, only a common K factor applied to all processes would be

possible.

In summary, this option puts more power — and responsibility — in the

hands of the author of the parton-level generator. It is very convenient for

the processing of unweighted parton-level events stored in a single file. The

price to be paid is a reduced flexibility in the reweighting of events, or in

combining processes at will.

= -3 : same as = 3 above, except that event weights may be either +1 or −1.

This weight is uniquely defined by the sign of XWGTUP. It is also stored in

PARI(7). The need for negative-weight events arises in some next-to-leading-
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order calculations, but there are inherent dangers, discussed in section 9.9.5

below.

Unlike the = -1 and = -2 options, there is no need to split a process in

two, each with a definite XWGTUP sign, since PYEVNT is not responsible for the

mixing of processes. It may well be that the parton-level-generator author

has enforced such a split, however, to solve a corresponding mixing problem

inside UPEVNT. Information on the relative cross section in the negative- and

positive-weight regions may also be useful to understand the character and

validity of the calculation (large cancellations means trouble!).

= 4 : parton-level events come with a weight when input to Pythia, and this

weight is to be retained unchanged at output. The event weight XWGTUP is a

non-negative dimensional quantity, in pb (converted to mb in Pythia, and

as such also stored in PARI(7)), with a mean value converging to the total

cross section of the respective process. When histogramming results, one of

these event weights would have to be used.

The strategy is exactly the same as = 3 above, except that the event weight

is carried along from UPEVNT to the PYEVNT output. Thus again all control

is in the hands of the UPEVNT author.

A cross section can be calculated from the average of the XWGTUP values, as

in the = 1 option, and is displayed by PYSTAT(1). Here it is of purely infor-

mative character, however, and does not influence the generation procedure.

Neither XSECUP(i) or XMAXUP(i) needs to be known or supplied.

In this model it is not possible to mix with internal Pythia processes, since

not enough information is available to perform such a mixing.

A reweighting of events is completely in the hands of the UPEVNT author, and

is always simple, also when events appear sequentially stored in a single file.

In summary, this option allows maximum flexibility for the parton-level-

generator author, but potentially at the price of spending a significant

amount of time processing events of very small weight. Then again, in some

cases it may be an advantage to have more events in the tails of a distribution

in order to understand those tails better.

= -4 : same as = 4 above, except that event weights in XWGTUP may be either posi-

tive or negative. In particular, the mean value of XWGTUP is converging to the

total cross section of the respective process. The need for negative-weight

events arises in some next-to-leading-order calculations, but there are inher-

ent dangers, discussed in section 9.9.5 below.

Unlike the = -1 and = -2 options, there is no need to split a process in

two, each with a definite XWGTUP sign, since PYEVNT does not have to mix

processes. However, as for option = -3, such a split may offer advantages in

understanding the character and validity of the calculation.

NPRUP : the number of different external processes, with information stored in the first

NPRUP entries of the XSECUP, XERRUP, XMAXUP and LPRUP arrays.

XSECUP : cross section for each external process, in pb. This information is mandatory
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for IDWTUP = ±2, helpful for ±3, and not used for the other options.

XERRUP : the statistical error on the cross section for each external process, in pb.

Pythia will never make use of this information, but if it is available anyway it

provides a helpful service to the user of parton-level generators.

Note that, if a small number nacc of events pass the experimental selection cuts,

the statistical error on this cross section is limited by δσ/σ ≈ 1/
√

nacc, irrespec-

tively of the quality of the original integration. Furthermore, at least in hadronic

physics, systematic errors from parton distributions and higher orders typically

are much larger than the statistical errors.

XMAXUP : the maximum event weight XWGTUP that is likely to be encountered for each

external process. For IDWTUP = ±1 it has dimensions pb, while the dimensionality

need not be specified for ±2. For the other IDWTUP options it is not used.

LPRUP : a unique integer identifier of each external process, free to be picked by you for

your convenience. This code is used in the IDPRUP identifier of which process

occured.

In Pythia, an external process is thus identified by three different integers. The

first is the Pythia process number, ISUB. This number is assigned by PYINIT

at the beginning of each run, by scanning the ISET array for unused process

numbers, and reclaiming such in the order they are found. The second is the

sequence number i, running from 1 through NPRUP, used to find information

in the cross section arrays. The third is the LPRUP(i) number, which can be

anything that the user wants to have as a unique identifier, e.g. in a larger

database of processes. For Pythia to handle conversions, the two KFPR numbers

of a given process ISUB are overwritten with the second and third numbers above.

Thus the first external process will land in ISUB = 4 (currently), and could have

LPRUP(1) = 13579. In a PYSTAT(1) call, it would be listed as User process

13579.

9.9.2 Event information

Inside the event loop of the main program, PYEVNT will be called to generate the next event,

as usual. When this is to be an external process, the parton-level event configuration and

the event weight is found by a call from PYEVNT to UPEVNT.

CALL UPEVNT

Purpose: routine to be provided by you when you want to implement external processes,

wherein the contents of the HEPEUP common block are set. This information

specifies the next parton-level event, and some additional event information, see

further below. How UPEVNT is expected to solve its task depends on the model

selected in IDWTUP, see above. Specifically, note that the process type IDPRUP has

already been selected for some IDWTUP options (and then cannot be overwritten),

while it remains to be chosen for others.
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Note : a dummy copy of UPEVNT is distributed with the program, in order to avoid

potential problems with unresolved external references. This dummy should not

be linked when you supply your own UPEVNT routine. The code can be used to

read event information previously written by PYUPEV, however.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP

COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),

&VTIMUP(MAXNUP),SPINUP(MAXNUP)

Purpose : to contain information on the latest external process generated in UPEVNT.

A part is one-of-a-kind numbers, like the event weight, but the bulk of the in-

formation is a listing of incoming and outgoing particles, with history, colour,

momentum, lifetime and spin information.

MAXNUP : the maximum number of particles that can be specified by the external process.

The maximum of 500 is more than Pythia is set up to handle. By default,

MSTP(126) = 100, at most 96 particles could be specified, since 4 additional

entries are needed in Pythia for the two beam particles and the two initiators

of initial-state radiation. If this default is not sufficient, MSTP(126) would have

to be increased at the beginning of the run.

NUP : the number of particle entries in the current parton-level event, stored in the NUP

first entries of the IDUP, ISTUP, MOTHUP, ICOLUP, PUP, VTIMUP and SPINUP arrays.

The special value NUP = 0 is used to denote the case where UPEVNT is unable to

provide an event, at least of the type requested by PYEVNT, e.g. because all events

available in a file have already been read. For such an event also the error flag

MSTI(51) = 1 instead of the normal = 0.

IDPRUP : the identity of the current process, as given by the LPRUP codes.

When IDWTUP = ±1 or ±2, IDPRUP is selected by PYEVNT and already set when

entering UPEVNT. Then UPEVNT has to provide an event of the specified process

type, but cannot change IDPRUP. When IDWTUP = ±3 or ±4, UPEVNT is free to

select the next process, and then should set IDPRUP accordingly.

XWGTUP : the event weight. The precise definition of XWGTUP depends on the value of the

IDWTUP master switch. For IDWTUP = 1 or = 4 it is a dimensional quantity, in pb,

with a mean value converging to the total cross section of the respective process.

For IDWTUP = 2 the overall normalization is irrelevant. For IDWTUP = 3 only

the value +1 is allowed. For negative IDWTUP also negative weights are allowed,

although positive and negative weights cannot appear mixed in the same process

for IDWTUP = -1 or = -2.

SCALUP : scale Q of the event, as used in the calculation of parton distributions (factor-
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ization scale). If the scale has not been defined, this should be denoted by using

the value -1.

In Pythia, this is input to PARI(21) - PARI(26) (and internally VINT(51) -

VINT(56)) When SCALUP is non-positive, the invariant mass of the parton-level

event is instead used as scale. Either of these comes to set the maximum vir-

tuality in the initial-state parton showers. The same scale is also used for the

first final-state shower, i.e. the one associated with the hard scattering. As in

internal events, PARP(67) and PARP(71) offer multiplicative factors, whereby the

respective initial- or final-state showering Q2
max scale can be modified relative to

the scale above. Any subsequent final-state showers are assumed to come from

resonance decays, where the resonance mass always sets the scale. Since SCALUP is

not directly used inside Pythia to evaluate parton densities, its role as regulator

of parton-shower activity may be the more important one.

AQEDUP : the QED coupling αem used for this event. If αem has not been defined, this

should be denoted by using the value -1.

In Pythia, this value is stored in VINT(57). It is not used anywhere, however.

AQCDUP : the QCD coupling αs used for this event. If αs has not been defined, this should

be denoted by using the value -1.

In Pythia, this value is stored in VINT(58). It is not used anywhere, however.

IDUP(i) : particle identity code, according to the PDG convention, for particle i. As an

extension to this standard, IDUP(i) = 0 can be used to designate an intermediate

state of undefined (and possible non-physical) character, e.g. a subsystem with a

mass to be preserved by parton showers.

In the Pythia event record, this corresponds to the KF = K(I,2) code. But

note that, here and in the following, the positions i in HEPEUP and I in PYJETS

are likely to be different, since Pythia normally stores more information in the

beginning of the event record. Since K(I,2) = 0 is forbidden, the IDUP(i) = 0

code is mapped to K(I,2) = 90.

ISTUP(i) : status code of particle i.

= -1 : an incoming particle of the hard-scattering process.

In Pythia, currently it is presumed that the first two particles, i = 1 and

= 2, are of this character, and none of the others. If this is not the case,

the HEPEUP record will be rearranged to put such entries first. If the listing

is still not acceptable after this, the program execution will stop. This is

a restriction relative to the standard, which allows more possibilities. It is

also presumed that these two particles are given with vanishing masses and

parallel to the respective incoming beam direction, i.e. E = pz for the first

and E = −pz for the second. Should the particles not be massless at input,

E and pz is shuffled between the two incoming partons to assure this, while

preserving the total quantities. The assignment of space-like virtualities

and nonvanishing p⊥’s from initial-state radiation and primordial k⊥’s is the

prerogative of Pythia.

= 1 : an outgoing final-state particle.
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Such a particle can, of course, be processed further by Pythia, to add

showers and hadronization, or perform decays of any remaining resonances.

= 2 : an intermediate resonance, whose mass should be preserved by parton show-

ers. For instance, in a process such as e+e− → Z0h0 → qq bb, the Z0 and

h0 should both be flagged this way, to denote that the qq and bb systems

should have their individual masses preserved. In a more complex example,

du → W−Z0g → `−ν` qq g, both the W− and Z0 particles and the W−Z0

pseudoparticle (with IDUP(i) = 0) could be given with status 2.

Often mass preservation is correlated with colour singlet subsystems, but

this need not be the case. In e+e− → tt → bW+ bW−, the b and b would

be in a colour singlet state, but not with a preserved mass. Instead the

t = bW+ and t = bW− masses would be preserved, i.e. when b radiates

b → bg the recoil is taken by the W+. Exact mass preservation also by the

hadronization stage is only guaranteed for colour singlet subsystems, how-

ever, at least for string fragmentation, since it is not possible to define a

subset of hadrons that uniquely belong only with a single coloured particle.

The assignment of intermediate states is not always quantum mechanically

well-defined. For instance, e+e− → µ−µ+νµνµ can proceed both through

a W+W− and a Z0Z0 intermediate state, as well as through other graphs,

which can interfere with each other. It is here the responsibility of the

matrix-element-generator author to pick one of the alternatives, according

to some convenient recipe. One option might be to perform two calculations,

one complete to select the event kinematics and calculate the event weight,

and a second with all interference terms neglected to pick the event history

according to the relative weight of each graph. Often one particular graph

would dominate, because a certain pairing of the final-state fermions would

give invariant masses on or close to some resonance peaks.

In Pythia, the identification of an intermediate resonance is not only a mat-

ter of preserving a mass, but also of improving the modelling of the final-

state shower evolution, since matrix-element-correction factors have been

calculated for a variety of possible resonance decays and implemented in the

respective parton-shower description, see section 10.2.6.

= 3 : an intermediate resonance, given for documentation only, without any de-

mand that the mass should be preserved in subsequent showers.

In Pythia, currently particles defined with this option are not treated any

differently from the ones with = 2.

= -2 : an intermediate space-like propagator, defining an x and a Q2, in the Deeply

Inelastic Scattering terminology, which should be preserved.

In Pythia, currently this option is not defined and should not be used. If

it is, the program execution will stop.

= -9 : an incoming beam particle at time t = −∞. Such beams are not required in

most cases, since the HEPRUP common block normally contains the informa-

tion. The exceptions are studies with non-collinear beams and with varying-
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energy beams (e.g. from beamstrahlung, section 7.1.3), where HEPRUP does

not supply sufficient flexibility. Information given with = -9 overwrites the

one given in HEPRUP.

This is an optional part of the standard, since it may be difficult to combine

with some of the IDWTUP options.

Currently it is not recognized by Pythia. If it is used, the program execution

will stop.

MOTHUP(1,i), MOTHUP(2,i) : position of the first and last mother of particle i. Decay

products will normally have only one mother. Then either MOTHUP(2,i) = 0 or

MOTHUP(2,i) = MOTHUP(1,i). Particles in the outgoing state of a 2 → n process

have two mothers. This scheme does not limit the number of mothers, so long

as these appear consecutively in the listing, but in practice there will likely never

be more than two mothers per particle.

As has already been mentioned for ISTUP(i) = 2, the definition of history is

not always unique. Thus, in a case like e+e− → µ+µ−γ, proceeding via an

intermediate γ∗/Z0, the squared matrix element contains an interference term

between initial- and final-state emission of the photon. This ambiguity has to be

resolved by the matrix-elements-based generator.

In Pythia, only information on the first mother survives into K(I,3). This is

adequate for resonance decays, while particles produced in the primary 2 → n

process are given mother code 0, as is customary for internal processes. It implies

that two particles are deemed to have the same mothers if the first one agrees; it is

difficult to conceive of situations where this would not be the case. Furthermore,

it is assumed that the MOTHUP(1,i) < i, i.e. that mothers are stored ahead of

their daughters, and that all daughters of a mother are listed consecutively, i.e.

without other particles interspersed. If this is not the case, the HEPEUP record

will be rearranged so as to adhere to these principles.

Pythia has a limit of at most 80 particles coming from the same mother, for the

final-state parton-shower algorithm to work. In fact, the shower is optimized for

a primary 2 → 2 process followed by some sequence of 1 → 2 resonance decays.

Then colour coherence with the initial state, matrix-element matching to gluon

emission in resonance decays, and other sophisticated features are automatically

included. By contrast, the description of emission in systems with three or more

partons is less sophisticated. Apart from problems with the algorithm itself, more

information than is provided by the standard would be needed to do a good job.

Specifically, there is a significant danger of double-counting or gaps between the

radiation already covered by matrix elements and the one added by the shower.

The omission from HEPEUP of intermediate resonances known to be there, so that

e.g. two consecutive 1 → 2 decays are bookkept as a single 1 → 3 branching, is

a simple way to reduce the reliability of your studies!

ICOLUP(1,i), ICOLUP(2,i) : integer tags for the colour flow lines passing through the

colour and anticolour, respectively, of the particle. Any particle with colour (anti-

colour), such as a quark (antiquark) or gluon, will have the first (second) number
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nonvanishing.

The tags can be viewed as a numbering of different colours in the NC → ∞ limit

of QCD. Any nonzero integer can be used to represent a different colour, but the

standard recommends to stay with positive numbers larger than MAXNUP to avoid

confusion between colour tags and the position labels i of particles.

The colour and anticolour of a particle is defined with the respect to the physical

time ordering of the process, so as to allow a unique definition of colour flow

also through intermediate particles. That is, a quark always has a nonvanishing

colour tag ICOLUP(1,i), whether it is in the initial, intermediate or final state.

A simple example would be qq → tt → bW+bW−, where the same colour label

is to be used for the q, the t and the b. Correspondingly, the q, t and b share

another colour label, now stored in the anticolour position ICOLUP(2,i).

The colour label in itself does not distinguish between the colour or the anticolour

of a given kind; that information appears in the usage either of the ICOLUP(1,i)

or of the ICOLUP(2,i) position for the colour or anticolour, respectively. Thus,

in a W+ → ud decay, the u and d would share the same colour label, but stored

in ICOLUP(1,i) for the u and in ICOLUP(2,i) for the d.

In general, several colour flows are possible in a given subprocess. This leads to

ambiguities, of a character similar to the ones for the history above, and as is dis-

cussed in section 8.2.1. Again it is up to the author of the matrix-elements-based

generator to find a sensible solution. It is useful to note that all interference terms

between different colour flow topologies vanish in the NC → ∞ limit of QCD.

One solution would then be to use a first calculation in standard QCD to select

the momenta and find the weight of the process, and a second with NC → ∞
to pick one specific colour topology according to the relative probabilities in this

limit.

The above colour scheme also allows for baryon-number-violating processes. Such

a vertex would appear as ‘dangling’ colour lines, when the ICOLUP and MOTHUP

information is correlated. For instance, in ũ → dd the ũ inherits an existing

colour label, while the two d’s are produced with two different new labels.

Several examples of colour assignments, both with and without baryon number

violation, are given in [Boo01].

In Pythia, baryon number violation is not yet implemented as part of the

external-process machinery (but exists for internal processes, including internally

handled decays of resonances provided externally). It will require substantial

extra work to lift this restriction, and this is not imminent.

PUP(1,i), PUP(2,i), PUP(3,i), PUP(4,i), PUP(5,i) : the particle momentum vec-

tor (px, py, pz, E,m), with units of GeV. A space-like virtuality is denoted by a

negative sign on the mass.

Apart from the index order, this exactly matches the P momentum conventions

in PYJETS.

Pythia is forgiving when it comes to using other masses than its own, e.g. for

quarks. Thus the external process can be given directly with the mb used in
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the calculation, without any worry how this matches the Pythia default. How-

ever, remember that the two incoming particles with ISTUP(i) = -1 have to be

massless, and will be modified correspondingly if this is not the case at input.

VTIMUP(i) : invariant lifetime cτ in mm, i.e. distance from production to decay. Once the

primary vertex has been selected, the subsequent decay vertex positions in space

and time can be constructed step by step, by also making use of the momentum

information. Propagation in vacuum, without any bending e.g. by magnetic fields,

has to be assumed.

This exactly corresponds to the V(I,5) component in PYJETS. Note that it is

used in Pythia to track colour singlet particles through distances that might be

observable in a detector. It is not used to trace the motion of coloured partons at

fm scales, through the hadronization process. Also note that Pythia will only

use this information for intermediate resonances, not for the initial- and final-

state particles. For instance, for an undecayed τ−, the lifetime is selected as part

of the τ− decay process, not based on the VTIMUP(i) value.

SPINUP(i) : cosine of the angle between the spin vector of a particle and its three-

momentum, specified in the lab frame, i.e. the frame where the event as a whole

is defined. This scheme is neither general nor complete, but it is chosen as a

sensible compromise.

The main foreseen application is τ ’s with a specific helicity. Typically a relativis-

tic τ− (τ+) coming from a W− (W+) decay would have helicity and SPINUP(i)

= −1 (+1). This could be changed by the boost from the W rest frame to the lab

frame, however. The use of a real number, rather than an integer, allows for an

extension to the non-relativistic case.

Particles which are unpolarized or have unknown polarization should be given

SPINUP(i) = 9.

Explicit spin information is not used anywhere in Pythia. It is implicit in many

production and decay matrix elements, which often contain more correlation in-

formation than could be conveyed by the simple spin numbers discussed here.

Correspondingly, it is to be expected that the external generator already per-

formed the decays of the W’s, the Z’s and the other resonances, so as to include

the full spin correlations. If this is not the case, such resonances will normally

be decayed isotropically. Some correlations could appear in decay chains: the

Pythia decay t → bW+ is isotropic, but the subsequent W+ → q1q2 decay con-

tains implicit W helicity information from the t decay.

Also τ decays performed by Pythia would be isotropic. An interface routine

PYTAUD (see section 14.2) can be used to link to external τ decay generators, but

is based on defining the τ in the rest frame of the decay that produces it, and so is

not directly applicable here. It could be rewritten to make use of the SPINUP(i)

information, however. In the meantime, and of course also afterwards, a valid

option is to perform the τ decays yourself before passing ‘parton-level’ events to

Pythia.

One auxiliary routine exists, that formally is part of the Pythia package, but could
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be used by any generator:

SUBROUTINE PYUPRE : called immediately after UPEVNT has been called to provide a user-

process event. It will rearrange the contents of the HEPEUP common block so that

afterwards the two incoming partons appear in lines 1 and 2, so that all mothers

appear ahead of their daughters, and so that the daughters of a decay are listed

consecutively. Such an order can thereby be presumed to exist in the subsequent

parsing of the event. If the rules already are obeyed, the routine does not change

the order. Further, the routine can shuffle energy and momentum between the

two incoming partons to ensure that they are both massless.

9.9.3 An example

To exemplify the above discussion, consider the explicit case of qq or gg → tt →
bW+bW− → bq1q2 bq3q4. These two processes are already available in Pythia, but

without full spin correlations. One might therefore wish to include them from some ex-

ternal generator. A physics analysis would then most likely involve angular correlations

intended to set limits on (or reveal traces of) anomalous couplings. However, so as to give

a simple self-contained example, instead consider the analysis of the charged multiplicity

distribution. This actually offers a simple first cross-check between the internal and exter-

nal implementations of the same process. The main program might then look something

like

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

C...User process event common block.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP

COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),

&VTIMUP(MAXNUP),SPINUP(MAXNUP)

SAVE /HEPEUP/

C...PYTHIA common block.

COMMON/PYJETS/N,NPAD,K(4000,5),P(4000,5),V(4000,5)

SAVE /PYJETS/

C...Initialize.

CALL PYINIT(’USER’,’ ’,’ ’,0D0)

C...Book histogram. Reset event counter.

CALL PYBOOK(1,’Charged multiplicity’,100,-1D0,199D0)
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NACC=0

C...Event loop; check that not at end of run; list first events.

DO 100 IEV=1,1000

CALL PYEVNT

IF(NUP.EQ.0) GOTO 110

NACC=NACC+1

IF(IEV.LE.3) CALL PYLIST(7)

IF(IEV.LE.3) CALL PYLIST(2)

C...Analyse event; end event loop.

CALL PYEDIT(3)

CALL PYFILL(1,DBLE(N),1D0)

100 CONTINUE

C...Statistics and histograms.

110 CALL PYSTAT(1)

CALL PYFACT(1,1D0/DBLE(NACC))

CALL PYHIST

END

There PYINIT is called with ’USER’ as first argument, implying that the rest is dummy.

The event loop itself looks fairly familiar, but with two additions. One is that NUP is checked

after each event, since NUP = 0 would signal a premature end of the run, with the external

generator unable to return more events. This would be the case e.g. if events have been

stored on file, and the end of this file is reached. The other is that CALL PYLIST(7) can

be used to list the particle content of the HEPEUP common block (with some information

omitted, on vertices and spin), so that one can easily compare this input with the output

after Pythia processing, CALL PYLIST(2). An example of a PYLIST(7) listing would be

Event listing of user process at input (simplified)

I IST ID Mothers Colours p_x p_y p_z E m

1 -1 21 0 0 101 109 0.000 0.000 269.223 269.223 0.000

2 -1 21 0 0 109 102 0.000 0.000 -225.566 225.566 0.000

3 2 6 1 2 101 0 72.569 153.924 -10.554 244.347 175.030

4 2 -6 1 2 0 102 -72.569 -153.924 54.211 250.441 175.565

5 1 5 3 0 101 0 56.519 33.343 53.910 85.045 4.500

6 2 24 3 0 0 0 16.050 120.581 -64.464 159.302 80.150

7 1 -5 4 0 0 102 44.127 -60.882 25.507 79.527 4.500

8 2 -24 4 0 0 0 -116.696 -93.042 28.705 170.914 78.184

9 1 2 6 0 103 0 -8.667 11.859 16.063 21.766 0.000

10 1 -1 6 0 0 103 24.717 108.722 -80.527 137.536 0.000
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11 1 -2 8 0 0 104 -33.709 -22.471 -26.877 48.617 0.000

12 1 1 8 0 104 0 -82.988 -70.571 55.582 122.297 0.000

Note the reverse listing of ID(UP) and IST(UP) relative to the HEPEUP order, to have better

agreement with the PYJETS one. (The ID column is wider in real life, to allow for longer

codes, but has here been reduced to fit the listing onto the page.)

The corresponding PYLIST(2) listing of course would be considerably longer, contain-

ing a complete event as it does. Also the particles above would there appear boosted by the

effects of initial-state radiation and primordial k⊥; copies of them further down in the event

record would also include the effects of final-state radiation. The full story is available with

MSTP(125) = 2, while the default listing omits some of the intermediate steps.

The PYINIT call will generate a call to the user-supplied routine UPINIT. It is here

that we need to specify the details of the generation model. Assume, for instance, that

qq- and gg-initiated events have been generated in two separate runs for Tevatron Run II,

with weighted events stored in two separate files. By the end of each run, cross section and

maximum weight information has also been obtained, and stored on separate files. Then

UPINIT could look like

SUBROUTINE UPINIT

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

C...User process initialization common block.

INTEGER MAXPUP

PARAMETER (MAXPUP=100)

INTEGER IDBMUP,PDFGUP,PDFSUP,IDWTUP,NPRUP,LPRUP

DOUBLE PRECISION EBMUP,XSECUP,XERRUP,XMAXUP

COMMON/HEPRUP/IDBMUP(2),EBMUP(2),PDFGUP(2),PDFSUP(2),

&IDWTUP,NPRUP,XSECUP(MAXPUP),XERRUP(MAXPUP),XMAXUP(MAXPUP),

&LPRUP(MAXPUP)

SAVE /HEPRUP/

C....Pythia common block - needed for setting PDF’s; see below.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

SAVE /PYPARS/

C...Set incoming beams: Tevatron Run II.

IDBMUP(1)=2212

IDBMUP(2)=-2212

EBMUP(1)=1000D0

EBMUP(2)=1000D0
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C...Set PDF’s of incoming beams: CTEQ 5L.

C...Note that Pythia will not look at PDFGUP and PDFSUP.

PDFGUP(1)=4

PDFSUP(1)=46

PDFGUP(2)=PDFGUP(1)

PDFSUP(2)=PDFSUP(1)

C...Set use of CTEQ 5L in internal Pythia code.

MSTP(51)=7

C...If you want Pythia to use PDFLIB, you have to set it by hand.

C...(You also have to ensure that the dummy routines

C...PDFSET, STRUCTM and STRUCTP in Pythia are not linked.)

C MSTP(52)=2

C MSTP(51)=1000*PDFGUP(1)+PDFSUP(1)

C...Decide on weighting strategy: weighted on input, cross section known.

IDWTUP=2

C...Number of external processes.

NPRUP=2

C...Set up q qbar -> t tbar.

OPEN(21,FILE=’qqtt.info’,FORM=’unformatted’,ERR=100)

READ(21,ERR=100) XSECUP(1),XERRUP(1),XMAXUP(1)

LPRUP(1)=661

OPEN(22,FILE=’qqtt.events’,FORM=’unformatted’,ERR=100)

C...Set up g g -> t tbar.

OPEN(23,FILE=’ggtt.info’,FORM=’unformatted’,ERR=100)

READ(23,ERR=100) XSECUP(2),XERRUP(2),XMAXUP(2)

LPRUP(2)=662

OPEN(24,FILE=’ggtt.events’,FORM=’unformatted’,ERR=100)

RETURN

C...Stop run if file operations fail.

100 WRITE(*,*) ’Error! File open or read failed. Program stopped.’

STOP

END

Here unformatted read/write is used to reduce the size of the event files, but at the price of

a platform dependence. Formatted files are preferred if they are to be shipped elsewhere.
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The rest should be self-explanatory.

Inside the event loop of the main program, PYEVNT will call UPEVNT to obtain the next

parton-level event. In its simplest form, only a single READ statement would be necessary

to read information on the next event, e.g. what is shown in the event listing earlier in this

section, with a few additions. Then the routine could look like

SUBROUTINE UPEVNT

C...Double precision and integer declarations.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

IMPLICIT INTEGER(I-N)

C...User process event common block.

INTEGER MAXNUP

PARAMETER (MAXNUP=500)

INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP

DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP

COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,IDUP(MAXNUP),

&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),

&VTIMUP(MAXNUP),SPINUP(MAXNUP)

SAVE /HEPEUP/

C...Pick file to read from, based on requested event type.

IUNIT=22

IF(IDPRUP.EQ.662) IUNIT=24

C...Read event from this file. (Except that NUP and IDPRUP are known.)

NUP=12

READ(IUNIT,ERR=100,END=100) XWGTUP,SCALUP,AQEDUP,AQCDUP,

&(IDUP(I),ISTUP(I),MOTHUP(1,I),MOTHUP(2,I),ICOLUP(1,I),

&ICOLUP(2,I),(PUP(J,I),J=1,5),VTIMUP(I),SPINUP(I),I=1,NUP)

C...Return, with NUP=0 if read failed.

RETURN

100 NUP=0

RETURN

END

However, in reality one might wish to save disk space by not storing redundant information.

The XWGTUP and SCALUP numbers are vital, while AQEDUP and AQCDUP are purely informa-

tional and can be omitted. In a gg → tt → bW+bW− → bq1q2 bq3q4 event, only the q1,

q2, q3 and q4 flavours need be given, assuming that the particles are always stored in the

same order. For a qq initial state, the q flavour should be added to the list. The ISTUP,

MOTHUP and ICOLUP information is the same in all events of a given process, except for a
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twofold ambiguity in the colour flow for gg initial states. All VTIMUP vanish and the SPINUP

are uninteresting since spins have already been taken into account by the kinematics of the

final fermions. (It would be different if one of the W’s decayed leptonically to a τ .) Only

the PUP values of the six final fermions need be given, since the other momenta and masses

can be reconstructed from this, remembering that the two initial partons are massless and

along the beam pipe. The final fermions are on the mass shell, so their masses need not be

stored event by event, but can be read from a small table. The energy of a particle can be

reconstructed from its momentum and mass. Overall transverse momentum conservation

removes two further numbers. What remains is thus 5 integers and 18 real numbers, where

the reals could well be stored in single precision. Of course, the code needed to unpack

information stored this way would be lengthy but trivial. Even more compact storage

strategies could be envisaged, e.g. only to save the weight and the seed of a dedicated

random-number generator, to be used to generate the next parton-level event. It is up to

you to find the optimal balance between disk space and coding effort.

9.9.4 PYTHIA as a generator of external processes

It is possible to write Pythia-generated hard processes to disk, and then read them back

in for the generation of a complete event, making use of the LHA conventions. This facility

may be of limited practical usefulness, and is mainly intended for debug purposes. Thus

there are some limitations to what it can do, especially no pileup and no photon beams

(including the ’gamma/l’ options), and no weighted events. Basically, it is intended for

hard processes in pp/pp/e+e− collisions. Events are stored using the IDWTUP = 3 strategy,

i.e. already mixed and reweighted, so no rejection step is needed.

To generate the appropriate files, you have to:

1. Open one file where the initial run information in HEPRUP can be stored, and give its

file number in MSTP(161).

2. Open one file where events in the HEPEUP format can be stored, and give its file

number in MSTP(162).

3. Define hard processes as normally, and initialize with PYINIT.

4. In the event loop, replace the call to PYEVNT (or PYEVNW) by a call to PYUPEV, which

will generate the hard process as usual, and write this process onto file number

MSTP(162).

5. After all events have been generated, call PYUPIN to store the run information. (The

name of this routine may seem inappropriate, since it is not called at the initialization

but at the end. However, the name refers to this information being read in first in

the next step, see below).

Once you have these files, you can use them in a later run to generate complete events.

This run follows the normal pattern for user-defined processes, with only minor additions.

1. Open the file where the initial run information in HEPRUP was stored, and give its file

number in MSTP(161).

2. Open the file where events in the HEPEUP format were stored, and give its file number

in MSTP(162).
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3. Initialize as usual with CALL PYINIT(’USER’,’ ’,’ ’,0D0). The ’dummy’ UPINIT

routine in the Pythia library contains the code for reading the initial run information

written by PYUPIN (but not in any other format), so in this case you need not supply

any routine of your own.

4. In the event loop, call PYEVNT (or PYEVNW) as usual to generate the next event. The

’dummy’ UPEVNT routine in the Pythia library contains the code for reading the

event information written by PYUPEV (but not in any other format), so in this case

you need not supply any routine of your own.

9.9.5 Further comments

This section contains additional information on a few different topics: cross section inter-

pretation, negative-weight events, relations with other Pythia switches and routines, and

error conditions.

In several IDWTUP options, the XWGTUP variable is supposed to give the differential

cross section of the current event, times the phase-space volume within which events are

generated, expressed in picobarns. (Converted to millibarns inside Pythia.) This means

that, in the limit that many events are generated, the average value of XWGTUP gives the total

cross section of the simulated process. Of course, the tricky part is that the differential

cross section usually is strongly peaked in a few regions of the phase space, such that

the average probability to accept an event, 〈XWGTUP〉/XMAXUP(i) is small. It may then

be necessary to find a suitable set of transformed phase-space coordinates, for which the

correspondingly transformed differential cross section is better behaved.

To avoid confusion, here is a more formal version of the above paragraph. Call dX the

differential phase space, e.g. for a 2 → 2 process dX = dx1 dx2 dt̂, where x1 and x2 are the

momentum fractions carried by the two incoming partons and t̂ the Mandelstam variable

of the scattering (see section 7.2). Call dσ/dX the differential cross section of the process,

e.g. for 2 → 2: dσ/dX =
∑

ij fi(x1, Q
2) fj(x2, Q

2) dσ̂ij/dt̂, i.e. the product of parton dis-

tributions and hard-scattering matrix elements, summed over all allowed incoming flavours

i and j. The physical cross section that one then wants to generate is σ =
∫

(dσ/dX) dX,

where the integral is over the allowed phase-space volume. The event generation procedure

consists of selecting an X uniformly in dX and then evaluating the weight dσ/dX at this

point. XWGTUP is now simply XWGTUP= dσ/dX
∫

dX, i.e. the differential cross section times

the considered volume of phase space. Clearly, when averaged over many events, XWGTUP

will correctly estimate the desired cross section. If XWGTUP fluctuates too much, one may

try to transform to new variables X ′, where events are now picked accordingly to dX ′ and

XWGTUP= dσ/dX ′
∫

dX ′.

A warning. It is important that X is indeed uniformly picked within the allowed phase

space, alternatively that any Jacobians are properly taken into account. For instance,

in the case above, one approach would be to pick x1, x2 and t̂ uniformly in the ranges

0 < x1 < 1, 0 < x2 < 1, and −s < t̂ < 0, with full phase space volume
∫

dX = s. The

cross section would only be non-vanishing inside the physical region given by −sx1x2 < t̂

(in the massless case), i.e. Monte Carlo efficiency is likely to be low. However, if one were

to choose t̂ values only in the range −ŝ < t̂ < 0, small ŝ values would be favoured, since
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the density of selected t̂ values would be larger there. Without the use of a compensating

Jacobian ŝ/s, an incorrect answer would be obtained. Alternatively, one could start out

with a phase space like dX = dx1 dx2 d(cos θ̂), where the limits decouple. Of course, the

cos θ̂ variable can be translated back into a t̂, which will then always be in the desired

range −ŝ < t̂ < 0. The transformation itself here gives the necessary Jacobian.

At times, it is convenient to split a process into a discrete set of subprocesses for the

parton-level generation, without retaining these in the IDPRUP classification. For instance,

the cross section above contains a summation over incoming partons. An alternative would

then have been to let each subprocess correspond to one unique combination of incoming

flavours. When an event of process type i is to be generated, first a specific subprocess

ik is selected with probability f ik, where
∑

k f ik = 1. For this subprocess an XWGTUPk is

generated as above, except that there is no longer a summation over incoming flavours.

Since only a fraction f ik of all events now contain this part of the cross section, a com-

pensating factor 1/f ik is introduced, i.e. XWGTUP=XWGTUPk/f ik. Further, one has to define

XMAXUP(i)= maxk XMAXUPik/f ik and XSECUP(i)=
∑

k XSECUPik. The generation efficiency

will be maximized for the f ik coefficients selected proportional to XMAXUPik, but this is no

requirement.

The standard allows external parton-level events to come with negative weights, unlike

the case for internal Pythia processes. In order to avoid indiscriminate use of this option,

some words of caution are in place. In next-to-leading-order calculations, events with

negative weights may occur as part of the virtual corrections. In any physical observable

quantity, the effect of such events should cancel against the effect of real events with

one more parton in the final state. For instance, the next-to-leading order calculation of

gluon scattering contains the real process gg → ggg, with a positive divergence in the soft

and collinear regions, while the virtual corrections to gg → gg are negatively divergent.

Neglecting the problems of outgoing gluons collinear with the beams, and those of soft

gluons, two nearby outgoing gluons in the gg → ggg process can be combined into one

effective one, such that the divergences can be cancelled.

If rather widely separated gluons can be combined, the remaining negative contri-

butions are not particularly large. Different separation criteria could be considered; one

example would be ∆R =
√

(∆η)2 + (∆ϕ)2 ≈ 1. The recombination of well separated par-

tons is at the price of an arbitrariness in the choice of clustering algorithm, when two gluons

of nonvanishing invariant mass are to be combined into one massless one, as required to be

able to compare with the kinematics of the massless gg → gg process when performing the

divergence cancellations. Alternatively, if a smaller ∆R cut is used, where the combining

procedure is less critical, there will be more events with large positive and negative weights

that are to cancel.

Without proper care, this cancellation could easily be destroyed by the subsequent

showering description, as follows. The standard for external processes does not provide

any way to pass information on the clustering algorithm used, so the showering routine

will have to make its own choice what region of phase space to populate with radiation.

One choice could be to allow a cone defined by the nearest colour-connected parton (see

section 10.1.3 for a discussion). There could then arise a significant mismatch in shower
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description between events where two gluons are just below or just above the ∆R cut for

being recombined, equivalently between gg → gg and gg → ggg events. Most of the phase

space may be open for the former, while only the region below ∆R may be it for the latter.

Thus the average ‘two-parton’ events may end up containing significantly more jet activity

than the corresponding ‘three-parton’ ones. The smaller the ∆R cut, the more severe the

mismatch, both on an event-by-event basis and in terms of the event rates involved.

One solution would be to extend the standard also to specify which clustering algorithm

has been used in the matrix-element calculation, and with what parameter values. Any

shower emission that would give rise to an extra jet, according to this algorithm, would be

vetoed. If a small ∆R cut is used, this is almost equivalent to allowing no shower activity

at all. (That would still leave us with potential mismatch problems in the hadronization

description. Fortunately the string fragmentation approach is very powerful in this respect,

with a smooth transition between two almost parallel gluons and a single one with the full

energy [Sjo84].) But we know that the unassisted matrix-element description cannot do a

good job of the internal structure of jets on an event-by-event basis, since multiple-gluon

emission is the norm in this region. Therefore a ∆R ∼ 1 will be required, to let the matrix

elements describe the wide-angle emission and the showers the small-angle one. This again

suggests a picture with only a small contribution from negative-weight events. In summary,

the appearance of a large fraction of negative-weight events should be a sure warning sign

that physics is likely to be incorrectly described.

The above example illustrates that it may, at times, be desirable to sidestep the stan-

dard and provide further information directly in the Pythia common blocks. (Currently

there is no exact match to the clustering task mentioned above, although the already-

described UPVETO routine, section 9.7, could be constructed to make use of such infor-

mation. Here we concentrate on a few simpler ways to intervene, possibly to be used in

conjunction with UPVETO.) Then it is useful to note that, apart from the hard-process gen-

eration machinery itself, the external processes are handled almost exactly as the internal

ones. Thus essentially all switches and parameter values related to showers, underlying

events and hadronization can be modified at will. This even applies to alternative listing

modes of events and history pointers, as set by MSTP(128). Also some of the information on

the hard scattering is available, such as MSTI(3), MSTI(21) - MSTI(26), and PARI(33)

- PARI(38). Before using them, however, it is prudent to check that your variables of

interest do work as intended for the particular process you study. Several differences do

remain between internal and external processes, in particular related to final-state showers

and resonance decays. For internal processes, the PYRESD routine will perform a shower (if

relevant) directly after each decay. A typical example would be that a t → bW decay is

immediately followed by a shower, which could change the momentum of the W before it

decays in its turn. For an external process, this decay chain would presumably already have

been carried out. When the equivalent shower to the above is performed, it is therefore

now necessary also to boost the decay products of the W. The special sequence of showers

and boosts for external processes is administrated by the PYADSH routine. Should the de-

cay chain not have been carried out, e.g if HEPEUP event record contains an undecayed Z0,

then PYRESD will be called to let it decay. The decay products will be visible also in the
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documentation section, as for internal processes.

You are free to make use of whatever tools you want in your UPINIT and UPEVNT

routines, and normally there would be little or no contact with the rest of Pythia, except as

described above. However, several Pythia tools can be used, if you so wish. One attractive

possibility is to use PYPDFU for parton-distribution-function evaluation. Other possible

tools could be PYR for random-number generation, PYALPS for αs evaluation, PYALEM for

evaluation of a running αem, and maybe a few more.

We end with a few comments on anomalous situations. As already described, you may

put NUP = 0 inside UPEVNT, e.g. to signal the end of the file from which events are read.

If the program encounters this value at a return from UPEVNT, then it will also exit from

PYEVNT, without incrementing the counters for the number of events generated. It is then

up to you to have a check on this condition in your main event-generation loop. This you

do either by looking at NUP or at MSTI(51); the latter is set to 1 if no event was generated.

It may also happen that a parton-level configuration fails elsewhere in the PYEVNT call.

For instance, the beam-remnant treatment occasionally encounters situations it cannot

handle, wherefore the parton-level event is rejected and a new one generated. This happens

also with ordinary (not user-defined) events, and usually comes about as a consequence

of the initial-state radiation description leaving too little energy for the remnant. If the

same hard scattering were to be used as input for a new initial-state radiation and beam-

remnant attempt, it could then work fine. There is a possibility to give events that chance,

as follows. MSTI(52) counts the number of times a hard-scattering configuration has failed

to date. If you come in to UPEVNT with MSTI(52) non-vanishing, this means that the latest

configuration failed. So long as the contents of the HEPEUP common block are not changed,

such an event may be given another try. For instance, a line

IF(MSTI(52).GE.1.AND.MSTI(52).LE.4) RETURN

at the beginning of UPEVNT will give each event up to five tries; thereafter a new one would

be generated as usual. Note that the counter for the number of events is updated at each

new try. The fraction of failed configurations is given in the bottom line of the PYSTAT(1)

table.

The above comment only refers to very rare occurrences (less than one in a hundred),

which are not errors in a strict sense; for instance, they do not produce any error messages

on output. If you get warnings and error messages that the program does not understand

the flavour codes or cannot reconstruct the colour flows, it is due to faults of yours, and

giving such events more tries is not going to help.

9.10 Interfaces to other generators

In the previous section an approach to including external processes in Pythia was ex-

plained. While general enough, it may not always be the optimal choice. In particular, for

e+e− annihilation events one may envisage some standard cases where simpler approaches

could be pursued. A few such standard interfaces are described in this section.

In e+e− annihilation events, a convenient classification of electroweak physics is by the

number of fermions in the final state. Two fermions from Z0 decay is LEP1 physics, four
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fermions can come e.g. from W+W− or Z0Z0 events at LEP2, and at higher energies six

fermions are produced by three-gauge-boson production or top-antitop. Often interference

terms are non-negligible, requiring much more complex matrix-element expressions than are

normally provided in Pythia. Dedicated electroweak generators often exist, however, and

the task is therefore to interface them to the generic parton showering and hadronization

machinery available in Pythia. In the LEP2 workshop [Kno96] one possible strategy was

outlined to allow reasonably standardized interfaces between the electroweak and the QCD

generators. The LU4FRM routine was provided for the key four-fermion case. This routine

is now included here, in slightly modified form, together with two siblings for two and six

fermions. The former is trivial and included mainly for completeness, while the latter is

rather more delicate.

In final states with two or three quark-antiquark pairs, the colour connection is not

unique. For instance, a udud final state could either stem from a W+W− or a Z0Z0

intermediate state, or even from interference terms between the two. In order to shower

and fragment the system, it is then necessary to pick one of the two alternatives, e.g.

according to the relative matrix element weight of each alternative, with the interference

term dropped. Some different such strategies are proposed as options below.

Note that here we discuss purely perturbative ambiguities. One can imagine colour

reconnection at later stages of the process, e.g. if the intermediate state indeed is W+W−,

a soft-gluon exchange could still result in colour singlets uu and dd. We are then no longer

speaking of ambiguities related to the hard process itself but rather to the possibility of

nonperturbative effects. This is an interesting topic in itself, addressed in section 12.4.2

but not here.

The fermion-pair routines are not set up to handle QCD four-jet events, i.e. events

of the types qqgg and qqq′q′ (with q′q′ coming from a gluon branching). Such events are

generated in normal parton showers, but not necessarily at the right rate (a problem that

may be especially interesting for massive quarks like b). Therefore one would like to start a

QCD final-state parton shower from a given four-parton configuration. Already some time

ago, a machinery was developed to handle this kind of occurrences [And98a]. This approach

has now been adapted to Pythia, in a somewhat modified form, see section 10.2.7. The

main change is that, in the original work, the colour flow was picked in a separate first step

(not discussed in the publication, since it is part of the standard 4-parton configuration

machinery of PYEEVT), which reduces the number of allowed qqgg parton-shower histories.

In the current implementation, more geared towards completely external generators, no

colour flow assumptions are made, meaning a few more possible shower histories to pick

between. Another change is that mass effects are better respected by the z definition. The

code contains one new user routine, PY4JET, two new auxiliary ones, PY4JTW and PY4JTS,

and significant additions to the PYSHOW showering routine.

CALL PY2FRM(IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a two-

fermion starting point. The initial list is supposed to be ordered such that the
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fermion precedes the antifermion. In addition, an arbitrary number of photons

may be included, e.g. from initial-state radiation; these will not be affected by the

operation and can be put anywhere. The scale for QCD (and QED) final-state

radiation is automatically set to be the mass of the fermion-antifermion pair. (It

is thus not suited for Bhabha scattering.)

IRAD : final-state QED radiation.

= 0 : no final-state photon radiation, only QCD showers.

= 1 : photon radiation inside each final fermion pair, also leptons, in addition to

the QCD one for quarks.

ITAU : handling of τ lepton decay (where Pythia does not include spin effects, although

some generators provide the helicity information that would allow a more sophis-

ticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).

= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at

input and output.

= 0 : in the HEPEVT common block (meaning that information is automatically

translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS common block. All fermions and photons can be given with

status code K(I,1) = 1, flavour code in K(I,2) and five-momentum (mo-

mentum, energy, mass) in P(I,J). The V vector and remaining components

in the K one are best put to zero. Also remember to set the total number of

entries N.

CALL PY4FRM(ATOTSQ,A1SQ,A2SQ,ISTRAT,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a four-

fermion starting point. The initial list of fermions is supposed to be ordered in the

sequence fermion (1) – antifermion (2) – fermion (3) – antifermion (4). The flavour

pairs should be arranged so that, if possible, the first two could come from a W+

and the second two from a W−; else each pair should have flavours consistent with

a Z0. In addition, an arbitrary number of photons may be included, e.g. from

initial-state radiation; these will not be affected by the operation and can be put

anywhere. Since the colour flow need not be unique, three real and one integer

numbers are providing further input. Once the colour pairing is determined, the

scale for final-state QCD (and QED) radiation is automatically set to be the

mass of the respective fermion–antifermion pair. (This is the relevant choice for

normal fermion pair production from resonance decay, but is not suited e.g. for γγ

processes dominated by small-t propagators.) The pairing is also meaningful for

QED radiation, in the sense that a four-lepton final state is subdivided into two

radiating subsystems in the same way. Only if the event consists of one lepton

pair and one quark pair is the information superfluous.
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ATOTSQ : total squared amplitude for the event, irrespective of colour flow.

A1SQ : squared amplitude for the configuration with fermions 1 + 2 and 3 + 4 as the two

colour singlets.

A2SQ : squared amplitude for the configuration with fermions 1 + 4 and 3 + 2 as the two

colour singlets.

ISTRAT : the choice of strategy to select either of the two possible colour configurations.

Here 0 is supposed to represent a reasonable compromise, while 1 and 2 are

selected so as to give the largest reasonable spread one could imagine.

= 0 : pick configurations according to relative probabilities A1SQ : A2SQ.

= 1 : assign the interference contribution to maximize the 1 + 2 and 3 + 4 pairing

of fermions.

= 2 : assign the interference contribution to maximize the 1 + 4 and 3 + 2 pairing

of fermions.

IRAD : final-state QED radiation.

= 0 : no final-state photon radiation, only QCD showers.

= 1 : photon radiation inside each final fermion pair, also leptons, in addition to

the QCD one for quarks.

ITAU : handling of τ lepton decay (where Pythia does not include spin effects, although

some generators provide the helicity information that would allow a more sophis-

ticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).

= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at

input and output.

= 0 : in the HEPEVT common block (meaning that information is automatically

translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS common block. All fermions and photons can be given with

status code K(I,1) = 1, flavour code in K(I,2) and five-momentum (mo-

mentum, energy, mass) in P(I,J). The V vector and remaining components

in the K one are best put to zero. Also remember to set the total number of

entries N.

Comment : Also colour reconnection phenomena can be studied with the PY4FRM routine.

MSTP(115) can be used to switch between the scenarios, with default being no

reconnection. Other reconnection parameters also work as normally, including

that MSTI(32) can be used to find out whether a reconnection occured or not. In

order for the reconnection machinery to work, the event record is automatically

complemented with information on the W+W− or Z0Z0 pair that produced the

four fermions, based on the rules described above.

We remind that the four first parameters of the PY4FRM call are supposed to

parameterize an ambiguity on the perturbative level of the process, which has

to be resolved before parton showers are performed. The colour reconnection

discussed here is (in most scenarios) occuring on the nonperturbative level, after

the parton showers.
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CALL PY6FRM(P12,P13,P21,P23,P31,P32,PTOP,IRAD,ITAU,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a six-fermion

starting point. The initial list of fermions is supposed to be ordered in the se-

quence fermion (1) – antifermion (2) – fermion (3) – antifermion (4) – fermion

(5) – antifermion (6). The flavour pairs should be arranged so that, if possible,

the first two could come from a Z0, the middle two from a W+ and the last two

from a W−; else each pair should have flavours consistent with a Z0. Specifically,

this means that in a tt event, the t decay products would be found in 1 (b) and

3 and 4 (from the W+ decay) and the t ones in 2 (b) and 5 and 6 (from the W−

decay). In addition, an arbitrary number of photons may be included, e.g. from

initial-state radiation; these will not be affected by the operation and can be put

anywhere. Since the colour flow need not be unique, further input is needed to

specify this. The number of possible interference contributions being much larger

than for the four-fermion case, we have not tried to implement different strate-

gies. Instead six probabilities may be input for the different pairings, that you

e.g. could pick as the six possible squared amplitudes, or according to some more

complicated scheme for how to handle the interference terms. The treatment of

final-state cascades must be quite different for top events and the rest. For a nor-

mal three-boson event, each fermion pair would form one radiating system, with

scale set equal to the fermion-antifermion invariant mass. (This is the relevant

choice for normal fermion pair production from resonance decay, but is not suited

e.g. for γγ processes dominated by small-t propagators.) In the top case, on the

other hand, the b (b) would be radiating with a recoil taken by the W+ (W−) in

such a way that the t (t) mass is preserved, while the W dipoles would radiate as

normal. Therefore you need also supply a probability for the event to be a top

one, again e.g. based on some squared amplitude.

P12, P13, P21, P23, P31, P32 : relative probabilities for the six possible pairings of

fermions with antifermions. The first (second) digit tells which antifermion the

first (second) fermion is paired with, with the third pairing given by elimination.

Thus e.g. P23 means the first fermion is paired with the second antifermion, the

second fermion with the third antifermion and the third fermion with the first

antifermion. Pairings are only possible between quarks and leptons separately.

The sum of probabilities for allowed pairings is automatically normalized to unity.

PTOP : the probability that the configuration is a top one; a number between 0 and 1.

In this case, it is important that the order described above is respected, with

the b and b coming first. No colour ambiguity exists if the top interpretation is

selected, so then the P12 - P32 numbers are not used.

IRAD : final-state QED radiation.

= 0 : no final-state photon radiation, only QCD showers.

= 1 : photon radiation inside each final fermion pair, also leptons, in addition to

the QCD one for quarks.
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ITAU : handling of τ lepton decay (where Pythia does not include spin effects, although

some generators provide the helicity information that would allow a more sophis-

ticated modelling).

= 0 : τ ’s are considered stable (and can therefore be decayed afterwards).

= 1 : τ ’s are allowed to decay.

ICOM : place where information about the event (flavours, momenta etc.) is stored at

input and output.

= 0 : in the HEPEVT common block (meaning that information is automatically

translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS common block. All fermions and photons can be given with

status code K(I,1) = 1, flavour code in K(I,2) and five-momentum (mo-

mentum, energy, mass) in P(I,J). The V vector and remaining components

in the K one are best put to zero. Also remember to set the total number of

entries N.

CALL PY4JET(PMAX,IRAD,ICOM)

Purpose: to allow a parton shower to develop and partons to hadronize from a qqgg

or qqq′q′ original configuration. The partons should be ordered exactly as indi-

cated above, with the primary qq pair first and thereafter the two gluons or the

secondary q′q′ pair. (Strictly speaking, the definition of primary and secondary

fermion pair is ambiguous. In practice, however, differences in topological vari-

ables like the pair mass should make it feasible to have some sensible criterion on

an event-by-event basis.) Within each pair, fermion should precede antifermion.

In addition, an arbitrary number of photons may be included, e.g. from initial-

state radiation; these will not be affected by the operation and can be put any-

where. The program will select a possible parton-shower history from the given

parton configuration, and then continue the shower from there on. The history

selected is displayed in lines NOLD + 1 to NOLD + 6, where NOLD is the N value

before the routine is called. Here the masses and energies of intermediate partons

are clearly displayed. The lines NOLD + 7 and NOLD + 8 contain the equivalent

on-mass-shell parton pair from which the shower is started.

PMAX : the maximum mass scale (in GeV) from which the shower is started in those

branches that are not already fixed by the matrix-element history. If PMAX is

set zero (actually below PARJ(82), the shower cutoff scale), the shower starting

scale is instead set to be equal to the smallest mass of the virtual partons in

the reconstructed shower history. A fixed PMAX can thus be used to obtain a

reasonably exclusive set of four-jet events (to that PMAX scale), with little five-jet

contamination, while the PMAX = 0 option gives a more inclusive interpretation,

with five- or more-jet events possible. Note that the shower is based on evolution

in mass, meaning the cut is really one of mass, not of p⊥, and that it may therefore

be advantageous to set up the matrix elements cuts accordingly if one wishes to

mix different event classes. This is not a requirement, however.
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IRAD : final-state QED radiation.

= 0 : no final-state photon radiation, only QCD showers.

= 1 : photon radiation inside each final fermion pair, also leptons, in addition to

the QCD one for quarks.

ICOM : place where information about the event (flavours, momenta etc.) is stored at

input and output.

= 0 : in the HEPEVT common block (meaning that information is automatically

translated to PYJETS before treatment and back afterwards).

= 1 : in the PYJETS common block. All fermions and photons can be given with

status code K(I,1) = 1, flavour code in K(I,2) and five-momentum (mo-

mentum, energy, mass) in P(I,J). The V vector and remaining components

in the K one are best put to zero. Also remember to set the total number of

entries N.

9.11 Other routines and common blocks

The subroutines and common blocks that you will come in direct contact with have already

been described. A number of other routines and common blocks exist, and those not

described elsewhere are here briefly listed for the sake of completeness. The PYG*** routines

are slightly modified versions of the SAS*** ones of the SaSgam library. The common block

SASCOM is renamed PYINT8. If you want to use the parton distributions for standalone

purposes, you are encouraged to use the original SaSgam routines rather than going the

way via the Pythia adaptations.

SUBROUTINE PYINRE : to initialize the widths and effective widths of resonances.

SUBROUTINE PYINBM(CHFRAM,CHBEAM,CHTARG,WIN) : to read in and identify the beam

(CHBEAM) and target (CHTARG) particles and the frame (CHFRAM) as given in the

PYINIT call; also to save the original energy (WIN).

SUBROUTINE PYINKI(MODKI) : to set up the event kinematics, either at initialization

(MODKI = 0) or for each separate event, the latter when the program is run with

varying kinematics (MODKI = 1).

SUBROUTINE PYINPR : to set up the partonic subprocesses selected with MSEL. For γp and

γγ, also the MSTP(14) value affects the choice of processes. In particular, options

such as MSTP(14) = 10 and = 30 sets up the several different kinds of processes

that need to be mixed, with separate cuts for each.

SUBROUTINE PYXTOT : to give the parameterized total, double diffractive, single diffractive

and elastic cross sections for different energies and colliding hadrons or photons.

SUBROUTINE PYMAXI : to find optimal coefficients COEF for the selection of kinematical

variables, and to find the related maxima for the differential cross section times

Jacobian factors, for each of the subprocesses included.

SUBROUTINE PYPILE(MPILE) : to determine the number of pile-up events, i.e. events ap-

pearing in the same beam–beam crossing.

SUBROUTINE PYSAVE(ISAVE,IGA) : saves and restores parameters and cross section values

between the several γp and γγ components of mixing options such as MSTP(14)

= 10 and = 30. The options for ISAVE are (1) a complete save of all parameters
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specific to a given component, (2) a partial save of cross-section information,

(3) a restoration of all parameters specific to a given component, (4) as 3 but

preceded by a random selection of component, and (5) a summation of component

cross sections (for PYSTAT). The subprocess code in IGA is the one described for

MSTI(9); it is input for options 1, 2 and 3 above, output for 4 and dummy for 5.

SUBROUTINE PYGAGA(IGA) : to generate photons according to the virtual photon flux

around a lepton beam, for the ’gamma/lepton’ option in PYINIT.

IGA = 1 : call at initialization to set up x and Q2 limits etc.

IGA = 2 : call at maximization step to give estimate of maximal photon flux factor.

IGA = 3 : call at the beginning of the event generation to select the kinematics of

the photon emission and to give the flux factor.

IGA = 4 : call at the end of the event generation to set up the full kinematics of the

photon emission.

SUBROUTINE PYRAND : to generate the quantities characterizing a hard scattering on the

parton level, according to the relevant matrix elements.

SUBROUTINE PYSCAT : to find outgoing flavours and to set up the kinematics and colour

flow of the hard scattering.

SUBROUTINE PYRESD(IRES) : to allow resonances to decay, including chains of successive

decays and parton showers. Normally only two-body decays of each resonance,

but a few three-body decays are also implemented.

IRES : The standard call from PYEVNT, for the hard process, has IRES = 0, and

then finds resonances to be treated based on the subprocess number ISUB.

In case of a nonzero IRES only the resonance in position IRES of the event

record is considered. This is used by PYEVNT and PYEXEC to decay leftover

resonances. (Example: a b → W + t branching may give a t quark as beam

remnant.)

SUBROUTINE PYDIFF : to handle diffractive and elastic scattering events.

SUBROUTINE PYDISG : to set up kinematics, beam remnants and showers in the 2 → 1

DIS process γ∗f → f. Currently initial-state radiation is not yet implemented,

while final-state is.

SUBROUTINE PYDOCU : to compute cross sections of processes, based on current Monte

Carlo statistics, and to store event information in the MSTI and PARI arrays.

SUBROUTINE PYWIDT(KFLR,SH,WDTP,WDTE) : to calculate widths and effective widths of

resonances. Everything is given in dimensions of GeV.

SUBROUTINE PYOFSH(MOFSH,KFMO,KFD1,KFD2,PMMO,RET1,RET2) : to calculate partial

widths into channels off the mass shell, and to select correlated masses of res-

onance pairs.

SUBROUTINE PYKLIM(ILIM) : to calculate allowed kinematical limits.

SUBROUTINE PYKMAP(IVAR,MVAR,VVAR) : to calculate the value of a kinematical variable

when this is selected according to one of the simple pieces.

SUBROUTINE PYSIGH(NCHN,SIGS) : to give the differential cross section (multiplied by

the relevant Jacobians) for a given subprocess and kinematical setup. With time,

the PYSIGH increased to a size of over 7000 lines, which gave some compilers
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problems. Therefore, currently, all the phase-space and parton-density generic

weights remain in PYSIGH itself, whereas the process-specific matrix elements

have been grouped according to:

• PYSGQC : normal QCD processes, plus some similar instead with photons;

• PYSGHF : heavy flavour production, open and closed;

• PYSGWZ : W/Z processes, except as below;

• PYSGHG : Higgs processes (2 doublets), except Higgs pairs in PYSGSU, but

including longitudinal WW scattering for a heavy Higgs;

• PYSGSU : SUSY processes, including Higgs pair production;

• PYSGTC : Technicolor processes, including some related compositeness ones;

• PYSGEX : assorted exotic processes, including new gauge bosons (Z′/W′),

leptoquarks (LQ), horizontal gauge bosons (R0), a generation of excited

fermions (d∗/u∗/e∗−/ν∗
e ), left-right-symmetric scenarios (H++/ZR/WR),

and extra dimensions (G∗).

SUBROUTINE PYPDFL(KF,X,Q2,XPQ) : to give parton distributions for p and n in the op-

tion with modified behaviour at small Q2 and x, see MSTP(57).

SUBROUTINE PYPDFU(KF,X,Q2,XPQ) : to give parton-distribution functions (multiplied by

x, i.e. xfi(x,Q2)) for an arbitrary particle (of those recognized by Pythia).

Generic driver routine for the following, specialized ones.

KF : flavour of probed particle, according to KF code.

X : x value at which to evaluate parton distributions.

Q2 : Q2 scale at which to evaluate parton distributions.

XPQ : array of dimensions XPQ(-25:25), which contains the evaluated parton dis-

tributions xfi(x,Q2). Components i ordered according to standard KF code;

additionally the gluon is found in position 0 as well as 21 (for historical

reasons).

Note: the above set of calling arguments is enough for a real photon, but has to be

complemented for a virtual one. This is done by VINT(120).

SUBROUTINE PYPDEL(KFA,X,Q2,XPEL) : to give e/µ/τ parton distributions.

SUBROUTINE PYPDGA(X,Q2,XPGA) : to give the photon parton distributions for sets other

than the SaS ones.

SUBROUTINE PYGGAM(ISET,X,Q2,P2,IP2,F2GM,XPDFGM) : to construct the SaS F2 and

parton distributions of the photon by summing homogeneous (VMD) and inho-

mogeneous (anomalous) terms. For F2, c and b are included by the Bethe-Heitler

formula; in the ‘ms’ scheme additionally a Cγ term is added. IP2 sets treatment

of virtual photons, with same code as MSTP(60). Calls PYGVMD, PYGANO, PYGBEH,

and PYGDIR.

SUBROUTINE PYGVMD(ISET,KF,X,Q2,P2,ALAM,XPGA,VXPGA) : to evaluate the parton

distributions of a VMD photon, evolved homogeneously from an initial scale P 2

to Q2.

SUBROUTINE PYGANO(KF,X,Q2,P2,ALAM,XPGA,VXPGA) : to evaluate the parton distribu-

tions of the anomalous photon, inhomogeneously evolved from a scale P 2 (where
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it vanishes) to Q2.

SUBROUTINE PYGBEH(KF,X,Q2,P2,PM2,XPBH) : to evaluate the Bethe-Heitler cross sec-

tion for heavy flavour production.

SUBROUTINE PYGDIR(X,Q2,P2,AK0,XPGA) : to evaluate the direct contribution, i.e. the

Cγ term, as needed in ‘ms’ parameterizations.

SUBROUTINE PYPDPI(X,Q2,XPPI) : to give pion parton distributions.

SUBROUTINE PYPDPR(X,Q2,XPPR) : to give proton parton distributions. Calls several

auxiliary routines: PYCTEQ, PYGRVL, PYGRVM, PYGRVD, PYGRVV, PYGRVW, PYGRVS,

PYCT5L, PYCT5M and PYPDPO.

FUNCTION PYHFTH(SH,SQM,FRATT) : to give heavy-flavour threshold factor in matrix ele-

ments.

SUBROUTINE PYSPLI(KF,KFLIN,KFLCH,KFLSP) : to give hadron remnant or remnants left

behind when the reacting parton is kicked out.

FUNCTION PYGAMM(X) : to give the value of the ordinary Γ(x) function (used in some

parton-distribution parameterizations).

SUBROUTINE PYWAUX(IAUX,EPS,WRE,WIM) : to evaluate the two auxiliary functions W1

and W2 appearing in some cross section expressions in PYSIGH.

SUBROUTINE PYI3AU(EPS,RAT,Y3RE,Y3IM) : to evaluate the auxiliary function I3 appear-

ing in some cross section expressions in PYSIGH.

FUNCTION PYSPEN(XREIN,XIMIN,IREIM) : to calculate the real and imaginary part of the

Spence function [Hoo79].

SUBROUTINE PYQQBH(WTQQBH) : to calculate matrix elements for the two processes gg →
QQh0 and qq → QQh0.

SUBROUTINE PYRECO(IW1,IW2,NSD1,NAFT1)) : to perform nonperturbative reconnection

among strings in W+W− and Z0Z0 events. The physics of this routine is described

as part of the fragmentation story, section 12.4.2, but for technical reasons the

code is called directly in the event generation sequence.

BLOCK DATA PYDATA : to give sensible default values to all status codes and parameters.

SUBROUTINE PYCKBD : to check that a few different parameters in BLOCK DATA PYDATA

have been set. This addresses a compiler bug, where it has happened that only a

part of PYDATA is loaded if libraries are linked in some order (while it may work

fine with another order).

COMMON/PYINT1/MINT(400),VINT(400)

Purpose: to collect a host of integer- and real-valued variables used internally in the

program during the initialization and/or event generation stage. These variables

must not be changed by you.

MINT(1) : specifies the general type of subprocess that has occurred, according to the

ISUB code given in section 8.1.

MINT(2) : whenever MINT(1) (together with MINT(15) and MINT(16)) are not sufficient to

specify the type of process uniquely, MINT(2) provides an ordering of the different
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possibilities, see MSTI(2). Internally and temporarily, in process 53 MINT(2) is

increased by 2 or 4 for c or b, respectively.

MINT(3) : number of partons produced in the hard interactions, i.e. the number n of

the 2 → n matrix elements used; is sometimes 3 or 4 when a basic 2 → 1

or 2 → 2 process has been convoluted with two 1 → 2 initial branchings (like

qq′ → q′′q′′′h0).

MINT(4) : number of documentation lines at the beginning of the common block PYJETS

that are given with K(I,1) = 21; 0 for MSTP(125) = 0.

MINT(5) : number of events generated to date in current run. In runs with the variable-

energy option, MSTP(171) = 1 and MSTP(172) = 2, only those events that sur-

vive (i.e. that do not have MSTI(61) = 1) are counted in this number. That is,

MINT(5) may be less than the total number of PYEVNT calls.

MINT(6) : current frame of event (see MSTP(124) for possible values).

MINT(7), MINT(8) : line number for documentation of outgoing partons/particles from

hard scattering for 2 → 2 or 2 → 1 → 2 processes (else = 0).

MINT(10) : is 1 if cross section maximum was violated in current event, and 0 if not.

MINT(11) : KF flavour code for beam (side 1) particle.

MINT(12) : KF flavour code for target (side 2) particle.

MINT(13), MINT(14) : KF flavour codes for side 1 and side 2 initial-state shower initiators.

MINT(15), MINT(16) : KF flavour codes for side 1 and side 2 incoming partons to the

hard interaction. (For use in PYWIDT calls, occasionally MINT(15) = 1 signals the

presence of an as yet unspecified quark, but the original value is then restored

afterwards.)

MINT(17), MINT(18) : flag to signal if particle on side 1 or side 2 has been scattered

diffractively; 0 if no, 1 if yes.

MINT(19), MINT(20) : flag to signal initial-state structure with parton inside photon

inside electron on side 1 or side 2; 0 if no, 1 if yes.

MINT(21) - MINT(24) : KF flavour codes for outgoing partons from the hard interaction.

The number of positions actually used is process-dependent, see MINT(3); trailing

positions not used are set = 0. For events with many outgoing partons, e.g. in

external processes, also MINT(25) and MINT(26) could be used.

MINT(25), MINT(26) : KF flavour codes of the products in the decay of a single s-channel

resonance formed in the hard interaction. Are thus only used when MINT(3) =

1 and the resonance is allowed to decay.

MINT(30) : normally 0, but when 1 or 2 it is a signal for PYPDFU that PDF’s are to

be evaluated taking into account the partons already removed from the beam

remnant on side 1 or 2 of the event.

MINT(31) : number of hard or semi-hard scatterings that occurred in the current event

in the multiple-interaction scenario; is = 0 for a low-p⊥ event.

MINT(32) : information on whether a nonperturbative colour reconnection occurred in

the current event; is 0 normally but 1 in case of reconnection.

MINT(33) : Switch to select how to trace colour connections in PYPREP.

= 0 : Old method, using K(I,4) and K(I,5) in /PYJETS/.

– 329 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

= 1 : New method, using Les Houches Accord style colour tags in /PYCTAG/.

MINT(34) : counter for the number of final-state colour reconnections in the new multiple

interactions scenario.

MINT(35) : internal switch to tell which routine generates the event, so that some details

(partly physics, partly administrative) can be processed differently in the called

routines.

= 1 : PYEVNT generates event, using the ‘old’ shower, multiple interactions and

beam-remnants machinery.

= 2 : PYEVNT generates event, using the ‘intermediate’ model with the new han-

dling of beam remnants but old showers.

= 3 : PYEVNW generates event, using the ‘new’ model.

MINT(36) : the currently considered interaction number for (trial) showers and a (trial)

additional interaction, i.e. = 1 for the hardest interaction and > 1 for additional

interactions. MINT(36) ≤ MINT(31) for showering, while MINT(36) = MINT(31)

+ 1 for an additional (trial) interaction.

MINT(41), MINT(42) : type of incoming beam or target particle; 1 for lepton and 2 for

hadron. A photon counts as a lepton if it is not resolved (direct or DIS) and as

a hadron if it is resolved (VMD or GVMD).

MINT(43) : combination of incoming beam and target particles. A photon counts as a

hadron.

= 1 : lepton on lepton.

= 2 : lepton on hadron.

= 3 : hadron on lepton.

= 4 : hadron on hadron.

MINT(44) : as MINT(43), but a photon counts as a lepton.

MINT(45), MINT(46) : structure of incoming beam and target particles.

= 1 : no internal structure, i.e. a lepton or photon carrying the full beam energy.

= 2 : defined with parton distributions that are not peaked at x = 1, i.e. a hadron

or a resolved (VMD or GVMD) photon.

= 3 : defined with parton distributions that are peaked at x = 1, i.e. a resolved

lepton.

MINT(47) : combination of incoming beam- and target-particle parton-distribution func-

tion types.

= 1 : no parton distribution either for beam or target.

= 2 : parton distributions for target but not for beam.

= 3 : parton distributions for beam but not for target.

= 4 : parton distributions for both beam and target, but not both peaked at x = 1.

= 5 : parton distributions for both beam and target, with both peaked at x = 1.

= 6 : parton distribution is peaked at x = 1 for target and no distribution at all

for beam.

= 7 : parton distribution is peaked at x = 1 for beam and no distribution at all

for target.

MINT(48) : total number of subprocesses switched on.
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MINT(49) : number of subprocesses that are switched on, apart from elastic scattering

and single, double and central diffractive.

MINT(50) : combination of incoming particles from a multiple interactions point of

view.

= 0 : the total cross section is not known; therefore no multiple interactions are

possible.

= 1 : the total cross section is known; therefore multiple interactions are possible if

switched on. Requires beams of hadrons, VMD photons or GVMD photons.

MINT(51) : internal flag that event failed cuts.

= 0 : no problem.

= 1 : event failed; new one to be generated.

= 2 : event failed; no new event is to be generated but instead control is to be

given back to the user. Is intended for user-defined processes, when NUP =

0.

MINT(52) : internal counter for number of lines used (in PYJETS) before multiple interac-

tions are considered.

MINT(53) : internal counter for number of lines used (in PYJETS) before beam remnants

are considered.

MINT(54) : internal counter for the number of lines used (in PYJETS) after beam remnants

are considered.

MINT(55) : the heaviest new flavour switched on for QCD processes, specifically the

flavour to be generated for ISUB = 81, 82, 83 or 84.

MINT(56) : the heaviest new flavour switched on for QED processes, specifically for ISUB

= 85. Note that, unlike MINT(55), the heaviest flavour may here be a lepton, and

that heavy means the one with largest KF code.

MINT(57) : number of times the beam-remnant treatment has failed, and the same basic

kinematical setup is used to produce a new parton-shower evolution and beam-

remnant set. Mainly used in leptoproduction, for the MSTP(23) options when x

and Q2 are to be preserved.

MINT(61) : internal switch for the mode of operation of resonance width calculations in

PYWIDT for γ∗/Z0 or γ∗/Z0/Z′0.

= 0 : without reference to initial-state flavours.

= 1 : with reference to given initial-state flavours.

= 2 : for given final-state flavours.

MINT(62) : internal switch for use at initialization of h0 width.

= 0 : use widths into ZZ∗ or WW∗ calculated before.

= 1 : evaluate widths into ZZ∗ or WW∗ for current Higgs mass.

MINT(63) : internal switch for use at initialization of the width of a resonance defined

with MWID(KC) = 3.

= 0 : use existing widths, optionally with simple energy rescaling.

= 1 : evaluate widths at initialization, to be used subsequently.

MINT(65) : internal switch to indicate initialization without specified reaction.

= 0 : normal initialization.
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= 1 : initialization with argument ’none’ in PYINIT call.

MINT(71) : switch to tell whether current process is singular for p⊥ → 0 or not.

= 0 : non-singular process, i.e. proceeding via an s-channel resonance or with both

products having a mass above CKIN(6).

= 1 : singular process.

MINT(72) : number of s-channel resonances that may contribute to the cross section.

MINT(73) : KF code of first s-channel resonance; 0 if there is none.

MINT(74) : KF code of second s-channel resonance; 0 if there is none.

MINT(81) : number of selected pile-up events.

MINT(82) : sequence number of currently considered pile-up event.

MINT(83) : number of lines in the event record already filled by previously considered

pile-up events.

MINT(84) : MINT(83) + MSTP(126), i.e. number of lines already filled by previously con-

sidered events plus number of lines to be kept free for event documentation.

MINT(91) : is 1 for a lepton-hadron event and 0 else. Used to determine whether a

PYFRAM(3) call is possible.

MINT(92) : is used to denote region in (x,Q2) plane when MSTP(57) = 2, according to

numbering in [Sch93a]. Simply put, 0 means that the modified proton parton

distributions were not used, 1 large x and Q2, 2 small Q2 but large x, 3 small x

but large Q2 and 4 small x and Q2.

MINT(93) : is used to keep track of parton distribution set used in the latest STRUCTM call

to Pdflib or LHAPDF. The code for this set is stored in the form MINT(93)

= 1000000×NPTYPE + 1000×NGROUP + NSET. The stored previous value is com-

pared with the current new value to decide whether a PDFSET call is needed to

switch to another set.

MINT(101), MINT(102) : is normally 1, but is 4 when a resolved photon (appearing on

side 1 or 2) can be represented by either of the four vector mesons ρ0, ω, φ and

J/ψ.

MINT(103), MINT(104) : KF flavour code for the two incoming particles, i.e. the same as

MINT(11) and MINT(12). The exception is when a resolved photon is represented

by a vector meson (a ρ0, ω, φ or J/ψ). Then the code of the vector meson is

given.

MINT(105) : is either MINT(103) or MINT(104), depending on which side of the event

currently is being studied.

MINT(107), MINT(108) : if either or both of the two incoming particles is a photon, then

the respective value gives the nature assumed for that photon. The code follows

the one used for MSTP(14):

= 0 : direct photon.

= 1 : resolved photon.

= 2 : VMD-like photon.

= 3 : anomalous photon.

= 4 : DIS photon.

MINT(109) : is either MINT(107) or MINT(108), depending on which side of the event
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currently is being studied.

MINT(111) : the frame given in PYINIT call, 0–5 for ’NONE’, ’CMS’, ’FIXT’, ’3MOM’,

’4MOM’ and ’5MOM’, respectively, and 11 for ’USER’. Option 12 signals input of

Les Houches Accord events without beam-remnant processing, see PDFGUP(i) =

-9 in section 9.9.

MINT(121) : number of separate event classes to initialize and mix.

= 1 : the normal value.

= 2 - 13 : for γp/γ∗p/γγ/γ∗γ/γ∗γ∗ interaction when MSTP(14) is set to mix differ-

ent photon components.

MINT(122) : event class used in current event for γp or γγ events generated with one of

the MSTP(14) options mixing several event classes; code as described for MSTI(9).

MINT(123) : event class used in the current event, with the same list of possibilities

as for MSTP(14), except that options 1, 4 or 10 do not appear. = 8 denotes

DIS×VMD/p or vice verse, = 9 DIS*GVMD or vice versa. Apart from a differ-

ent coding, this is exactly the same information as is available in MINT(122).

MINT(141), MINT(142) : for ’gamma/lepton’ beams, KF code for incoming lepton beam

or target particles, while MINT(11) and MINT(12) is then the photon code. A

nonzero value is the main check whether the photon emission machinery should

be called at all.

MINT(143) : the number of tries before a successful kinematics configuration is found in

PYGAGA, used for ’gamma/lepton’ beams. Used for the cross section updating in

PYRAND.

MINT(351) : Current number of multiple interactions, excluding the hardest in an event;

is normally equal to MINT(31) - 1 = MSTI(31) - 1, but is = 0 when MINT(31)

= MSTI(31) = 0.

MINT(352) : Current number of initial-state-radiation branchings.

MINT(353) : Current number of final-state-radiation branchings

MINT(354) : Current number of multiple interactions joinings (not fully implemented.)

VINT(1) : Ecm, c.m. energy.

VINT(2) : s (= E2
cm) squared mass of complete system.

VINT(3) : mass of beam particle. Can be negative to denote a space-like particle, e.g. a

γ∗.

VINT(4) : mass of target particle. Can be negative to denote a space-like particle, e.g. a

γ∗.

VINT(5) : absolute value of momentum of beam (and target) particle in c.m. frame.

VINT(6) - VINT(10) : θ, ϕ and β for rotation and boost from c.m. frame to user-specified

frame.

VINT(11) : τmin.

VINT(12) : ymin.

VINT(13) : cos θ̂min for cos θ̂ ≤ 0.

VINT(14) : cos θ̂min for cos θ̂ ≥ 0.

VINT(15) : x2
⊥min.
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VINT(16) : τ ′
min.

VINT(17) : (D = 0.) absolute lower p2
⊥ scale, as used to determine exit of multiple

interactions and and initial-state radiation routines.

VINT(18) : soft destructive colour interference scale used for regularising the multiple

interactions and initial-state radiation matrix elements.

VINT(21) : τ .

VINT(22) : y.

VINT(23) : cos θ̂.

VINT(24) : ϕ (azimuthal angle).

VINT(25) : x2
⊥.

VINT(26) : τ ′.

VINT(31) : τmax.

VINT(32) : ymax.

VINT(33) : cos θ̂max for cos θ̂ ≤ 0.

VINT(34) : cos θ̂max for cos θ̂ ≥ 0.

VINT(35) : x2
⊥max.

VINT(36) : τ ′
max.

VINT(41), VINT(42) : the momentum fractions x taken by the partons at the hard in-

teraction, as used e.g. in the parton-distribution functions. For process 99 this

agrees with the Bjorken definition, including target mass corrections, i.e., for a

proton target, x = Q2/(W 2 + Q2 − m2
p).

VINT(43) : m̂ =
√

ŝ, mass of hard-scattering subsystem.

VINT(44) : ŝ of the hard subprocess (2 → 2 or 2 → 1).

VINT(45) : t̂ of the hard subprocess (2 → 2 or 2 → 1 → 2).

VINT(46) : û of the hard subprocess (2 → 2 or 2 → 1 → 2).

VINT(47) : p̂⊥ of the hard subprocess (2 → 2 or 2 → 1 → 2), i.e. transverse momentum

evaluated in the rest frame of the scattering.

VINT(48) : p̂2
⊥ of the hard subprocess; see VINT(47).

VINT(49) : m̂′, the mass of the complete three- or four-body final state in 2 → 3 or 2 → 4

processes.

VINT(50) : ŝ′ = m̂′2; see VINT(49).

VINT(51) : Q of the hard subprocess. The exact definition is process-dependent, see

MSTP(32).

VINT(52) : Q2 of the hard subprocess; see VINT(51).

VINT(53) : Q of the outer hard-scattering subprocess, used as scale for parton distribution

function evaluation. Agrees with VINT(51) for a 2 → 1 or 2 → 2 process. For

a 2 → 3 or 2 → 4 W/Z fusion process, it is set by the W/Z mass scale, and for

subprocesses 121 and 122 by the heavy-quark mass.

VINT(54) : Q2 of the outer hard-scattering subprocess; see VINT(53).

VINT(55) : Q scale used as maximum virtuality in parton showers. Is equal to VINT(53),

except for DIS processes when MSTP(22) > 0.

VINT(56) : Q2 scale in parton showers; see VINT(55).

VINT(57) : αem value of hard process.
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VINT(58) : αs value of hard process.

VINT(59) : sin θ̂ (cf. VINT(23)); used for improved numerical precision in elastic and

diffractive scattering.

VINT(61) : p⊥ scale used as maximum transverse momentum for multiple interactions.

See MSTP(86).

VINT(62) : p⊥2 maximum scale for multiple interactions, see VINT(61).

VINT(63), VINT(64) : nominal m2 values, i.e. without final-state radiation effects, for

the two (or one) partons/particles leaving the hard interaction. For elastic VMD

and GVMD events, this equals VINT(69)2 or VINT(70)2, and for diffractive events

it is above that.

VINT(65) : p̂init, i.e. common nominal absolute momentum of the two partons entering

the hard interaction, in their rest frame.

VINT(66) : p̂fin, i.e. common nominal absolute momentum of the two partons leaving the

hard interaction, in their rest frame.

VINT(67), VINT(68) : mass of beam and target particle, as VINT(3) and VINT(4), ex-

cept that an incoming γ is assigned the ρ0, ω or φ mass. (This also applies for

a GVMD photon, where the mass of the VMD state with the equivalent flavour

content is chosen.) Used for elastic scattering γp → ρ0p and other similar pro-

cesses.

VINT(69), VINT(70) : the actual mass of a VMD or GVMD state; agrees with the above

for VMD but is selected as a larger number for GVMD, using the approximate

association m = 2k⊥. Thus the mass selection for a GVMD state is according

to dm2/(m2 + Q2)2 between limits 2k0 < m < 2k1 = 2p⊥min(W
2). Required for

elastic and diffractive events.

VINT(71) : initially it is p⊥min of process, but this is replaced by the actual p⊥ once the

process has actually been selected. For a normal hard process p⊥min is either

CKIN(3) or CKIN(5), depending on which is larger, and whether the process is

singular in p⊥ → 0 or not. For multiple interactions it is either the energy-

dependent p⊥min derived from PARP(81) or the fraction 0.08 × p⊥0 derived from

PARP(82), depending on MSTP(82) setting. (In the latter scenario, formally p⊥ =

0 is allowed but is numerically unstable; hence the small nonvanishing value.)

VINT(73) : τ = m2/s value of first resonance, if any; see MINT(73).

VINT(74) : mΓ/s value of first resonance, if any; see MINT(73).

VINT(75) : τ = m2/s value of second resonance, if any; see MINT(74).

VINT(76) : mΓ/s value of second resonance, if any; see MINT(74).

VINT(80) : correction factor (evaluated in PYOFSH) for the cross section of resonances

produced in 2 → 2 processes, if only some mass range of the full Breit-Wigner

shape is allowed by user-set mass cuts (CKIN(2), CKIN(45) - CKIN(48)).

VINT(95) : the value of the Coulomb factor in the current event, see MSTP(40). For

MSTP(40) = 0 it is = 1, else it is > 1.

VINT(97) : an event weight, normally 1 and thus uninteresting, but for external processes

with IDWTUP = -1, -2 or -3 it can be −1 for events with negative cross section,

with IDWTUP = 4 it can be an arbitrary non-negative weight of dimension mb, and
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with IDWTUP = -4 it can be an arbitrary weight of dimension mb. (The difference

being that in most cases a rejection step is involved to bring the accepted events to

a common weight normalization, up to a sign, while no rejection need be involved

in the last two cases.)

VINT(98) : is sum of VINT(100) values for current run.

VINT(99) : is weight WTXS returned from PYEVWT call when MSTP(142) ≥ 1, otherwise is

1.

VINT(100) : is compensating weight 1./WTXS that should be associated with events when

MSTP(142) = 1, otherwise is 1.

VINT(108) : ratio of maximum differential cross section observed to maximum differential

cross section assumed for the generation; cf. MSTP(123).

VINT(109) : ratio of minimal (negative!) cross section observed to maximum differential

cross section assumed for the generation; could only become negative if cross

sections are incorrectly included.

VINT(111) - VINT(116) : for MINT(61) = 1 gives kinematical factors for the different

pieces contributing to γ∗/Z0 or γ∗/Z0/Z′0 production, for MINT(61) = 2 gives

sum of final-state weights for the same; coefficients are given in the order pure

γ∗, γ∗–Z0 interference, γ∗–Z′0 interference, pure Z0, Z0–Z′0 interference and pure

Z′0.

VINT(117) : width of Z0; needed in γ∗/Z0/Z′0 production.

VINT(120) : mass of beam or target particle, i.e. coincides with VINT(3) or VINT(4),

depending on which side of the event is considered. Is used to bring information

on the user-defined virtuality of a photon beam to the parton distributions of the

photon.

VINT(131) : total cross section (in mb) for subprocesses allowed in the pile-up events

scenario according to the MSTP(132) value.

VINT(132) : n =VINT(131)×PARP(131) of pile-up events, cf. PARI(91).

VINT(133) : 〈n〉 =
∑

i iPi/
∑

i Pi of pile-up events as actually simulated, i.e. 1 ≤ i ≤ 200

(or smaller), see PARI(92).

VINT(134) : number related to probability to have an event in a beam–beam crossing; is

exp(−n)
∑

i ni/i! for MSTP(133) = 1 and exp(−n)
∑

i n
i/(i − 1)! for MSTP(133)

= 2, cf. PARI(93).

VINT(138) : size of the threshold factor (enhancement or suppression) in the latest event

with heavy-flavour production; see MSTP(35).

VINT(140) : extra rescaling factor when sum of companion momentum distributions ex-

ceed the total amount available. Is normally = 1.

VINT(141), VINT(142) : x values for the parton-shower initiators of the hardest inter-

action; used to find what is left for multiple interactions.

VINT(143), VINT(144) : 1−∑
i xi for all scatterings; used for rescaling each new x-value

in the multiple-interaction parton-distribution-function evaluation.

VINT(145) : estimate of total parton-parton cross section for multiple interactions; used

for MSTP(82) ≥ 2.

VINT(146) : common correction factor fc in the multiple-interaction probability; used for
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MSTP(82) ≥ 2 (part of e(b), see eq. (11.18)).

VINT(147) : average hadronic matter overlap; used for MSTP(82) ≥ 2 (needed in evalua-

tion of e(b), see eq. (11.18)).

VINT(148) : enhancement factor for current event in the multiple-interaction probability,

defined as the actual overlap divided by the average one; used for MSTP(82) ≥ 2

(is e(b) of eq. (11.18)).

VINT(149) : x2
⊥ cut-off or turn-off for multiple interactions. For MSTP(82) ≤ 1 it is

4p2
⊥min/W

2, for MSTP(82)≥ 2 it is 4p2
⊥0/W

2. For hadronic collisions, W 2 = s, but

in photoproduction or γγ physics the W 2 scale refers to the hadronic subsystem

squared energy. This may vary from event to event, so VINT(149) needs to be

recalculated.

VINT(150) : probability to keep the given event in the multiple-interaction scenario with

varying impact parameter, as given by the exponential factor in eq. (11.20).

VINT(151), VINT(152) : sum of x values for all the multiple-interaction partons.

VINT(153) : current differential cross section value obtained from PYSIGH; used in multi-

ple interactions only.

VINT(154) : current p⊥min(s) or p⊥min(W
2), used for multiple interactions and also as

upper cut-off k1 if the GVMD k⊥ spectrum. See comments at VINT(149).

VINT(155), VINT(156) : the x value of a photon that branches into quarks or gluons,

i.e. x at interface between initial-state QED and QCD cascades, in the old pho-

toproduction machinery.

VINT(157), VINT(158) : the primordial k⊥ values selected in the two beam remnants.

VINT(159), VINT(160) : the χ values selected for beam remnants that are split into two

objects, describing how the energy is shared (see MSTP(92) and MSTP(94)); is 0

if no splitting is needed.

VINT(161) - VINT(200) : sum of Cabibbo–Kobayashi–Maskawa squared matrix ele-

ments that a given flavour is allowed to couple to. Results are stored in format

VINT(180+KF) for quark and lepton flavours and antiflavours (which need not be

the same; see MDME(IDC,2)). For leptons, these factors are normally unity.

VINT(201) - VINT(220) : additional variables needed in phase-space selection for 2 → 3

processes with ISET(ISUB) = 5. Below indices 1, 2 and 3 refer to scattered

partons 1, 2 and 3, except that the q four-momentum variables are q1 + q2 →
q′1 + q′2 + q′3. All kinematical variables refer to the internal kinematics of the

3-body final state — the kinematics of the system as a whole is described by τ ′

and y, and the mass distribution of particle 3 (a resonance) by τ .

VINT(201) : m1.

VINT(202) : p2
⊥1.

VINT(203) : ϕ1.

VINT(204) : M1 (mass of propagator particle).

VINT(205) : weight for the p2
⊥1 choice.

VINT(206) : m2.

VINT(207) : p2
⊥2.

VINT(208) : ϕ2.
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VINT(209) : M2 (mass of propagator particle).

VINT(210) : weight for the p2
⊥2 choice.

VINT(211) : y3.

VINT(212) : y3max.

VINT(213) : ε = ±1; choice between two mirror solutions 1 ↔ 2.

VINT(214) : weight associated to ε-choice.

VINT(215) : t1 = (q1 − q′1)
2.

VINT(216) : t2 = (q2 − q′2)
2.

VINT(217) : q1q
′
2 four-product.

VINT(218) : q2q
′
1 four-product.

VINT(219) : q′1q
′
2 four-product.

VINT(220) :

√
(m2

⊥12 − m2
⊥1 − m2

⊥2)
2 − 4m2

⊥1m
2
⊥2, where m⊥12 is the transverse

mass of the q′1q
′
2 system.

VINT(221) - VINT(225) : θ, ϕ and β for rotation and boost from c.m. frame to hadronic

c.m. frame of a lepton-hadron event.

VINT(231) : Q2
min scale for current parton-distribution function set.

VINT(232) : valence quark distribution of a VMD photon; set in PYPDFU and used in

PYPDFL.

VINT(281) : for resolved photon events, it gives the ratio between the total γX cross

section and the total π0X cross section, where X represents the target particle.

VINT(283), VINT(284) : virtuality scale at which a GVMD/anomalous photon on the

beam or target side of the event is being resolved. More precisely, it gives the

k2
⊥ of the γ → qq vertex. For elastic and diffractive scatterings, m2/4 is stored,

where m is the mass of the state being diffracted. For clarity, we point out

that elastic and diffractive events are characterized by the mass of the diffractive

states but without any primordial k⊥, while jet production involves a primordial

k⊥ but no mass selection. Both are thus not used at the same time, but for

GVMD/anomalous photons, the standard (though approximate) identification

k2
⊥ = m2/4 ensures agreement between the two applications.

VINT(285) : the CKIN(3) value provided by you at initialization; subsequently CKIN(3)

may be overwritten (for MSTP(14) = 10) but VINT(285) stays.

VINT(289) : squared c.m. energy found in PYINIT call.

VINT(290) : the WIN argument of a PYINIT call.

VINT(291) - VINT(300) : the two five-vectors of the two incoming particles, as recon-

structed in PYINKI. These may vary from one event to the next.

VINT(301) - VINT(320) : used when a flux of virtual photons is being generated by the

PYGAGA routine, for ’gamma/lepton’ beams.

VINT(301) : c.m. energy for the full collision, while VINT(1) gives the γ-hadron or

γγ subsystem energy.

VINT(302) : full squared c.m. energy, while VINT(2) gives the subsystem squared

energy.

VINT(303), VINT(304) : mass of the beam or target lepton, while VINT(3) or
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VINT(4) give the mass of a photon emitted off it.

VINT(305), VINT(306) : x values, i.e. respective photon energy fractions of the in-

coming lepton in the c.m. frame of the event.

VINT(307), VINT(308) : Q2 or P 2, virtuality of the respective photon (thus the

square of VINT(3), VINT(4)).

VINT(309), VINT(310) : y values, i.e. respective photon light-cone energy fraction

of the lepton.

VINT(311), VINT(312) : θ, scattering angle of the respective lepton in the c.m.

frame of the event.

VINT(313), VINT(314) : φ, azimuthal angle of the respective scattered lepton in

the c.m. frame of the event.

VINT(315), VINT(316): the R factor defined at MSTP(17), giving a cross section

enhancement from the contribution of resolved longitudinal photons.

VINT(317) : dipole suppression factor in PYXTOT for current event.

VINT(318) : dipole suppression factor in PYXTOT at initialization.

VINT(319) : photon flux factor in PYGAGA for current event.

VINT(320) : photon flux factor in PYGAGA at initialization.

VINT(351) : scalar
∑

p⊥ of multiple interactions, excluding the hardest process.

(Note that the total E⊥ is twice this, since each interaction produces two

opposite-pT partons.)

VINT(352) : Scalar
∑

p⊥ of initial-state radiation branchings, with p⊥ defined with

respect to the direction of the branching parton. (Note that each branching

produces two opposite-p⊥ daughters, resulting in a factor two more activity.)

VINT(353) : Scalar
∑

p⊥ of final-state radiation branchings, with comment as above.

VINT(354) : Scalar
∑

p⊥ of multiple interactions joinings (not fully implemented).

VINT(356) : p⊥ of hardest multiple interaction (i.e. excluding the very first and hard-

est interaction).

VINT(357) : p⊥ of hardest initial-state radiation branching.

VINT(358) : p⊥ of hardest final-state radiation branching.

VINT(359) : p⊥ of hardest multiple interactions joining.

COMMON/PYINT2/ISET(500),KFPR(500,2),COEF(500,20),ICOL(40,4,2)

Purpose: to store information necessary for efficient generation of the different subpro-

cesses, specifically type of generation scheme and coefficients of the Jacobian.

Also to store allowed colour-flow configurations. These variables must not be

changed by you.

ISET(ISUB) : gives the type of kinematical-variable selection scheme used for subprocess

ISUB.

= 0 : elastic, diffractive and low-p⊥ processes.

= 1 : 2 → 1 processes (irrespective of subsequent decays).

= 2 : 2 → 2 processes (i.e. the bulk of processes).
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= 3 : 2 → 3 processes (like qq′ → q′′q′′′h0).

= 4 : 2 → 4 processes (like qq′ → q′′q′′′W+W−).

= 5 : ‘true’ 2 → 3 processes, one method.

= 8 : 2 → 1 process γ∗fi → fi where, unlike the 2 → 1 processes above, ŝ = 0.

= 9 : 2 → 2 in multiple interactions (p⊥ as kinematics variable).

= 11 : a user-defined process.

= -1 : legitimate process which has not yet been implemented.

= -2 : ISUB is an undefined process code.

KFPR(ISUB,J) : give the KF flavour codes for the products produced in subprocess ISUB.

If there is only one product, the J = 2 position is left blank. Also, quarks and

leptons assumed massless in the matrix elements are denoted by 0. The main

application is thus to identify resonances produced (Z0, W±, h0, etc.). For ex-

ternal processes, KFPR instead stores information on process numbers in the two

external classifications, see section 9.9.

COEF(ISUB,J) : factors used in the Jacobians in order to speed up the selection of kine-

matical variables. More precisely, the shape of the cross section is given as the

sum of terms with different behaviour, where the integral over the allowed phase

space is unity for each term. COEF gives the relative strength of these terms,

normalized so that the sum of coefficients for each variable used is unity. Note

that which coefficients are indeed used is process-dependent.

ISUB : standard subprocess code.

J = 1 : τ selected according 1/τ .

J = 2 : τ selected according to 1/τ2.

J = 3 : τ selected according to 1/(τ(τ + τR)), where τR = m2
R/s is τ value of reso-

nance; only used for resonance production.

J = 4 : τ selected according to Breit-Wigner of form 1/((τ − τR)2 + γ2
R), where

τR = m2
R/s is τ value of resonance and γR = mRΓR/s is its scaled mass

times width; only used for resonance production.

J = 5 : τ selected according to 1/(τ(τ +τR′)), where τR′ = m2
R′/s is τ value of second

resonance; only used for simultaneous production of two resonances.

J = 6 : τ selected according to second Breit-Wigner of form 1/((τ − τR′)2 + γ2
R′),

where τR′ = m2
R′/s is τ value of second resonance and γR′ = mR′ΓR′/s is

its scaled mass times width; is used only for simultaneous production of two

resonances, like γ∗/Z0/Z′0.

J = 7 : τ selected according to 1/(1 − τ); only used when both parton distributions

are peaked at x = 1.

J = 8 : y selected according to y − ymin.

J = 9 : y selected according to ymax − y.

J = 10 : y selected according to 1/ cosh(y).

J = 11 : y selected according to 1/(1− exp(y−ymax)); only used when beam parton

distribution is peaked close to x = 1.

J = 12 : y selected according to 1/(1− exp(ymin−y)); only used when target parton

distribution is peaked close to x = 1.
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J = 13 : z = cos θ̂ selected evenly between limits.

J = 14 : z = cos θ̂ selected according to 1/(a− z), where a = 1+2m2
3m

2
4/ŝ

2, m3 and

m4 being the masses of the two final-state particles.

J = 15 : z = cos θ̂ selected according to 1/(a + z), with a as above.

J = 16 : z = cos θ̂ selected according to 1/(a − z)2, with a as above.

J = 17 : z = cos θ̂ selected according to 1/(a + z)2, with a as above.

J = 18 : τ ′ selected according to 1/τ ′.

J = 19 : τ ′ selected according to (1 − τ/τ ′)3/τ ′2.

J = 20 : τ ′ selected according to 1/(1−τ ′); only used when both parton distributions

are peaked close to x = 1.

ICOL : contains information on different colour-flow topologies in hard 2 → 2 processes.

COMMON/PYINT3/XSFX(2,-40:40),ISIG(1000,3),SIGH(1000)

Purpose: to store information on parton distributions, subprocess cross sections and dif-

ferent final-state relative weights. These variables must not be changed by you.

XSFX : current values of parton-distribution functions xf(x) on beam and target side.

ISIG(ICHN,1) : incoming parton/particle on the beam side to the hard interaction for

allowed channel number ICHN. The number of channels filled with relevant infor-

mation is given by NCHN, one of the arguments returned in a PYSIGH call. Thus

only 1 ≤ICHN≤NCHN is filled with relevant information.

ISIG(ICHN,2) : incoming parton/particle on the target side to the hard interaction for

allowed channel number ICHN. See also comment above.

ISIG(ICHN,3) : colour-flow type for allowed channel number ICHN; see MSTI(2) list. See

also above comment. For ‘subprocess’ 96 uniquely, ISIG(ICHN,3) is also used to

translate information on what is the correct subprocess number (11, 12, 13, 28,

53 or 68); this is used for reassigning subprocess 96 to either of these.

SIGH(ICHN) : evaluated differential cross section for allowed channel number ICHN, i.e.

matrix-element value times parton distributions, for current kinematical setup

(in addition, Jacobian factors are included in the numbers, as used to speed up

generation). See also comment for ISIG(ICHN,1).

COMMON/PYINT4/MWID(500),WIDS(500,5)

Purpose: to store character of resonance width treatment and partial and effective de-

cay widths for the different resonances. These variables should normally not be

changed by you.

MWID(KC) : gives the character of particle with compressed code KC, mainly as used

in PYWIDT to calculate widths of resonances (not necessarily at the nominal

mass).

= 0 : an ordinary particle; not to be treated as resonance.

= 1 : a resonance for which the partial and total widths (and hence branching
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ratios) are dynamically calculated in PYWIDT calls; i.e. special code has to

exist for each such particle. The effects of allowed/disallowed secondary

decays are included, both in the relative composition of decays and in the

process cross section.

= 2 : The total width is taken to be the one stored in PMAS(KC,2) and the relative

branching ratios the ones in BRAT(IDC) for decay channels IDC. There is then

no need for any special code in PYWIDT to handle a resonance. During the

run, the stored PMAS(KC,2) and BRAT(IDC) values are used to calculate the

total and partial widths of the decay channels. Some extra information and

assumptions are then used. Firstly, the stored BRAT values are assumed to be

the full branching ratios, including all possible channels and all secondary

decays. The actual relative branching fractions are modified to take into

account that the simulation of some channels may be switched off (even

selectively for a particle and an antiparticle), as given by MDME(IDC,1), and

that some secondary channels may not be allowed, as expressed by the WIDS

factors. This also goes into process cross sections. Secondly, it is assumed

that all widths scale like
√

ŝ/m, the ratio of the actual to the nominal mass.

A further nontrivial change as a function of the actual mass can be set for

each channel by the MDME(IDC,2) value, see section 14.4.

= 3 : a hybrid version of options 1 and 2 above. At initialization the PYWIDT

code is used to calculate PMAS(KC,2) and BRAT(IDC) at the nominal mass

of the resonance. Special code must then exist in PYWIDT for the particle.

The PMAS(KC,2) and BRAT(IDC) values overwrite the default ones. In the

subsequent generation of events, the simpler scheme of option 2 is used, thus

saving some execution time.

Note: the Z and Z′ cannot be used with options 2 and 3, since the more compli-

cated interference structure implemented for those particles is only handled

correctly for option 1.

WIDS(KC,J) : gives the dimensionless suppression factor to cross sections caused by the

closing of some secondary decays, as calculated in PYWIDT. It is defined as the

ratio of the total width of channels switched on to the total width of all possible

channels (replace width by squared width for a pair of resonances). The on/off

status of channels is set by the MDME switches; see section 14.4. The information

in WIDS is used e.g. in cross-section calculations. Values are built up recursively

from the lightest particle to the heaviest one at initialization, with the exception

that W and Z are done already from the beginning (since these often are forced

off the mass shell). WIDS can go wrong in case you have perverse situations where

the branching ratios vary rapidly as a function of energy, across the resonance

shape. This then influences process cross sections.

KC : standard KC code for resonance considered.

J = 1 : suppression when a pair of resonances of type KC are produced together.

When an antiparticle exists, the particle-antiparticle pair (such as W+W−)

is the relevant combination, else the particle–particle one (such as Z0Z0).
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J = 2 : suppression for a particle of type KF when produced on its own, or together

with a particle of another type.

J = 3 : suppression for an antiparticle of type KF when produced on its own, or

together with a particle of another type.

J = 4 : suppression when a pair of two identical particles are produced, for a particle

which has a nonidentical antiparticle (e.g. W+W+).

J = 5 : suppression when a pair of two identical antiparticles are produced, for a

particle which has a nonidentical antiparticle (e.g. W−W−).

COMMON/PYINT5/NGENPD,NGEN(0:500,3),XSEC(0:500,3)

Purpose: to store information necessary for cross-section calculation and differential cross-

section maximum violation. These variables must not be changed by you.

NGEN(ISUB,1) : gives the number of times that the differential cross section (times Jaco-

bian factors) has been evaluated for subprocess ISUB, with NGEN(0,1) the sum

of these.

NGEN(ISUB,2) : gives the number of times that a kinematical setup for subprocess ISUB

is accepted in the generation procedure, with NGEN(0,2) the sum of these.

NGEN(ISUB,3) : gives the number of times an event of subprocess type ISUB is generated,

with NGEN(0,3) the sum of these. Usually NGEN(ISUB,3) = NGEN(ISUB,2), i.e.

an accepted kinematical configuration can normally be used to produce an event.

XSEC(ISUB,1) : estimated maximum differential cross section (times the Jacobian fac-

tors used to speed up the generation process) for the different subprocesses in

use, with XSEC(0,1) the sum of these (except low-p⊥, i.e. ISUB = 95). For ex-

ternal processes special rules may apply, see section 9.9. In particular, negative

cross sections and maxima may be allowed. In this case, XSEC(ISUB,1) stores

the absolute value of the maximum, since this is the number that allows the

appropriate mixing of subprocesses.

XSEC(ISUB,2) : gives the sum of differential cross sections (times Jacobian factors) for

the NGEN(ISUB,1) phase-space points evaluated so far.

XSEC(ISUB,3) : gives the estimated integrated cross section for subprocess ISUB, based

on the statistics accumulated so far, with XSEC(0,3) the estimated total cross

section for all subprocesses included (all in mb). This is exactly the information

obtainable by a PYSTAT(1) call.

Warning : for γp and γγ events, when several photon components are mixed (see

MSTP(14)), a master copy of these numbers for each component is stored in

the PYSAVE routine. What is then visible after each event is only the numbers

for the last component considered, not the full statistics. A special PYSAVE call,

performed e.g. in PYSTAT, is required to obtain the sum of all the components.
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COMMON/PYINT6/PROC(0:500)

CHARACTER PROC*28

Purpose: to store character strings for the different possible subprocesses; used when

printing tables.

PROC(ISUB) : name for the different subprocesses, according to ISUB code. PROC(0) de-

notes all processes.

COMMON/PYINT7/SIGT(0:6,0:6,0:5)

Purpose: to store information on total, elastic and diffractive cross sections. These vari-

ables should only be set by you for the option MSTP(31) = 0; else they should

not be touched. All numbers are given in mb.

SIGT(I1,I2,J) : the cross section, both total and subdivided by class (elastic, diffractive

etc.). For a photon to be considered as a VMD meson the cross sections are

additionally split into the contributions from the various meson states.

I1, I2 : allowed states for the incoming particle on side 1 and 2, respectively.

= 0 : sum of all allowed states. Except for a photon to be considered as a

VMD meson this is the only nonvanishing entry.

= 1 : the contribution from the ρ0 VMD state.

= 2 : the contribution from the ω VMD state.

= 3 : the contribution from the φ VMD state.

= 4 : the contribution from the J/ψ VMD state.

= 5, 6 : reserved for future use.

J : the total and partial cross sections.

= 0 : the total cross section.

= 1 : the elastic cross section.

= 2 : the single diffractive cross section AB → XB.

= 3 : the single diffractive cross section AB → AX.

= 4 : the double diffractive cross section.

= 5 : the inelastic, non-diffractive cross section.

Warning: if you set these values yourself, it is important that they are internally

consistent, since this is not explicitly checked by the program. Thus the

contributions J = 1 - 5 should add up to the J = 0 one and, for VMD

photons, the contributions I = 1 - 4 should add up to the I = 0 one.

COMMON/PYINT8/XPVMD(-6:6),XPANL(-6:6),XPANH(-6:6),XPBEH(-6:6),

&XPDIR(-6:6)

Purpose: to store the various components of the photon parton distributions when the

PYGGAM routine is called.
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XPVMD(KFL) : gives distributions of the VMD part (ρ0, ω and φ).

XPANL(KFL) : gives distributions of the anomalous part of light quarks (d, u and s).

XPANH(KFL) : gives distributions of the anomalous part of heavy quarks (c and b).

XPBEH(KFL) : gives Bethe-Heitler distributions of heavy quarks (c and b). This provides

an alternative to XPANH, i.e. both should not be used at the same time.

XPDIR(KFL) : gives direct correction to the production of light quarks (d, u and s). This

term is nonvanishing only in the ms scheme, and is applicable for F γ
2 rather than

for the parton distributions themselves.

COMMON/PYINT9/VXPVMD(-6:6),VXPANL(-6:6),VXPANH(-6:6),VXPDGM(-6:6)

Purpose: to give the valence parts of the photon parton distributions (x-weighted, as

usual) when the PYGGAM routine is called. Companion to PYINT8, which gives the

total parton distributions.

VXPVMD(KFL) : valence distributions of the VMD part; matches XPVMD in PYINT8.

VXPANL(KFL) : valence distributions of the anomalous part of light quarks; matches XPANL

in PYINT8.

VXPANH(KFL) : valence distributions of the anomalous part of heavy quarks; matches

XPANH in PYINT8.

VXPDGM(KFL) : gives the sum of valence distributions parts; matches XPDFGM in the PYGGAM

call.

Note 1: the Bethe-Heitler and direct contributions in XPBEH(KFL) and XPDIR(KFL) in

PYINT8 are pure valence-like, and therefore are not duplicated here.

Note 2: the sea parts of the distributions can be obtained by taking the appropriate

differences between the total distributions and the valence distributions.
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10. Initial- and final-state radiation

Starting from the hard interaction, initial- and final-state radiation corrections may be

added. This is normally done by making use of the parton-shower language — only for the

e+e− → qq process does Pythia offer a matrix-element option (described in section 6.1).

The algorithms used to generate initial- and final-state showers are rather different, and

are therefore described separately below, starting with the conceptually easier final-state

one. Before that, some common elements are introduced.

As a further doubling-up, recently new transverse-momentum-ordered showers were

introduced as an alternative to the older virtuality-ordered ones. The p⊥-ordering offers

several advantages, on its own and especially in combination with the new, more sophis-

ticated multiple interactions scenarios described in section 11.4. In the long run, the new

algorithms may be the only ones to survive, but they are not yet sufficiently well estab-

lished that the older can be removed; in addition, comparisons between different orderings

are helpful for a better understanding of the powers and limitations of the shower approach

[Ple05, Ska05]. While the newer routines are quite different in many respects, they still

share a lot of the philosophy of the older ones. Therefore it is feasible to give a reasonably

detailed presentation of the old formalisms and only provide a brief summary of the main

differences introduced by the p⊥-ordering.

The main references for virtuality-ordered final-state showers are [Ben87a, Nor01] and

for ditto initial-state ones [Sjo85, Miu99], while the transverse-momentum-ordered showers

of both kinds are described in [Sjo04a].

10.1 Shower evolution

In the leading-logarithmic picture, a shower may be viewed as a sequence of 1 → 2 branch-

ings a → bc. Here a is called the mother and b and c the two daughters. Each daughter

is free to branch in its turn, so that a tree-like structure can evolve. We will use the

word ‘parton’ for all the objects a, b and c involved in the branching process, i.e. not only

for quarks and gluons but also for leptons and photons. The branchings included in the

program are q → qg, g → gg, g → qq, q → qγ and ` → `γ. Photon branchings, i.e.

γ → qq and γ → ``, have not been included so far, since they are reasonably rare and

since no urgent need for them has been perceived. Furthermore, the γ → qq branching is

intimately related to the issue of the hadronic nature of the photon, which requires a much

more sophisticated machinery to handle, see section 7.7.2.

A word on terminology may be in order. The algorithms described here are customar-

ily referred to as leading-log showers. This is correct insofar as no explicit corrections from

higher orders are included, i.e. there are no O(α2
s ) terms in the splitting kernels, neither

by new 1 → 3 processes nor by corrections to the 1 → 2 ones. However, it would be

grossly misleading to equate leading-log showers with leading-log analytical calculations.

In particular, the latter contain no constraints from energy-momentum conservation: the

radiation off a quark is described in the approximation that the quark does not lose any en-

ergy when a gluon is radiated, so that the effects of multiple emissions factorize. Therefore

energy-momentum conservation is classified as a next-to-leading-log correction. In a Monte
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Carlo shower, on the other hand, energy-momentum conservation is explicit branching by

branching. By including coherence phenomena and optimized choices of αs scales, further

information on higher orders is inserted. While the final product is still not certified fully to

comply with a NLO/NLL standard, it is well above the level of an unsophisticated LO/LL

analytic calculation.

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two

variables, Q2 and z. Somewhat different interpretations may be given to these variables,

and indeed this is one main area where the various programs on the market differ. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale

of the branching. z gives the sharing of the a energy and momentum between the two

daughters, with parton b taking a fraction z and parton c a fraction 1 − z. To specify the

kinematics, an azimuthal angle ϕ of the b around the a direction is needed in addition;

in the simple discussions ϕ is chosen to be isotropically distributed, although options for

non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called

DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/Λ2) ⇒ dt = d ln(Q2) =
dQ2

Q2
, (10.1)

where Λ is the QCD Λ scale in αs. Of course, this choice is more directed towards the

QCD parts of the shower, but it can be used just as well for the QED ones. In terms of

the two variables t and z, the differential probability dP for parton a to branch is now

dPa =
∑

b,c

αabc

2π
Pa→bc(z) dt dz . (10.2)

Here the sum is supposed to run over all allowed branchings, for a quark q → qg and

q → qγ, and so on. The αabc factor is αem for QED branchings and αs for QCD ones (to

be evaluated at some suitable scale, see below).

The splitting kernels Pa→bc(z) are

Pq→qg(z) = CF
1 + z2

1 − z
,

Pg→gg(z) = NC
(1 − z(1 − z))2

z(1 − z)
,

Pg→qq(z) = TR (z2 + (1 − z)2) ,

Pq→qγ(z) = e2
q

1 + z2

1 − z
,

P`→`γ(z) = e2
`

1 + z2

1 − z
, (10.3)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each allowed

qq flavour), and e2
q and e2

` the squared electric charge (4/9 for u-type quarks, 1/9 for d-type

ones, and 1 for leptons).
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Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and δ(1 − z) terms of the splitting kernels in eq. (10.3) are missing. These complications

fulfil the task of ensuring flavour and energy conservation in the analytical equations. The

corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-

lution is traced in detail, and flavour and four-momentum are conserved at each branching.

The legacy left is the need to introduce a cut-off on the allowed range of z in splittings, so

as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg→gg(z) is given here with a factor NC in front, while it is sometimes

shown with 2NC . The confusion arises because the final state contains two identical par-

tons. With the normalization above, Pa→bc(z) is interpreted as the branching probability

for the original parton a. On the other hand, one could also write down the probability

that a parton b is produced with a fractional energy z. Almost all the above kernels can be

used unchanged also for this purpose, with the obvious symmetry Pa→bc(z) = Pa→cb(1−z).

For g → gg, however, the total probability to find a gluon with energy fraction z is the

sum of the probability to find either the first or the second daughter there, and that gives

the factor of 2 enhancement.

10.1.2 The Sudakov form factor

The t variable fills the function of a kind of time for the shower evolution. In final-

state showers, t is constrained to be gradually decreasing away from the hard scattering,

in initial-state ones to be gradually increasing towards the hard scattering. This does not

mean that an individual parton runs through a range of t values: in the end, each branching

is associated with a fixed t value, and the evolution procedure is just a way of picking that

value. It is only the ensemble of partons in many events that evolves continuously with t,

cf. the concept of parton distributions.

For a given t value we define the integral of the branching probability over all allowed

z values,

Ia→bc(t) =

∫ z+(t)

z−(t)
dz

αabc

2π
Pa→bc(z) . (10.4)

The näıve probability that a branching occurs during a small range of t values, δt, is given

by
∑

b,c Ia→bc(t) δt, and thus the probability for no emission by 1 − ∑
b,c Ia→bc(t) δt.

If the evolution of parton a starts at a ‘time’ t0, the probability that the parton has

not yet branched at a ‘later time’ t > t0 is given by the product of the probabilities that

it did not branch in any of the small intervals δt between t0 and t. In other words, letting

δt → 0, the no-branching probability exponentiates:

Pno−branching(t0, t) = exp



−

∫ t

t0

dt′
∑

b,c

Ia→bc(t
′)



 = Sa(t) . (10.5)

Thus the actual probability that a branching of a occurs at t is given by

dPa

dt
= −dPno−branching(t0, t)

dt
=


∑

b,c

Ia→bc(t)


 exp



−

∫ t

t0

dt′
∑

b,c

Ia→bc(t
′)



 . (10.6)
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The first factor is the näıve branching probability, the second the suppression due

to the conservation of total probability: if a parton has already branched at a ‘time’

t′ < t, it can no longer branch at t. This is nothing but the exponential factor that is

familiar from radioactive decay. In parton-shower language the exponential factor Sa(t) =

Pno−branching(t0, t) is referred to as the Sudakov form factor [Sud56].

The ordering in terms of increasing t above is the appropriate one for initial-state

showers. In final-state showers the evolution is from an initial tmax (set by the hard

scattering) and towards smaller t. In that case the integral from t0 to t in eqs. (10.5) and

(10.6) is replaced by an integral from t to tmax. Since, by convention, the Sudakov factor

is still defined from the lower cut-off t0, i.e. gives the probability that a parton starting

at scale t will not have branched by the lower cut-off scale t0, the no-branching factor is

actually Pno−branching(tmax, t) = Sa(tmax)/Sa(t).

We note that the above structure is exactly of the kind discussed in section 4.2. The

veto algorithm is therefore extensively used in the Monte Carlo simulation of parton show-

ers.

10.1.3 Matching to the hard scattering

The evolution in Q2 is begun from some maximum scale Q2
max for final-state parton show-

ers, and is terminated at (a possibly different) Q2
max for initial-state showers. In general

there is some ambiguity associated with the choice of Q2
max. Indeed, since the parton-

shower language does not guarantee agreement with higher-order matrix-element results,

neither in absolute shape nor normalization, there is no unique prescription for a ‘best’

choice. Generically Qmax should be of the order of the hard-scattering scale, i.e. the largest

virtuality should be associated with the hard scattering, and initial- and final-state parton

showers should only involve virtualities smaller than that. This may be viewed just as

a matter of sound book-keeping: in a 2 → n graph, a 2 → 2 hard-scattering subgraph

could be chosen several different ways, but if all the possibilities were to be generated then

the cross section would be double-counted (or, rather, multiple-counted). Therefore one

should define the 2 → 2 ‘hard’ piece of a 2 → n graph as the one that involves the largest

virtuality.

Of course, the issue of double-counting depends on what processes are actually gener-

ated in the program. If one considers a qqg final state at hadron colliders, it could come

about either as a qq pair with a gluon emission q → qg, or as a gg pair with a gluon

splitting g → qq, or in many other ways, so that the danger of double-counting is very real.

In general, this applies to any hard scattering process that already contains one or more

QCD jets at the matrix-element level. On the other hand, consider the production of a

low-p⊥, low-mass Drell–Yan pair of leptons, together with two quark jets. Such a process

in principle could proceed by having a γ∗ emitted off a quark leg, with a quark–quark

scattering as hard interaction. However, since this process is not included in the program,

there is no actual danger of (this particular) double-counting, and so the scale of evolution

could be picked larger than the mass of the Drell–Yan pair, as we shall see.

For most 2 → 2 scattering processes in Pythia, the Q2 scale of the hard scattering is

chosen to be Q2
hard = p2

⊥ (when the final-state particles are massless, otherwise masses are
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added). In final-state showers, when Q is associated with the mass of the branching parton,

transverse momenta generated in the shower are constrained by p⊥ < Q/2. An ordering

that the shower p⊥ should be smaller than the hard-scattering p⊥ therefore corresponds

roughly to Q2
max = 4Q2

hard, which is the default assumption. The constraints are slightly

different for initial-state showers, where the space-like virtuality Q2 attaches better to

p2
⊥, and therefore different considerations suggest anything between Q2

max = Q2
hard and

Q2
max = 4Q2

hard as a sensible default.

We iterate that these limits, set by PARP(71) and PARP(67), respectively, are imagined

sensible when there is a danger of double-counting; if not, large values could well be relevant

to cover a wider range of topologies (see e.g. the study of ‘power’ vs. ‘wimpy’ showers in

[Ple05]), but always with some caution. (See also MSTP(68).)

The situation is rather better for the final-state showers in the decay of any colour-

singlet particles, or coloured but reasonably long-lived ones, such as the Z0 or the h0,

either as part of a hard 2 → 1 → 2 process, or anywhere else in the final state. Then we

know that Qmax has to be put equal to the particle mass. It is also possible to match the

parton-shower evolution to the first-order matrix-element results.

QCD processes such as qg → qg pose a special problem when the scattering angle is

small. Coherence effects (see below) may then restrict the emission further than what is

just given by the Qmax scale introduced above. This is most easily viewed in the rest frame

of the 2 → 2 hard-scattering subprocess. Some colours flow from the initial to the final

state. The bulk of the radiation associated with such a colour flow should be restricted to

a cone with opening angle given by the difference between the original and the final colour

directions; there is one such cone around the incoming parton for initial-state radiation and

one around the outgoing parton for final-state radiation. Colours that are annihilated or

created in the process effectively correspond to an opening angle of 180◦ and therefore the

emission is not constrained for these. For a gluon, which have two colours and therefore two

different cones, a random choice is made between the two for the first branching. Further,

coherence effects also imply azimuthal anisotropies of the emission inside the allowed cones.

Finally, it is important to note that several different descriptions of the ‘same’ process

may coexist within the program. For the most part, these descriptions differ simply by

which parts of the given process are treated as being collinear (i.e. with corresponding

leading collinear logarithms resummed to all orders) and which as being high-p⊥ (i.e. with

corresponding fixed-order diagrams calculated in perturbation theory). Section 8.4.2 gives

two classic examples. One is the correspondence between the description of a single W or Z

with additional jet production by showering, or the same picture obtained by using explicit

matrix elements to generate at least one jet in association with the W/Z. The other is the

generation of Z0bb final states either starting from bb → Z0, or from bg → Z0b or from

gg → bbZ0. As a rule of thumb, to be used with common sense, one would start from as

low an order as possible for an inclusive description, where the low-p⊥ region is likely to

generate most of the cross section, whereas higher-order topologies are more relevant for

studies of exclusive event samples at high p⊥.
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10.2 Final-state showers

Final-state showers are time-like, i.e. all virtualities m2 = E2 − p2 ≥ 0. The maximum

allowed virtuality scale Q2
max is set by the hard-scattering process, and thereafter the

virtuality is decreased in each subsequent branching, down to the cut-off scale Q2
0. This cut-

off scale is used to regulate both soft and collinear divergences in the emission probabilities.

Many different approaches can be chosen for the parton-shower algorithm, e.g. in terms

of evolution variables, kinematics reconstruction and matrix-element corrections. The tra-

ditional approach in Pythia is the mass-ordered PYSHOW algorithm. As an alternative, a

p⊥-ordered PYPTFS algorithm has recently been introduced. It is described only briefly at

the end of this section.

The main points of the PYSHOW showering algorithm are as follows.

• It is a leading-log algorithm, of the improved, coherent kind, i.e. with angular order-

ing.

• It can be used for an arbitrary initial pair of partons or, in fact, for any number

between one and eighty given entities (including hadrons and gauge bosons) although

only quarks, gluons, leptons, squarks and gluinos can initiate a shower.

• The set of showering partons may be given in any frame, but the evolution is carried

out in the c.m. frame of the showering partons (except if only one parton is input).

• Energy and momentum are conserved exactly at each step of the showering process.

• If an initial pair comes from the decay of a known resonance (also a coloured one such

as top), an additional rejection technique is used in the gluon emission off a parton

of the pair, so as to reproduce the lowest-order differential 3-jet cross section.

• In subsequent branchings, angular ordering (coherence effects) is imposed.

• Gluon helicity effects, i.e. correlations between the production plane and the decay

plane of a gluon, can be included.

• The first-order running αs expression is used, with the Q2 scale given by (an approx-

imation to) the squared transverse momentum of a branching. The default 5-flavour

ΛQCD, which should not be regarded as a proper ΛMS, is 0.29 GeV.

• The parton shower is by default cut off at a mass scale of 1 GeV.

Let us now proceed with a more detailed description.

10.2.1 The choice of evolution variable

In the PYSHOW algorithm, the evolution variable Q2 is associated with the squared mass

of the branching parton, Q2 = m2
a for a branching a → bc. As a consequence, t =

ln(Q2/Λ2) = ln(m2
a/Λ

2). This Q2 choice is not unique, and indeed other programs have

other definitions: Herwig uses Q2 ≈ m2/(2z(1 − z)) [Mar88] and Ariadne (and PYPTFS)

Q2 = p2
⊥ ≈ z(1 − z)m2 [Pet88]. Below we will also modify the Q2 choice to give a better

account of mass effects, e.g. for b quarks.

With Q a mass scale, the lower cut-off Q0 is one in mass. To be more precise, in a

QCD shower, the Q0 parameter is used to derive effective masses

meff,g =
1

2
Q0 ,
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meff,q =

√
m2

q +
1

4
Q2

0 , (10.7)

where the mq have been chosen as typical kinematical quark masses, see section 13.2.1.

A parton cannot branch unless its mass is at least the sum of the lightest pair of allowed

decay products, i.e. the minimum mass scale at which a branching is possible is

mmin,g = 2meff ,g = Q0 ,

mmin,q = meff,q + meff,g ≥ Q0 . (10.8)

The above masses are used to constrain the allowed range of Q2 and z values. However,

once it has been decided that a parton cannot branch any further, that parton is put on

the mass shell, i.e. ‘final-state’ gluons are massless.

When also photon emission is included, a separate Q0 scale is introduced for the QED

part of the shower, and used to calculate cut-off masses by analogy with eqs. (10.7) and

(10.8) above [Sjo92c]. By default the two Q0 scales are chosen equal, and have the value 1

GeV. If anything, one would be inclined to allow a cut-off lower for photon emission than

for gluon one. In that case the allowed z range of photon emission would be larger than

that of gluon emission, and at the end of the shower evolution only photon emission would

be allowed.

Photon and gluon emission differ fundamentally in that photons appear as physical

particles in the final state, while gluons are confined. For photon emission off quarks, how-

ever, the confinement forces acting on the quark may provide an effective photon emission

cut-off at larger scales than the bare quark mass. Soft and collinear photons could also

be emitted by the final-state charged hadrons [Bar94a]; the matching between emission off

quarks and off hadrons is a delicate issue, and we therefore do not attempt to address the

soft-photon region.

For photon emission off leptons, there is no need to introduce any collinear emission

cut-off beyond what is given by the lepton mass, but we keep the same cut-off approach

as for quarks, although at a smaller scale. However, note that, firstly, the program is not

aimed at high-precision studies of lepton pairs (where interference terms between initial-

and final-state radiation also would have to be included), and, secondly, most experimental

procedures would include the energy of collinear photons into the effective energy of a

final-state lepton.

10.2.2 The choice of energy splitting variable

The final-state radiation machinery is always applied in the c.m. frame of the hard scat-

tering, from which normally emerges a pair of evolving partons. Occasionally there may

be one evolving parton recoiling against a non-evolving one, as in qq → gγ, where only

the gluon evolves in the final state, but where the energy of the photon is modified by the

branching activity of the gluon. (With only one evolving parton and nothing else, it would

not be possible to conserve energy and momentum when the parton is assigned a mass.)

Thus, before the evolution is performed, the parton pair is boosted to their common c.m.
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frame, and rotated to sit along the z axis. After the evolution, the full parton shower is

rotated and boosted back to the original frame of the parton pair.

The interpretation of the energy and momentum splitting variable z is not unique,

and in fact the program allows the possibility to switch between four different alternatives

[Ben87a], ‘local’ and ‘global’ z definition combined with ‘constrained’ or ‘unconstrained’

evolution. In all four of them, the z variable is interpreted as an energy fraction, i.e.

Eb = zEa and Ec = (1 − z)Ea. In the ‘local’ choice of z definition, energy fractions are

defined in the rest frame of the grandmother, i.e. the mother of parton a. The preferred

choice is the ‘global’ one, in which energies are always evaluated in the c.m. frame of the

hard scattering. The two definitions agree for the branchings of the partons that emerge

directly from the hard scattering, since the hard scattering itself is considered to be the

‘mother’ of the first generation of partons. For instance, in Z0 → qq the Z0 is considered the

mother of the q and q, even though the branching is not handled by the parton-showering

machinery. The ‘local’ and ‘global’ definitions diverge for subsequent branchings, where

the ‘global’ tends to allow more shower evolution.

In a branching a → bc the kinematically allowed range of z = za values, z− < z < z+,

is given by

z± =
1

2



1 +

m2
b − m2

c

m2
a

± |pa|
Ea

√
(m2

a − m2
b − m2

c)
2 − 4m2

bm
2
c

m2
a



 . (10.9)

With ‘constrained’ evolution, these bounds are respected in the evolution. The cut-off

masses meff,b and meff,c are used to define the maximum allowed z range, within which za

is chosen, together with the ma value. In the subsequent evolution of b and c, only pairs of

mb and mc are allowed for which the already selected za fulfils the constraints in eq. (10.9).

For ‘unconstrained’ evolution, which is the preferred alternative, one may start off by

assuming the daughters to be massless, so that the allowed z range is

z± =
1

2

{
1 ± |pa|

Ea
θ(ma − mmin,a)

}
, (10.10)

where θ(x) is the step function, θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0. The decay

kinematics into two massless four-vectors p
(0)
b and p

(0)
c is now straightforward. Once mb

and mc have been found from the subsequent evolution, subject only to the constraints

mb < zaEa, mc < (1 − za)Ea and mb + mc < ma, the actual massive four-vectors may be

defined as

pb,c = p
(0)
b,c ± (rcp

(0)
c − rbp

(0)
b ) , (10.11)

where

rb,c =
m2

a ± (m2
c − m2

b) −
√

(m2
a − m2

b − m2
c)

2 − 4m2
bm

2
c

2m2
a

. (10.12)

In other words, the meaning of za is somewhat reinterpreted post facto. Needless to say,

the ‘unconstrained’ option allows more branchings to take place than the ‘constrained’ one.

In the following discussion we will only refer to the ‘global, unconstrained’ z choice.
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10.2.3 First branchings and matrix-element matching

The final-state evolution is normally started from some initial parton pair 1 + 2, at a

Q2
max scale determined by deliberations already discussed. When the evolution of parton

1 is considered, it is assumed that parton 2 is on-shell, so that the parton 1 energy and

momentum are simple functions of its mass (and of the c.m. energy of the pair, which

is fixed), and hence also the allowed z1 range for splittings is a function of this mass,

eq. (10.10). Correspondingly, parton 2 is evolved under the assumption that parton 1 is

on-shell. After both partons have been assigned masses, their correct energies may be

found, which are smaller than originally assumed. Therefore the allowed z ranges have

shrunk, and it may happen that a branching has been assigned a z value outside this

range. If so, the parton is evolved downwards in mass from the rejected mass value; if both

z values are rejected, the parton with largest mass is evolved further. It may also happen

that the sum of m1 and m2 is larger than the c.m. energy, in which case the one with the

larger mass is evolved downwards. The checking and evolution steps are iterated until an

acceptable set of m1, m2, z1 and z2 has been found.

The procedure is an extension of the veto algorithm, where an initial overestimation

of the allowed z range is compensated by rejection of some branchings. One should note,

however, that the veto algorithm is not strictly applicable for the coupled evolution in two

variables (m1 and m2), and that therefore some arbitrariness is involved. This is manifest

in the choice of which parton will be evolved further if both z values are unacceptable, or

if the mass sum is too large.

For a pair of particles which comes from the decay of a resonance within the Standard

Model or its MSSM supersymmetric extension, the first branchings are matched to the

explicit first-order matrix elements for decays with one additional gluon in the final state,

see subsection 10.2.6 below. Here we begin by considering in detail how γ∗/Z0 → qq is

matched to the matrix element for γ∗/Z0 → qqg [Ben87a].

The matching is based on a mapping of the parton-shower variables on to the 3-jet

phase space. To produce a 3-jet event, γ∗/Z0 → q(p1)q(p2)g(p3), in the shower language,

one will pass through an intermediate state, where either the q or the q is off the mass

shell. If the former is the case then

m2 = (p1 + p3)
2 = E2

cm(1 − x2) ,

z =
E1

E1 + E3
=

x1

x1 + x3
=

x1

2 − x2
, (10.13)

where xi = 2Ei/Ecm. The q emission case is obtained with 1 ↔ 2. The parton-shower

splitting expression in terms of m2 and z, eq. (10.2), can therefore be translated into the

following differential 3-jet rate:

1

σ

dσPS

dx1 dx2
=

αs

2π
CF

1

(1 − x1)(1 − x2)
×

×
{

1 − x1

x3

(
1 +

(
x1

2 − x2

)2
)

+
1 − x2

x3

(
1 +

(
x2

2 − x1

)2
)}

, (10.14)
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where the first term inside the curly bracket comes from emission off the quark and the

second term from emission off the antiquark. The corresponding expression in matrix-

element language is

1

σ

dσME

dx1 dx2
=

αs

2π
CF

1

(1 − x1)(1 − x2)

{
x2

1 + x2
2

}
. (10.15)

With the kinematics choice of Pythia, the matrix-element expression is always smaller

than the parton-shower one. It is therefore possible to run the shower as usual, but to

impose an extra weight factor dσME/dσPS, which is just the ratio of the expressions in

curly brackets. If a branching is rejected, the evolution is continued from the rejected

Q2 value onwards (the veto algorithm). The weighting procedure is applied to the first

branching of both the q and the q, in each case with the (nominal) assumption that none

of the other partons branch (neither the sister nor the daughters), so that the relations of

eq. (10.13) are applicable.

If a photon is emitted instead of a gluon, the emission rate in parton showers is given

by

1

σ

dσPS

dx1 dx2
=

αem

2π

1

(1 − x1)(1 − x2)
×

×
{

e2
q

1 − x1

x3

(
1 +

(
x1

2 − x2

)2
)

+ e2
q

1 − x2

x3

(
1 +

(
x2

2 − x1

)2
)}

, (10.16)

and in matrix elements by [Gro81]

1

σ

dσME

dx1 dx2
=

αem

2π

1

(1 − x1)(1 − x2)

{(
eq

1 − x1

x3
− eq

1 − x2

x3

)2 (
x2

1 + x2
2

)
}

. (10.17)

As in the gluon emission case, a weighting factor dσME/dσPS can therefore be applied when

either the original q (`) or the original q (`) emits a photon. For a neutral resonance, such

as Z0, where eq = −eq, the above expressions simplify and one recovers exactly the same

ratio dσME/dσPS as for gluon emission.

Compared with the standard matrix-element treatment, a few differences remain. The

shower one automatically contains the Sudakov form factor and an αs running as a function

of the p2
⊥ scale of the branching. The shower also allows all partons to evolve further, which

means that the näıve kinematics assumed for a comparison with matrix elements is modified

by subsequent branchings, e.g. that the energy of parton 1 is reduced when parton 2 is

assigned a mass. All these effects are formally of higher order, and so do not affect a first-

order comparison. This does not mean that the corrections need be small, but experimental

results are encouraging: the approach outlined does as good as explicit second-order matrix

elements for the description of 4-jet production, better in some respects (like overall rate)

and worse in others (like some angular distributions).

10.2.4 Subsequent branches and angular ordering

The shower evolution is (almost) always done on a pair of partons, so that energy and

momentum can be conserved. In the first step of the evolution, the two original partons
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thus undergo branchings 1 → 3 + 4 and 2 → 5 + 6. As described above, the allowed m1,

m2, z1 and z2 ranges are coupled by kinematical constraints. In the second step, the pair

3 + 4 is evolved and, separately, the pair 5 + 6. Considering only the former (the latter is

trivially obtained by symmetry), the partons thus have nominal initial energies E
(0)
3 = z1E1

and E
(0)
4 = (1 − z1)E1, and maximum allowed virtualities mmax,3 = min(m1, E

(0)
3 ) and

mmax,4 = min(m1, E
(0)
4 ). Initially partons 3 and 4 are evolved separately, giving masses

m3 and m4 and splitting variables z3 and z4. If m3 + m4 > m1, the parton of 3 and 4

that has the largest ratio of mi/mmax,i is evolved further. Thereafter eq. (10.11) is used

to construct corrected energies E3 and E4, and the z values are checked for consistency.

If a branching has to be rejected because the change of parton energy puts z outside the

allowed range, the parton is evolved further.

This procedure can then be iterated for the evolution of the two daughters of parton

3 and for the two of parton 4, etc., until each parton reaches the cut-off mass mmin. Then

the parton is put on the mass shell.

The model, as described so far, produces so-called conventional showers, wherein

masses are strictly decreasing in the shower evolution. Emission angles are decreasing

only in an average sense, however, which means that also fairly ‘late’ branchings can give

partons at large angles. Theoretical studies beyond the leading-log level show that this

is not correct [Mue81], but that destructive interference effects are large in the region of

non-ordered emission angles. To a good first approximation, these so-called coherence ef-

fects can be taken into account in parton-shower programs by requiring a strict ordering in

terms of decreasing emission angles. (Actually, the fact that the shower described here is

already ordered in mass implies that the additional cut on angle will be a bit too restrictive.

While effects from this should be small at current energies, some deviations become visible

at very high energies.)

The coherence phenomenon is known already from QED. One manifestation is the

Chudakov effect [Chu55], discovered in the study of high-energy cosmic γ rays impinging

on a nuclear target. If a γ is converted into a highly collinear e+e− pair inside the emulsion,

the e+ and e− in their travel through the emulsion ionize atoms and thereby produce

blackening. However, near the conversion point the blackening is small: the e+ and e−

then are still close together, so that an atom traversed by the pair does not resolve the

individual charges of the e+ and the e−, but only feels a net charge close to zero. Only

later, when the e+ and e− are separated by more than a typical atomic radius, are the two

able to ionize independently of each other.

The situation is similar in QCD, but is further extended, since now also gluons carry

colour. For example, in a branching q0 → qg the q and g share the newly created pair

of opposite colour–anticolour charges, and therefore the q and g cannot emit subsequent

gluons incoherently. Again the net effect is to reduce the amount of soft gluon emission:

since a soft gluon (emitted at large angles) corresponds to a large (transverse) wavelength,

the soft gluon is unable to resolve the separate colour charges of the q and the g, and only

feels the net charge carried by the q0. Such a soft gluon g′ (in the region θq0g′ > θqg)

could therefore be thought of as being emitted by the q0 rather than by the q–g system.
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If one considers only emission that should be associated with the q or the g, to a good

approximation (in the soft region), there is a complete destructive interference in the regions

of non-decreasing opening angles, while partons radiate independently of each other inside

the regions of decreasing opening angles (θqg′ < θqg and θgg′ < θqg), once azimuthal angles

are averaged over. The details of the colour interference pattern are reflected in non-uniform

azimuthal emission probabilities.

The first branchings of the shower are not affected by the angular-ordering requirement

— since the evolution is performed in the c.m. frame of the original parton pair, where the

original opening angle is 180◦, any angle would anyway be smaller than this — but here

instead the matrix-element matching procedure is used, where applicable. Subsequently,

each opening angle is compared with that of the preceding branching in the shower.

For a branching a → bc the kinematical approximation

θa ≈ p⊥b

Eb
+

p⊥c

Ec
≈

√
za(1 − za)ma

(
1

zaEa
+

1

(1 − za)Ea

)
=

1√
za(1 − za)

ma

Ea
(10.18)

is used to derive the opening angle (this is anyway to the same level of approximation

as the one in which angular ordering is derived). With θb of the b branching calculated

similarly, the requirement θb < θa can be reduced to

zb(1 − zb)

m2
b

>
1 − za

zam2
a

. (10.19)

Since photons do not obey angular ordering, the check on angular ordering is not

performed when a photon is emitted. When a gluon is emitted in the branching after a

photon, its emission angle is restricted by that of the preceding QCD branching in the

shower, i.e. the photon emission angle does not enter.

10.2.5 Other final-state shower aspects

The electromagnetic coupling constant for the emission of photons on the mass shell is

αem = αem(Q2 = 0) ≈ 1/137. For the strong coupling constant several alternatives are

available, the default being the first-order expression αs(p
2
⊥), where p2

⊥ is defined by the

approximate expression p2
⊥ ≈ z(1 − z)m2. Studies of next-to-leading-order corrections

favour this choice [Ama80]. The other alternatives are a fixed αs and an αs(m
2).

With the default choice of p2
⊥ as scale in αs, a further cut-off is introduced on the

allowed phase space of gluon emission, not present in the options with fixed αs or with

αs(m
2), nor in the QED shower. A minimum requirement, to ensure a well-defined αs, is

that p⊥/Λ > 1.1, but additionally Pythia requires that p⊥ > Q0/2. This latter require-

ment is not a necessity, but it makes sense when p⊥ is taken to be the preferred scale of

the branching process, rather than e.g. m. It reduces the allowed z range, compared with

the purely kinematical constraints. Since the p⊥ cut is not present for photon emission,

the relative ratio of photon to gluon emission off a quark is enhanced at small virtualities

compared with näıve expectations; in actual fact this enhancement is largely compensated

by the running of αs, which acts in the opposite direction. The main consequence, however,
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is that the gluon energy spectrum is peaked at around Q0 and rapidly vanishes for energies

below that, whilst the photon spectrum extends almost all the way to zero energy.

Previously it was said that azimuthal angles in branchings are chosen isotropically.

In fact, it is possible to include some effects of gluon polarization, which correlate the

production and the decay planes of a gluon, such that a g → gg branching tends to take

place in the production plane of the gluon, while a decay out of the plane is favoured for

g → qq. The formulae are given e.g. in ref. [Web86], as simple functions of the z value at the

vertex where the gluon is produced and of the z value when it branches. Also coherence

phenomena lead to non-isotropic azimuthal distributions [Web86]. In either case the ϕ

azimuthal variable is first chosen isotropically, then the weight factor due to polarization

times coherence is evaluated, and the ϕ value is accepted or rejected. In case of rejection,

a new ϕ is generated, and so on.

While the normal case is to have an initial pair of partons, there are a few examples

where one or three partons have to be allowed to shower. If only one parton is given, it is not

possible to conserve both energy and momentum. The choice has been made to conserve

energy and jet direction, but the momentum vector is scaled down when the radiating

parton acquires a mass. The ‘rest frame of the system’, used e.g. in the z definition, is

taken to be whatever frame the jet is given in.

In Υ → ggg decays and other configurations (e.g. from external processes) with three

or more primary parton, one is left with the issue how the kinematics from the on-shell

matrix elements should be reinterpreted for an off-shell multi-parton configuration. We

have made the arbitrary choice of preserving the direction of motion of each parton in the

rest frame of the system, which means that all three-momenta are scaled down by the same

amount, and that some particles gain energy at the expense of others. Mass multiplets

outside the allowed phase space are rejected and the evolution continued.

Finally, it should be noted that two toy shower models are included as options. One

is a scalar-gluon model, in which the q → qg branching kernel is replaced by Pq→qg(z) =
2
3 (1−z). The couplings of the gluon, g → gg and g → qq, have been left as free parameters,

since they depend on the colour structure assumed in the model. The spectra are flat in

z for a spin 0 gluon. Higher-order couplings of the type g → ggg could well contribute

significantly, but are not included. The second toy model is an Abelian vector one. In this

option g → gg branchings are absent, and g → qq ones enhanced. More precisely, in the

splitting kernels, eq. (10.3), the Casimir factors are changed as follows: CF = 4/3 → 1,

NC = 3 → 0, TR = nf/2 → 3nf . When using either of these options, one should be

aware that also a number of other components in principle should be changed, from the

running of αs to the whole concept of fragmentation. One should therefore not take them

too seriously.

10.2.6 Merging with massive matrix elements

The matching to first-order matrix-elements is well-defined for massless quarks, and was

originally used unchanged for massive ones. A first attempt to include massive matrix

elements did not compensate for mass effects in the shower kinematics, and therefore came

to exaggerate the suppression of radiation off heavy quarks [Nor01, Bam00]. Now the
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colour spin γ5 example codes

1 → 3 + 3 — — (eikonal) 6 – 9

1 → 3 + 3 1 → 1
2 + 1

2 1, γ5, 1 ± γ5 Z0 → qq 11 – 14

3 → 3 + 1 1
2 → 1

2 + 1 1, γ5, 1 ± γ5 t → bW+ 16 – 19

1 → 3 + 3 0 → 1
2 + 1

2 1, γ5, 1 ± γ5 h0 → qq 21 – 24

3 → 3 + 1 1
2 → 1

2 + 0 1, γ5, 1 ± γ5 t → bH+ 26 – 29

1 → 3 + 3 1 → 0 + 0 1 Z0 → q̃q̃ 31 – 34

3 → 3 + 1 0 → 0 + 1 1 q̃ → q̃′W+ 36 – 39

1 → 3 + 3 0 → 0 + 0 1 h0 → q̃q̃ 41 – 44

3 → 3 + 1 0 → 0 + 0 1 q̃ → q̃′H+ 46 – 49

1 → 3 + 3 1
2 → 1

2 + 0 1, γ5, 1 ± γ5 χ̃ → qq̃ 51 – 54

3 → 3 + 1 0 → 1
2 + 1

2 1, γ5, 1 ± γ5 q̃ → qχ̃ 56 – 59

3 → 3 + 1 1
2 → 0 + 1

2 1, γ5, 1 ± γ5 t → t̃χ̃ 61 – 64

8 → 3 + 3 1
2 → 1

2 + 0 1, γ5, 1 ± γ5 g̃ → qq̃ 66 – 69

3 → 3 + 8 0 → 1
2 + 1

2 1, γ5, 1 ± γ5 q̃ → qg̃ 71 – 74

3 → 3 + 8 1
2 → 0 + 1

2 1, γ5, 1 ± γ5 t → t̃g̃ 76 – 79

1 → 8 + 8 — — (eikonal) 81 – 84

Table 26: Processes for which matching to matrix elements with one extra gluon in the final state

has been calculated. Colour quantum numbers are denoted with 1 for singlet, 3 for triplet and 8

for octet. See the text for an explanation of the γ5 column and further comments.

shower has been modified to solve this issue, and also improved and extended to cover

better a host of different reactions [Nor01].

The starting point is the calculation of the processes a → bc and a → bcg, each at

leading order, where the ratio

WME(x1, x2) =
1

σ(a → bc)

dσ(a → bcg)

dx1 dx2
(10.20)

gives the process-dependent differential gluon-emission rate. Here the phase space variables

are x1 = 2Eb/ma and x2 = 2Ec/ma, expressed in the rest frame of particle a. Taking the

Standard Model and the minimal supersymmetric extension thereof as templates, a wide

selection of generic colour and spin structures have been addressed, as shown in table 26.

When allowed, processes have been calculated for an arbitrary mixture of ‘parities’, i.e.

with or without a γ5 factor, like in the vector/axial vector structure of γ∗/Z0. Various

combinations of 1 and γ5 may also arise e.g. from the wave functions of the sfermion partners

to the left- and right-handed fermion states. In cases where the correct combination is not

provided, an equal mixture of the two is assumed as a reasonable compromise. All the
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matrix elements are encoded in the new function PYMAEL(NI,X1,X2,R1,R2,ALPHA), where

NI distinguishes the matrix elements, ALPHA is related to the γ5 admixture and the mass

ratios r1 = mb/ma and r2 = mc/ma are free parameters. This routine is called by PYSHOW,

but might also have an interest on its own.

In order to match to the singularity structure of the massive matrix elements, the

evolution variable Q2 is changed from m2 to m2 −m2
on−shell, i.e. 1/Q2 is the propagator of

a massive particle [Nor01]. For the shower history b → bg this gives a differential probability

WPS,1(x1, x2) =
αs

2π
CF

dQ2

Q2

2 dz

1 − z

1

dx1 dx2
=

αs

2π
CF

2

x3 (1 + r2
2 − r2

1 − x2)
, (10.21)

where the numerator 1 + z2 of the splitting kernel for q → qg has been replaced by a 2

in the shower algorithm. For a process with only one radiating parton in the final state,

such as t → bW+, the ratio WME/WPS,1 gives the acceptance probability for an emission

in the shower. The singularity structure exactly agrees between ME and PS, giving a well-

behaved ratio always below unity. If both b and c can radiate, there is a second possible

shower history that has to be considered. The matrix element is here split in two parts, one

arbitrarily associated with b → bg branchings and the other with c → cg ones. A convenient

choice is WME,1 = WME(1 + r2
1 − r2

2 − x1)/x3 and WME,2 = WME(1 + r2
2 − r2

1 − x2)/x3,

which again gives matching singularity structures in WME,i/WPS,i and thus a well-behaved

Monte Carlo procedure.

Top, squarks and gluinos can radiate gluons, as shown in Table 26 for the case of

resonance decays. Radiation is included also in a primary production process such as

qg → q̃g̃, but then without a perfect match to the respective first-order emission matrix

elements, which here also would contain interference with initial-state radiation. Instead

a close analogue is found in the table, with the same final-state colour and spin structure,

to ensure that at least the limit of collinear radiation is handled correctly. Furthermore, in

this case, the maximum scale of emission is regulated by the standard shower parameters,

and not simply set by the decaying resonance mass.

Also subsequent emissions of gluons off the primary particles are corrected to WME.

To this end, a reduced-energy system is constructed, which retains the kinematics of the

branching under consideration but omits the gluons already emitted, so that an effective

three-body shower state can be mapped to an (x1, x2, r1, r2) set of variables. For light

quarks this procedure is almost equivalent with the original one of using the simple universal

splitting kernels after the first branching. For heavy quarks it offers an improved modelling

of mass effects also in the collinear region.

Some related further changes have been introduced, a few minor as default and some

more significant ones as non-default options [Nor01]. This includes the description of

coherence effects and αs arguments, in general and more specifically for secondary heavy

flavour production by gluon splittings. The problem in the latter area is that data at

LEP1 show a larger rate of secondary charm and bottom production than predicted in

most shower descriptions [Bam00, Man00], or in analytical studies [Sey95]. This is based

on applying the same kind of coherence considerations to g → qq branchings as to g → gg,
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which is not fully motivated by theory. In the lack of an unambiguous answer, it is therefore

helpful to allow options that can explore the range of uncertainty.

Further issues remain to be addressed, e.g. radiation off particles with non-negligible

width, where interference between radiation before and after the decay is not considered.

In general, however, the new description of mass effects in the shower should allow an

improved description of gluon radiation in many different processes.

10.2.7 Matching to four-parton events

The shower routine, as described above, is optimized for two objects forming the showering

system, within which energy and momentum should be conserved. However, occasionally

more than two initial objects are given, e.g. if one would like to consider the subclass of

e+e− → qqgg events in order to study angular correlations as a test of the coupling structure

of QCD. Such events are generated in the showering of normal e+e− → qq events, but not

with high efficiency within desired cuts, and not with the full angular structure included

in the shower. Therefore four-parton matrix elements may be the required starting point

but, in order to ‘dress up’ these partons, one nevertheless wishes to add shower emission.

A possibility to start from three partons has existed since long, but only with [And98a]

was an approach for four parton introduced, and with the possibility to generalize to more

partons, although this latter work has not yet been done.

The basic idea is to cast the output of matrix element generators in the form of a

parton-shower history, that then can be used as input for a complete parton shower. In

the shower, that normally would be allowed to develop at random, some branchings are

now fixed to their matrix-element values while the others are still allowed to evolve in

the normal shower fashion. The preceding history of the event is also in these random

branchings then reflected e.g. in terms of kinematical or dynamical (e.g. angular ordering)

constraints.

Consider e.g. the qqgg case. The matrix-element expression contains contributions

from five graphs, and from interferences between them. The five graphs can also be read

as five possible parton-shower histories for arriving at the same four-parton state, but here

without the possibility of including interferences. The relative probability for each of these

possible shower histories can be obtained from the rules of shower branchings. For example,

the relative probability for the history where e+e− → q(1)q(2), followed by q(1) → q(3)g(4)

and g(4) → g(5)g(6), is given by:

P = P1→34P4→56 =
1

m2
1

4

3

1 + z2
34

1 − z34
× 1

m2
4

3
(1 − z56(1 − z56))

2

z56(1 − z56)
(10.22)

where the probability for each branching contains the mass singularity, the colour factor

and the momentum splitting kernel. The masses are given by

m2
1 = p2

1 = (p3 + p5 + p6)
2 , (10.23)

m2
4 = p2

4 = (p5 + p6)
2 ,
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and the z values by

zbc = za→bc =
m2

a

λ

Eb

Ea
− m2

a − λ + m2
b − m2

c

2λ
(10.24)

with λ =
√

(m2
a − m2

b − m2
c)

2 − 4m2
b m2

c .

We here assume that the on-shell mass of quarks can be neglected. The form of the

probability then matches the expression used in the parton-shower algorithm.

Variants on the above probabilities are imaginable. For instance, in the spirit of the

matrix-element approach we have assumed a common αs for all graphs, which thus need

not be shown, whereas the parton-shower language normally assumes αs = αs(p
2
⊥) to be a

function of the transverse momentum of each branching, One could also include information

on azimuthal anisotropies.

The relative probability P for each of the five possible parton-shower histories can

be used to select one of the possibilities at random. (A less appealing alternative would

be a ‘winner takes all’ strategy, i.e. selecting the configuration with the largest P.) The

selection fixes the values of the m, z and ϕ at two vertices. The azimuthal angle ϕ is defined

by the daughter parton orientation around the mother direction. When the conventional

parton-shower algorithm is executed, these values are then forced on the otherwise random

evolution. This forcing cannot be exact for the z values, since the final partons given by

the matrix elements are on the mass shell, while the corresponding partons in the parton

shower might be virtual and branch further. The shift between the wanted and the obtained

z values are rather small, very seldom above 10−6. More significant are the changes of the

opening angle between two daughters: when daughters originally assumed massless are

given a mass the angle between them tends to be reduced. This shift has a non-negligible

tail even above 0.1 radians. The ‘narrowing’ of jets by this mechanism is compensated by

the broadening caused by the decay of the massive daughters, and thus overall effects are

not so dramatic.

All other branchings of the parton shower are selected at random according to the

standard evolution scheme. There is an upper limit on the non-forced masses from internal

logic, however. For instance, for four-parton matrix elements, the singular regions are

typically avoided with a cut y > 0.01, where y is the square of the minimal scaled invariant

mass between any pair of partons. Larger y values could be used for some purposes, while

smaller ones give so large four-jet rates that the need to include Sudakov form factors can

no longer be neglected. The y > 0.01 cut roughly corresponds to m > 9 GeV at LEP 1

energies, so the hybrid approach must allow branchings at least below 9 GeV in order to

account for the emission missing from the matrix-element part. Since no 5-parton emission

is generated by the second-order matrix elements, one could also allow a threshold higher

than 9 GeV in order to account for this potential emission. However, if any such mass is

larger than one of the forced masses, the result would be a different history than the chosen

one, and one would risk some double-counting issues. So, as an alternative, one could set

the minimum invariant mass between any of the four original partons as the maximum

scale of the subsequent shower evolution.
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10.2.8 A new p⊥-ordered final-state shower

The traditional PYSHOW routine described above gives a mass-ordered time-like cascade,

with angular ordering by veto. It offers an alternative to the Herwig angular-ordered

shower [Mar88] and Ariadne p⊥-ordered dipole emission [Gus88, Pet88]. For most prop-

erties, comparably good descriptions can be obtained of LEP data by all three [Kno96],

although Ariadne seems to do slightly better than the others.

Recently, the possibility to combine separately generated n-parton configurations from

Born-level matrix element expressions has attracted attention, see [Cat01]. This requires

the implementation of vetoed parton showers, to forbid emissions that would lead to double-

counting, and trial parton showers, to generate the appropriate Sudakovs lacking in the

matrix elements [Lon02]. The PYSHOW algorithm is not well suited for this kind of applica-

tions, since the full evolution process cannot easily be factored into a set of evolution steps

in well-defined mass ranges — the kinematics is closely tied both to the mother and the

daughter virtualities of a branching. Further, as we will see in section 11, the multiple-

interactions scenarios are most appropriately defined in terms of transverse momenta, also

for showers.

As an alternative, the new PYPTFS routine [Sjo04a] offers a shower algorithm borrowing

several of the dipole ideas, combined with many of the old PYSHOW elements. It is a hybrid

between the traditional parton shower and the dipole emission approaches, in the sense

that the branching process is associated with the evolution of a single parton, like in a

shower, but recoil effects occur inside dipoles. That is, the daughter partons of a branching

are put on-shell. Instead a recoiling partner is assigned for each branching, and energy and

momentum is ‘borrowed’ from this partner to give mass to the parton about to branch. In

this sense, the branching and recoiling partons form a dipole. Often the two are colour-

connected, i.e. the colour of one matches the anticolour of the other, but this need not be

the case. For instance, in t → bW+ the W+ takes the recoil when the b radiates a gluon.

Furthermore, the radiation of a gluon is split into two dipoles, again normally by colour.

The evolution variable is approximately the p2
⊥ of a branching, where p⊥ is the trans-

verse momentum for each of the two daughters with respect to the direction of the mother,

in the rest frame of the dipole. (The recoiling parton does not obtain any p⊥ kick in

this frame; only its longitudinal momentum is affected.) For the simple case of massless

radiating partons and small virtualities relative to the kinematically possible ones, and in

the limit that recoil effects from further emissions can be neglected, it agrees with the dij

p⊥-clustering distance defined in the original LUCLUS (now PYCLUS) algorithm, see section

15.3.1.

All emissions are ordered in a single sequence p⊥max > p⊥1 > p⊥2 > . . . > p⊥min.

That is, all initial partons are evolved from the input p⊥max scale, and the one with the

largest p⊥ is chosen to undergo the first branching. Thereafter, all partons now existing

are evolved downwards from p⊥1, and a p⊥2 is chosen, and so on, until p⊥min is reached.

(Technically, the p⊥ values for partons not directly or indirectly affected by a branching

need not be reselected.) As already noted above, the evolution of a gluon is split in evolution

on two separate sides, with half the branching kernel each, but with different kinematical
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constraints since the two dipoles have different masses. The evolution of a quark is also

split, into one p⊥ scale for gluon emission and one for photon one, in general corresponding

to different dipoles.

With the choices above, the evolution factorizes. That is, a set of successive calls,

where the p⊥min of one call becomes the p⊥max of the next, gives the same result (on the

average) as one single call for the full p⊥ range. This is the key element to allow Sudakovs to

be conveniently obtained from trial showers, and to veto emissions above some p⊥ scale, as

required to combine different n-parton configurations. (Not yet implemented as a standard

facility, however.)

The formal p⊥ definition is

p2
⊥evol = z(1 − z)(m2 − m2

0) , (10.25)

where p⊥evol is the evolution variable, z gives the energy sharing in the branching, as

selected from the branching kernels, m is the off-shell mass of the branching parton and

m0 its on-shell value. This p⊥evol is also used as scale for the running αs.

When a p⊥evol has been selected, this is translated to a m2 = m2
0 + p2

⊥evol/(z(1 − z))

(the same formula as above, rewritten). From there on, the three-body kinematics of a

branching is constructed as in PYSHOW [Nor01]. This includes the interpretation of z and

the handling of nonzero on-shell masses for branching and recoiling partons, which leads

to the physical p⊥ not identical to the p⊥evol defined here. In this sense, p⊥evol becomes a

formal variable, while m really is a well-defined mass of a parton.

Also the handling of matrix-element matching closely follows the machinery of [Nor01],

once the p⊥evol has been converted to a mass of the branching parton. In general, the ‘other’

parton used to define the matrix element need not be the same as the recoiling partner.

To illustrate, consider a Z0 → qq decay. In the first branching, say gluon emission off the

q, obviously the q takes the recoil, and the new q, g and q momenta are used to match to

the qqg matrix element. The next time q branches, the recoil is now taken by the current

colour-connected gluon, but the matrix element corrections are based on the newly created

q and g momenta together with the q (not the recoiling g!) momentum. That way we hope

to achieve the most realistic description of mass effects in the collinear and soft regions.

The shower inherits some further elements from PYSHOW, such as azimuthal anisotropies

in gluon branchings from polarization effects.

The relevant parameters will have to be retuned, since the shower is quite different

from the mass-ordered one of PYSHOW. In particular, it appears that the five-flavour ΛQCD

value in PARJ(81) has to be reduced relative to the current default, roughly by a factor

of two (from 0.29 to 0.14 GeV). After such a retuning, PYPTFS (combined with string

fragmentation) appears to give an even better description of LEP1 data than does PYSHOW

[Rud04].

10.3 Initial-state showers

The initial-state shower algorithms in Pythia are not quite as sophisticated as the final-

state ones. This is partly because initial-state radiation is less well understood theoretically,
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and partly because the programming task is more complicated and ambiguous. Still, the

program at disposal is known to do a reasonably good job of describing existing data,

such as Z0 production properties at hadron colliders [Sjo85]. It can be used both for QCD

showers and for photon emission off leptons (e, µ or τ ; relative to earlier versions, the

description of incoming µ and τ are better geared to represent the differences in lepton

mass, and the lepton-inside-lepton parton distributions are properly defined).

Again we begin with a fairly model-independent overview before zooming in on the

old virtuality-ordered algorithm implemented in PYSSPA. The new transverse-momentum-

ordered formalism in PYPTIS, described at the end, shares much of the same philosophy,

apart from the quite important choice of evolution variable, of course.

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton

may be viewed as surrounded by a cloud of photons and partons; in the program the

two situations are on an equal footing, but here we choose the hadron as example. At

each instant, each individual parton initiates a virtual cascade, branching into a number

of partons. This cascade of quantum fluctuations can be described in terms of a tree-like

structure, composed of many subsequent branchings a → bc. Each branching involves

some relative transverse momentum between the two daughters. In a language where four-

momentum is conserved at each vertex, this implies that at least one of the b and c partons

must have a space-like virtuality, m2 < 0. Since the partons are not on the mass shell, the

cascade only lives a finite time before reassembling, with those parts of the cascade that

are most off the mass shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at

a given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to

resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes

at different Q2 values will seem to see different parton compositions in the hadron. The

change in parton composition with t = ln(Q2/Λ2) is given by the evolution equations

dfb(x, t)

dt
=

∑

a,c

∫
dx′

x′
fa(x

′, t)
αabc

2π
Pa→bc

( x

x′

)
. (10.26)

Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding

a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality

Q2. The Pa→bc(z) are given in eq. (10.3). As before, αabc is αs for QCD shower and αem

for QED ones.

Eq. (10.26) is closely related to eq. (10.2): dPa describes the probability that a given

parton a will branch (into partons b and c), dfb the influx of partons b from the branchings

of partons a. (The expression dfb in principle also should contain a loss term for partons

b that branch; this term is important for parton-distribution evolution, but does not ap-

pear explicitly in what we shall be using eq. (10.26) for.) The absolute form of parton

distributions for a hadron cannot be predicted in perturbative QCD, but rather have to be

parameterized at some Q0 scale, with the Q2 dependence thereafter given by eq. (10.26).

Available parameterizations are discussed in section 7.1. The lepton and photon parton
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distributions inside a lepton can be fully predicted, but here for simplicity are treated on

equal footing with hadron parton distributions.

If a hard interaction scatters a parton out of the incoming hadron, the ‘coherence’

[Gri83] of the cascade is broken: the partons can no longer reassemble completely back to

the cascade-initiating parton. In this semiclassical picture, the partons on the ‘main chain’

of consecutive branchings that lead directly from the initiating parton to the scattered

parton can no longer reassemble, whereas fluctuations on the ‘side branches’ to this chain

may still disappear. A convenient description is obtained by assigning a space-like virtuality

to the partons on the main chain, in such a way that the partons on the side branches may

still be on the mass shell. Since the momentum transfer of the hard process can put the

scattered parton on the mass shell (or even give it a time-like virtuality, so that it can

initiate a final-state shower), one is then guaranteed that no partons have a space-like

virtuality in the final state. (In real life, confinement effects obviously imply that partons

need not be quite on the mass shell.) If no hard scattering had taken place, the virtuality

of the space-like parton line would still force the complete cascade to reassemble. Since the

virtuality of the cascade probed is carried by one single parton, it is possible to equate the

space-like virtuality of this parton with the Q2 scale of the cascade, to be used e.g. in the

evolution equations. Coherence effects [Gri83, Bas83] guarantee that the Q2 values of the

partons along the main chain are strictly ordered, with the largest Q2 values close to the

hard scattering.

Further coherence effects have been studied [Cia87], with particular implications for

the structure of parton showers at small x. None of these additional complications are

implemented in the current algorithm, with the exception of a few rather primitive options

that do not address the full complexity of the problem.

Instead of having a tree-like structure, where all legs are treated democratically, the

cascade is reduced to a single sequence of branchings a → bc, where the a and b partons

are on the main chain of space-like virtuality, m2
a,b < 0, while the c partons are on the

mass shell and do not branch. (Later we will include the possibility that the c partons

may have positive virtualities, m2
c > 0, which leads to the appearance of time-like ‘final-

state’ parton showers on the side branches.) This truncation of the cascade is only possible

when it is known which parton actually partakes in the hard scattering: of all the pos-

sible cascades that exist virtually in the incoming hadron, the hard scattering will select

one.

To obtain the correct Q2 evolution of parton distributions, e.g., it is essential that all

branches of the cascade be treated democratically. In Monte Carlo simulation of space-like

showers this is a major problem. If indeed the evolution of the complete cascade is to be

followed from some small Q2
0 up to the Q2 scale of the hard scattering, it is not possible

at the same time to handle kinematics exactly, since the virtuality of the various partons

cannot be found until after the hard scattering has been selected. This kind of ‘forward

evolution’ scheme therefore requires a number of extra tricks to be made to work. Further,

in this approach it is not known e.g. what the ŝ of the hard scattering subsystem will be

until the evolution has been carried out, which means that the initial-state evolution and

the hard scattering have to be selected jointly, a not so trivial task.
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Instead we use the ‘backwards evolution’ approach [Sjo85], in which the hard scattering

is first selected, and the parton shower that preceded it is subsequently reconstructed.

This reconstruction is started at the hard interaction, at the Q2
max scale, and thereafter

step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to the

parton-shower initiator at the cut-off scale Q2
0. This procedure is possible if evolved parton

distributions are used to select the hard scattering, since the fi(x,Q2) contain the inclusive

summation of all initial-state parton-shower histories that can lead to the appearance of

an interacting parton i at the hard scale. What remains is thus to select an exclusive

history from the set of inclusive ones. In this way, backwards evolution furnishes a very

clear and intuitive picture of the relationship between the inclusive (parton distributions)

and exclusive (initial-state showers) description of the same physics.

10.3.2 Longitudinal evolution

The evolution equations, eq. (10.26), express that, during a small increase dt, there is a

probability for parton a with momentum fraction x′ to become resolved into parton b at

x = zx′ and another parton c at x′−x = (1−z)x′. Correspondingly, in backwards evolution,

during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative probability

dPb for this to happen is given by the ratio dfb/fb. Using eq. (10.26) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|

∑

a,c

∫
dx′

x′

fa(x
′, t)

fb(x, t)

αabc

2π
Pa→bc

( x

x′

)
. (10.27)

Summing up the cumulative effect of many small changes dt, the probability for no radiation

exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp

{
−

∫ tmax

t
dt′

∑

a,c

∫
dx′

x′

fa(x
′, t′)

fb(x, t′)

αabc(t
′)

2π
Pa→bc

( x

x′

)}

= exp

{
−

∫ tmax

t
dt′

∑

a,c

∫
dz

αabc(t
′)

2π
Pa→bc(z)

x′fa(x
′, t′)

xfb(x, t′)

}
, (10.28)

giving the probability that a parton b remains at x from tmax to a t < tmax.

It may be useful to compare this with the corresponding expression for forward evolu-

tion, i.e. with Sa(t) in eq. (10.5). The most obvious difference is the appearance of parton

distributions in Sb. Parton distributions are absent in Sa: the probability for a given par-

ton a to branch, once it exists, is independent of the density of partons a or b. The parton

distributions in Sb, on the other hand, express the fact that the probability for a parton

b to come from the branching of a parton a is proportional to the number of partons a

there are in the hadron, and inversely proportional to the number of partons b. Thus the

numerator fa in the exponential of Sb ensures that the parton composition of the hadron

is properly reflected. As an example, when a gluon is chosen at the hard scattering and

evolved backwards, this gluon is more likely to have been emitted by a u than by a d if the

incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the hard scattering,

the denominator fb will vanish at the Q2 threshold of the heavy-flavour production, which
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means that the integrand diverges and Sb itself vanishes, so that no heavy flavour remain

below threshold.

Another difference between Sb and Sa, already touched upon, is that the Pg→gg(z)

splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since two

gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each

branching a → bc, three quantities have to be found: the t value of the branching (which

defines the space-like virtuality Q2
b of parton b), the parton flavour a and the splitting

variable z. This information may be extracted as follows:

1. If parton b partook in the hard scattering or branched into other partons at a scale

tmax, the probability that b was produced in a branching a → bc at a lower scale t is

dPb

dt
= −dSb(x, tmax, t)

dt
=

(
∑

a,c

∫
dz

αabc(t
′)

2π
Pa→bc(z)

x′fa(x
′, t′)

xfb(x, t′)

)
Sb(x, tmax, t) .

(10.29)

If no branching is found above the cut-off scale t0 the iteration is stopped and parton

b is assumed to be massless.

2. Given the t of a branching, the relative probabilities for the different allowed branch-

ings a → bc are given by the z integrals above, i.e. by

∫
dz

αabc(t)

2π
Pa→bc(z)

x′fa(x
′, t)

xfb(x, t)
. (10.30)

3. Finally, with t and a known, the probability distribution in the splitting variable

z = x/x′ = xb/xa is given by the integrand in eq. (10.30).

In addition, the azimuthal angle ϕ of the branching is selected isotropically, i.e. no spin or

coherence effects are included in this distribution.

The selection of t, a and z is then a standard task of the kind than can be performed

with the help of the veto algorithm. Specifically, upper and lower bounds for parton distri-

butions are used to find simple functions that are everywhere larger than the integrands in

eq. (10.30). Based on these simple expressions, the integration over z may be carried out,

and t, a and z values selected. This set is then accepted with a weight given by a ratio of

the correct integrand in eq. (10.30) to the simple approximation used, both evaluated for

the given set. Since parton distributions, as a rule, are not in a simple analytical form, it

may be tricky to find reasonably good bounds to parton distributions. It is necessary to

make different assumptions for valence and sea quarks, and be especially attentive close to

a flavour threshold ([Sjo85]). An electron distribution inside an electron behaves differently

from parton distributions encountered in hadrons, and has to be considered separately.

A comment on soft-gluon emission. Nominally the range of the z integral in Sb is

x ≤ z ≤ 1. The lower limit corresponds to x′ = x/z = 1, where the fa parton distributions

in the numerator vanish and the splitting kernels are finite, wherefore no problems are

encountered here. At the upper cut-off z = 1 the splitting kernels Pq→qg(z) and Pg→gg

diverge. This is the soft-gluon singularity: the energy carried by the emitted gluon is

vanishing, xg = x′ − x = (1 − z)x′ = (1 − z)x/z → 0 for z → 1. In order to calculate the
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integral over z in Sb, an upper cut-off zmax = x/(x+ xε) is introduced, i.e. only branchings

with z ≤ zmax are included in Sb. Here xε is a small number, typically chosen so that the

gluon energy is above 2 GeV when calculated in the rest frame of the hard scattering. That

is, the gluon energy xg
√

s/2 ≥ xε
√

s/2 = 2 GeV/γ, where γ is the boost factor of the hard

scattering. The average amount of energy carried away by gluons in the range xg < xε,

over the given range of t values from ta to tb, may be estimated [Sjo85]. The finally selected

z value may thus be picked as z = zhard〈zsoft(ta, tb)〉, where zhard is the originally selected

z value and zsoft is the correction factor for soft gluon emission.

In QED showers, the smallness of αem means that one can use rather smaller cut-off

values without obtaining large amounts of emission. A fixed small cut-off xγ > 10−10 is

therefore used to avoid the region of very soft photons. As has been discussed in section

7.1.3, the electron distribution inside the electron is cut off at xe < 1−10−10, for numerical

reasons, so the two cuts are closely matched.

The cut-off scale Q0 may be chosen separately for QCD and QED showers, just as

in final-state radiation. The defaults are 1 GeV and 0.001 GeV, respectively. The former

is the typical hadronic mass scale, below which radiation is not expected resolvable; the

latter is of the order of the electron mass. Photon emission is also allowed off quarks in

hadronic interactions, with the same cut-off as for gluon emission, and also in other respects

implemented in the same spirit, rather than according to the pure QED description.

Normally QED and QCD showers do not appear mixed. The most notable exception

is resolved photoproduction (in ep) and resolved γγ events (in e+e−), i.e. shower histories

of the type e → γ → q. Here the Q2 scales need not be ordered at the interface, i.e. the last

e → eγ branching may well have a larger Q2 than the first q → qg one, and the branching

γ → q does not even have a strict parton-shower interpretation for the vector dominance

model part of the photon parton distribution. This kind of configurations is best described

by the ’gamma/lepton’ machinery for having a flux of virtual photons inside the lepton,

see section 7.1.4. In this case, no initial-state radiation has currently been implemented

for the electron (or µ or τ). The one inside the virtual-photon system is considered with

the normal algorithm, but with the lower cut-off scale modified by the photon virtuality,

see MSTP(66).

An older description still lives on, although no longer as the recommended one. There,

these issues are currently not addressed in full. Rather, based on the x selected for the

parton (quark or gluon) at the hard scattering, the xγ is selected once and for all in the

range x < xγ < 1, according to the distribution implied by eq. (7.10). The QCD parton

shower is then traced backwards from the hard scattering to the QCD shower initiator at

t0. No attempt is made to perform the full QED shower, but rather the beam-remnant

treatment (see section 11.1) is used to find the q (or g) remnant that matches the q (or g)

QCD shower initiator, with the electron itself considered as a second beam remnant.

10.3.3 Transverse evolution

We have above seen that two parton lines may be defined, stretching back from the hard

scattering to the initial incoming hadron wavefunctions at small Q2. Specifically, all parton

flavours i, virtualities Q2 and energy fractions x may be found. The exact kinematical
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interpretation of the x variable is not unique, however. For partons with small virtualities

and transverse momenta, essentially all definitions agree, but differences may appear for

branchings close to the hard scattering.

In first-order QED [Ber85] and in some simple QCD toy models [Got86], one may show

that the ‘correct’ choice is the ‘ŝ approach’. Here one requires that ŝ = x1x2s, both at the

hard-scattering scale and at any lower scale, i.e. ŝ(Q2) = x1(Q
2)x2(Q

2) s, where x1 and x2

are the x values of the two resolved partons (one from each incoming beam particle) at the

given Q2 scale. In practice this means that, at a branching with the splitting variable z,

the total ŝ has to be increased by a factor 1/z in the backwards evolution. It also means

that branchings on the two incoming legs have to be interleaved in a single monotonic

sequence of Q2 values of branchings. A problem with this x interpretation is that it is not

quite equivalent with an ms definition of parton densities [Col00], or any other standard

definition. In practice, effects should not be large from this mismatch.

For a reconstruction of the complete kinematics in this approach, one should start with

the hard scattering, for which ŝ has been chosen according to the hard-scattering matrix

element. By backwards evolution, the virtualities Q2
1 = −m2

1 and Q2
2 = −m2

2 of the two

interacting partons are reconstructed. Initially the two partons are considered in their

common c.m. frame, coming in along the ±z directions. Then the four-momentum vectors

have the non-vanishing components

E1,2 =
ŝ ± (Q2

2 − Q2
1)

2
√

ŝ
,

pz1 = −pz2 =

√
(ŝ + Q2

1 + Q2
2)

2 − 4Q2
1Q

2
2

4ŝ
, (10.31)

with (p1 + p2)
2 = ŝ.

If, say, Q2
1 > Q2

2, then the branching 3 → 1 + 4, which produced parton 1, is the one

that took place closest to the hard scattering, and the one to be reconstructed first. With

the four-momentum p3 known, p4 = p3 − p1 is automatically known, so there are four

degrees of freedom. One corresponds to a trivial azimuthal angle around the z axis. The z

splitting variable for the 3 → 1+4 vertex is found as the same time as Q2
1, and provides the

constraint (p3 +p2)
2 = ŝ/z. The virtuality Q2

3 is given by backwards evolution of parton 3.

One degree of freedom remains to be specified, and this is related to the possibility that

parton 4 initiates a time-like parton shower, i.e. may have a non-zero mass. The maximum

allowed squared mass m2
max,4 is found for a collinear branching 3 → 1 + 4. In terms of the

combinations

s1 = ŝ + Q2
2 + Q2

1 ,

s3 =
ŝ

z
+ Q2

2 + Q2
3 ,

r1 =
√

s2
1 − 4Q2

2Q
2
1 ,

r3 =
√

s2
3 − 4Q2

2Q
2
3 , (10.32)
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one obtains

m2
max,4 =

s1s3 − r1r3

2Q2
2

− Q2
1 − Q2

3 , (10.33)

which, for the special case of Q2
2 = 0, reduces to

m2
max,4 =

{
Q2

1

z
− Q2

3

} {
ŝ

ŝ + Q2
1

− ŝ

ŝ/z + Q2
3

}
. (10.34)

These constraints on m4 are only the kinematical ones, in addition coherence phenomena

could constrain the mmax,4 values further. Some options of this kind are available; the

default one is to require additionally that m2
4 ≤ Q2

1, i.e. lesser than the space-like virtuality

of the sister parton.

With the maximum virtuality given, the final-state showering machinery may be used

to give the development of the subsequent cascade, including the actual mass m2
4, with

0 ≤ m2
4 ≤ m2

max,4. The evolution is performed in the c.m. frame of the two ‘resolved’

partons, i.e. that of partons 1 and 2 for the branching 3 → 1 + 4, and parton 4 is assumed

to have a nominal energy Enom,4 = (1/z − 1)
√

ŝ/2. (Slight modifications appear if parton

4 has a non-vanishing mass mq or m`.)

Using the relation m2
4 = (p3 − p1)

2, the momentum of parton 3 may now be found as

E3 =
1

2
√

ŝ

{
ŝ

z
+ Q2

2 − Q2
1 − m2

4

}
,

pz3 =
1

2pz1
{s3 − 2E2E3} ,

p2
⊥,3 =

{
m2

max,4 − m2
4

} (s1s3 + r1r3)/2 − Q2
2(Q

2
1 + Q2

3 + m2
4)

r2
1

. (10.35)

The requirement that m2
4 ≥ 0 (or ≥ m2

f for heavy flavours) imposes a constraint on

allowed z values. This constraint cannot be included in the choice of Q2
1, where it logically

belongs, since it also depends on Q2
2 and Q2

3, which are unknown at this point. It is fairly

rare (in the order of 10% of all events) that a disallowed z value is generated, and when it

happens it is almost always for one of the two branchings closest to the hard interaction:

for Q2
2 = 0 eq. (10.34) may be solved to yield z ≤ ŝ/(ŝ + Q2

1 −Q2
3), which is a more severe

cut for ŝ small and Q2
1 large. Therefore an essentially bias-free way of coping is to redo

completely any initial-state cascade for which this problem appears.

This completes the reconstruction of the 3 → 1 + 4 vertex. The subsystem made out

of partons 3 and 2 may now be boosted to its rest frame and rotated to bring partons 3

and 2 along the ±z directions. The partons 1 and 4 now have opposite and compensating

transverse momenta with respect to the event axis. When the next vertex is considered,

either the one that produces parton 3 or the one that produces parton 2, the 3–2 subsystem

will fill the function the 1–2 system did above, e.g. the rôle of ŝ = ŝ12 in the formulae above

is now played by ŝ32 = ŝ12/z. The internal structure of the 3–2 system, i.e. the branching

3 → 1 + 4, appears nowhere in the continued description, but has become ‘unresolved’.

It is only reflected in the successive rotations and boosts performed to bring back the

new endpoints to their common rest frame. Thereby the hard-scattering subsystem 1–2
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builds up a net transverse momentum and also an overall rotation of the hard-scattering

subsystem.

After a number of steps, the two outermost partons have virtualities Q2 < Q2
0 and

then the shower is terminated and the endpoints assigned Q2 = 0. Up to small corrections

from primordial k⊥, discussed in section 11.1, a final boost will bring the partons from

their c.m. frame to the overall c.m. frame, where the x values of the outermost partons

agree also with the light-cone definition. The combination of several rotations and boosts

implies that the two colliding partons have a nontrivial orientation: when boosted back to

their rest frame, they will not be oriented along the z axis. This new orientation is then

inherited by the final state of the collision, including resonance decay products.

10.3.4 Other initial-state shower aspects

In the formulae above, Q2 has been used as argument for αs, and not only as the space-like

virtuality of partons. This is one possibility, but in fact loop calculations tend to indicate

that the proper argument for αs is not Q2 but p2
⊥ = (1 − z)Q2 [Bas83]. The variable p⊥

does have the interpretation of transverse momentum, although it is only exactly so for

a branching a → bc with a and c massless and Q2 = −m2
b , and with z interpreted as

light-cone fraction of energy and momentum. The use of αs((1 − z)Q2) is default in the

program.

Angular ordering is included in the shower evolution by default. However, as already

mentioned, the physics is much more complicated than for time-like showers, and so this

option should only be viewed as a first approximation. In the code the quantity ordered

is an approximation of p⊥/p ≈ sin θ. (An alternative would have been p⊥/pL ≈ tan θ, but

this suffers from instability problems.)

In flavour excitation processes, a c (or b) quark enters the hard scattering and should

be reconstructed by the shower as coming from a g → cc (or g → bb) branching. Here an

x value for the incoming c above Q2
c/(Q

2
c + m2

c), where Q2
c is the space-like virtuality of

the c, does not allow a kinematical reconstruction of the gluon branching with an xg < 1,

and is thus outside the allowed phase space. Such events (with some safety margin) are

rejected. Currently they will appear in PYSTAT(1) listings in the ‘Fraction of events that

fail fragmentation cuts’, which is partly misleading, but has the correct consequence of

suppressing the physical cross section. Further, the Q2 value of the backwards evolution

of a c quark is by force kept above m2
c , so as to ensure that the branching g → cc is not

‘forgotten’ by evolving Q2 below Q2
0. Thereby the possibility of having a c in the beam

remnant proper is eliminated [Nor98]. Warning: as a consequence, flavour excitation is not

at all possible too close to threshold. If the KFIN array in PYSUBS is set so as to require a

c (or b) on either side, and the phase space is closed for such a c to come from a g → cc

branching, the program will enter an infinite loop.

For proton beams, say, any c or b quark entering the hard scattering has to come from

a preceding gluon splitting. This is not the case for a photon beam, since a photon has a

c and b valence quark content. Therefore the above procedure need not be pursued there,

but c and b quarks may indeed appear as beam remnants.
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As we see, the initial-state showering algorithm leads to a net boost and rotation of

the hard-scattering subsystems. The overall final state is made even more complex by the

additional final-state radiation. In principle, the complexity is very physical, but it may

still have undesirable side effects. One such, discussed further in section 9.2, is that it is

very difficult to generate events that fulfil specific kinematics conditions, since kinematics

is smeared and even, at times, ambiguous.

A special case is encountered in Deeply Inelastic Scattering in ep collisions. Here the

DIS x and Q2 values are defined in terms of the scattered electron direction and energy,

and therefore are unambiguous (except for issues of final-state photon radiation close to

the electron direction). Neither initial- nor final-state showers preserve the kinematics of

the scattered electron, however, and hence the DIS x and Q2 are changed. In principle,

this is perfectly legitimate, with the caveat that one then also should use different sets of

parton distributions than ones derived from DIS, since these are based on the kinematics

of the scattered lepton and nothing else. Alternatively, one might consider showering

schemes that leave x and Q2 unchanged. In [Ben88] detailed modifications are presented

that make a preservation possible when radiation off the incoming and outgoing electron is

neglected, but these are not included in the current version of Pythia. Instead the current

’gamma/lepton’ machinery explicitly separates off the e → eγ vertex from the continued

fate of the photon.

The only reason for using the older machinery, such as process 10, is that this is still

the only place where weak charged and neutral current effects can be considered. What

is available there, as an option, is a simple machinery which preserves x and Q2 from the

effects of QCD radiation, and also from those of primordial k⊥ and the beam-remnant

treatment, as follows. After the showers have been generated, the four-momentum of the

scattered lepton is changed to the expected one, based on the nominal x and Q2 values. The

azimuthal angle of the lepton is maintained when the transverse momentum is adjusted.

Photon radiation off the lepton leg is not fully accounted for, i.e. it is assumed that the

energy of final-state photons is added to that of the scattered electron for the definition of

x and Q2 (this is the normal procedure for parton-distribution definitions).

The change of three-momentum on the lepton side of the event is balanced by the

final-state partons on the hadron side, excluding the beam remnant but including all the

partons both from initial- and final-state showering. The fraction of three-momentum shift

taken by each parton is proportional to its original light-cone momentum in the direction of

the incoming lepton, i.e. to E∓ pz for a hadron moving in the ± direction. This procedure

guarantees momentum but not energy conservation. For the latter, one additional degree

of freedom is needed, which is taken to be the longitudinal momentum of the initial-state

shower initiator. As this momentum is modified, the change is shared by the final-state par-

tons on the hadron side, according to the same light-cone fractions as before (based on the

original momenta). Energy conservation requires that the total change in final-state parton

energies plus the change in lepton side energy equals the change in initiator energy. This

condition can be turned into an iterative procedure to find the initiator momentum shift.

Sometimes the procedure may break down. For instance, an initiator with x > 1 may

be reconstructed. If this should happen, the x and Q2 values of the event are preserved,
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but new initial- and final-state showers are generated. After five such failures, the event is

completely discarded in favour of a new kinematical setup.

Kindly note that the four-momenta of intermediate partons in the shower history are

not being adjusted. In a listing of the complete event history, energy and momentum need

then not be conserved in shower branchings. This mismatch could be fixed up, if need be.

The scheme presented above should not be taken too literally, but is rather intended

as a contrast to the more sophisticated schemes already on the market, if one would like

to understand whether the kind of conservation scheme chosen does affect the observable

physics.

10.3.5 Matrix-element matching

In Pythia 6.1, matrix-element matching was introduced for the initial-state shower de-

scription of initial-state radiation in the production of a single colour-singlet resonance,

such as γ∗/Z0/W± [Miu99] (for Higgs production, see below). The basic idea is to map the

kinematics between the PS and ME descriptions, and to find a correction factor that can be

applied to hard emissions in the shower so as to bring agreement with the matrix-element

expression. The Pythia shower kinematics definitions are based on Q2 as the space-like

virtuality of the parton produced in a branching and z as the factor by which the ŝ of the

scattering subsystem is reduced by the branching. Some simple algebra then shows that

the two qq′ → gW± emission rates disagree by a factor

Rqq′→gW(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

, (10.36)

which is always between 1/2 and 1. The shower can therefore be improved in two ways,

relative to the old description. Firstly, the maximum virtuality of emissions is raised from

Q2
max ≈ m2

W to Q2
max = s, i.e. the shower is allowed to populate the full phase space

(referred to as a ‘power shower’ in [Ple05, Ska05]). Secondly, the emission rate for the final

(which normally also is the hardest) q → qg emission on each side is corrected by the factor

R(ŝ, t̂) above, so as to bring agreement with the matrix-element rate in the hard-emission

region. In the backwards evolution shower algorithm [Sjo85], this is the first branching

considered.

The other possible O(αs) graph is qg → q′W±, where the corresponding correction

factor is

Rqg→q′W(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2 + 2m2

W t̂

(ŝ − m2
W)2 + m4

W

, (10.37)

which lies between 1 and 3. A probable reason for the lower shower rate here is that the

shower does not explicitly simulate the s-channel graph qg → q∗ → q′W. The g → qq

branching therefore has to be preweighted by a factor of 3 in the shower, but otherwise

the method works the same as above. Obviously, the shower will mix the two alternative

branchings, and the correction factor for a final branching is based on the current type.

The reweighting procedure prompts some other changes in the shower. In particular,

û < 0 translates into a constraint on the phase space of allowed branchings, not imple-
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mented before Pythia 6.1. Here û = Q2 − ŝold(1 − z)/z = Q2 − ŝnew(1 − z), where the

association with the û variable is relevant if the branching is reinterpreted in terms of a

2 → 2 scattering. Usually such a requirement comes out of the kinematics, and therefore

is imposed eventually anyway. The corner of emissions that do not respect this require-

ment is that where the Q2 value of the space-like emitting parton is little changed and

the z value of the branching is close to unity. (That is, such branchings are kinematically

allowed, but since the mapping to matrix-element variables would assume the first parton

to have Q2 = 0, this mapping gives an unphysical û, and hence no possibility to impose a

matrix-element correction factor.) The correct behaviour in this region is beyond leading-

log predictivity. It is mainly important for the hardest emission, i.e. with largest Q2. The

effect of this change is to reduce the total amount of emission by a non-negligible amount

when no matrix-element correction is applied. (This can be confirmed by using the special

option MSTP(68) = -1.) For matrix-element corrections to be applied, this requirement

must be used for the hardest branching, and then whether it is used or not for the softer

ones is less relevant.

Our published comparisons with data on the p⊥W spectrum show quite a good agree-

ment with this improved simulation [Miu99]. A worry was that an unexpectedly large

primordial k⊥, around 4 GeV, was required to match the data in the low-p⊥Z region. How-

ever, at that time we had not realized that the data were not fully unsmeared. The required

primordial k⊥ therefore drops by about a factor of two [Bal01]. This number is still un-

comfortably large, but not too dissimilar from what is required in various resummation

descriptions.

The method can also be used for initial-state photon emission, e.g. in the process

e+e− → γ∗/Z0. There the old default Q2
max = m2

Z allowed no emission at large p⊥,

p⊥ & mZ at LEP2. This is now corrected by the increased Q2
max = s, and using the R of

eq. (10.36) with mW → mZ.

The above method does not address the issue of next-to-leading order corrections to

the total W cross section. Rather, the implicit assumption is that such corrections, coming

mainly from soft- and virtual-gluon effects, largely factorize from the hard-emission effects.

That is, that the p⊥ shape obtained in our approach will be rather unaffected by next-

to-leading order corrections (when used both for the total and the high-p⊥ cross section).

A rescaling by a common K factor could then be applied by hand at the end of the day.

However, the issue is not clear. Alternative approaches have been proposed, where more

sophisticated matching procedures are used also to get the next-to-leading order corrections

to the cross section integrated into the shower formalism [Mre99].

A matching can also be attempted for other processes than the ones above. Currently

a matrix-element correction factor is also used for g → gg and q → gq branchings in the

gg → h0 process, in order to match on to the gg → gh0 and qg → qh0 matrix elements

[Ell88]. The loop integrals of Higgs production are quite complex, however, and therefore

only the expressions obtained in the limit of a heavy top quark is used as a starting point

to define the ratios of gg → gh0 and qg → qh0 to gg → h0 cross sections. (Whereas

the gg → h0 cross section by itself contains the complete expressions.) In this limit, the
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compact correction factors

Rgg→gh0(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ4 + t̂4 + û4 + m8

h

2(ŝ2 − m2
h(ŝ − m2

h))2
(10.38)

and

Rqg→qh0(ŝ, t̂) =
(dσ̂/dt̂)ME

(dσ̂/dt̂)PS

=
ŝ2 + û2

ŝ2 + (ŝ − m2
h)

2
(10.39)

can be derived. Even though they are clearly not as reliable as the above expressions for

γ∗/Z0/W±, they should hopefully represent an improved description relative to having no

correction factor at all. For this reason they are applied not only for the Standard Model

Higgs, but for all the three Higgs states h0, H0 and A0. The Higgs correction factors are

always in the comfortable range between 1/2 and 1.

Note that a third process, qq → gh0 does not fit into the pattern of the other two.

The above process cannot be viewed as a showering correction to a lowest-order qq → h0

one: since the q is assumed (essentially) massless there is no pointlike coupling. The graph

above instead again involved a top loop, coupled to the initial state by a single s-channel

gluon. The final-state gluon is necessary to balance colours in the process, and therefore

the cross section is vanishing in the p⊥ → 0 limit.

10.3.6 A new p⊥-ordered initial-state shower

In parallel with the introduction of a new p⊥-ordered final-state shower, also a new p⊥-

ordered initial-state shower is introduced. Thus the old PYSSPA routine is complemented

with the new PYPTIS one. The advantage of a p⊥-ordered evolution becomes especially

apparent when multiple interactions are considered in the next section, and transverse mo-

mentum can be used as a common ordering variable for multiple interactions and initial-

state radiation, thereby allowing ‘interleaved evolution’. At the level of one single interac-

tion, much of the formalism closely resembles the virtuality-ordered one presented above.

In this section we therefore only give an overview of the new main features of the algorithm,

with further details found in [Sjo04a].

Also the new initial-state showers are constructed by backwards evolution, starting at

the hard interaction and successively reconstructing preceding branchings. To simplify the

merging with first-order matrix elements, z is again defined by the ratio of ŝ before and after

an emission. For a massless parton branching into one space-like with virtuality Q2 and

one with mass m, this gives p2
⊥ = Q2−z(ŝ+Q2)(Q2 +m2)/ŝ, or p2

⊥ = (1−z)Q2−zQ4/ŝ for

m = 0. Here ŝ is the squared invariant mass after the emission, i.e. excluding the emitted

on-mass-shell parton.

The last term, zQ4/ŝ, while normally expected to be small, gives a nontrivial relation-

ship between p2
⊥ and Q2, e.g. with two possible Q2 solutions for a given p2

⊥. The second

solution corresponds to a parton being emitted, at very large angles, in the ‘backwards’

direction, where emissions from the incoming parton on the other side of the event should

dominate. Based on such physics considerations, and in order to avoid the resulting techni-

cal problems, the evolution variable is picked to be p2
⊥evol = (1−z)Q2. Also here p⊥evol sets

the scale for the running αs. Once selected, the p2
⊥evol is translated into an actual Q2 by the
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inverse relation Q2 = p2
⊥evol/(1−z), with trivial Jacobian: dQ2/Q2 dz = dp2

⊥evol/p
2
⊥evol dz.

From Q2 the correct p2
⊥, including the zQ4/ŝ term, can be constructed.

Emissions on the two incoming sides are interspersed to form a single falling p⊥ se-

quence, p⊥max > p⊥1 > p⊥2 > · · · > p⊥min. That is, the p⊥ of the latest branching

considered sets the starting scale of the downwards evolution on both sides, with the next

branching occurring at the side that gives the largest such evolved p⊥.

In a branching a → bc, the newly reconstructed mother a is assumed to have vanishing

mass — a heavy quark would have to be virtual to exist inside a proton, so it makes no sense

to put it on mass shell. The previous mother b, which used to be massless, now acquires

the space-like virtuality Q2 and the correct p⊥ previously mentioned, and kinematics has

to be adjusted accordingly.

In the old algorithm, the b kinematics was not constructed until its space-like virtuality

had been set, and so four-momentum was explicitly conserved at each shower branching. In

the new algorithm, this is no longer the case. (A corresponding change occurs between the

old and new time-like showers, as noted above.) Instead it is the set of partons produced

by this mother b and the current mother d on the other side of the event that collectively

acquire the p⊥ of the new a → bc branching. Explicitly, when the b is pushed off-shell,

the d four-momentum is modified accordingly, such that their invariant mass is retained.

Thereafter a set of rotations and boosts of the whole b + d-produced system bring them to

the frame where b has the desired p⊥ and d is restored to its correct four-momentum.

Matrix-element corrections can be applied to the first, i.e. hardest in p⊥, branching on

both sides of the event, to improve the accuracy of the high-p⊥ description. Also several

other aspects are directly inherited from the old algorithm.

The evolution of massive quarks (charm and bottom) is more messy than in the time-

like case. A sensible procedure has been worked out, however, including modified splitting

kernels and kinematics [Sjo04a].

In addition to the normal sharp cutoff at a p⊥min scale, a new option has been included

to smoothly regularise the divergence at around a given regularisation scale p⊥0, i.e. similar

to what is being done for taming the rise of the multiple interactions cross section. The

physical motivation is that, since at zero momentum transfer the beam hadron behaves

like a colour singlet object, then at low scales the effective coupling of partons to coloured

probes should be reduced, to take into account that this ‘colour screening’ is not included

at all in the lowest-order branching and interaction matrix elements.

10.4 Routines and common-block variables

In this section we collect information on how to use the initial- and final-state showering

routines. Of these PYSHOW for final-state radiation is the more generally interesting, since

it can be called to let a user-defined parton configuration shower. The same applies for

the new PYPTFS routine. PYSSPA, on the other hand, is so intertwined with the general

structure of a Pythia event that it is of little use as a stand-alone product, and so should

only be accessed via PYEVNT. Similarly PYPTIS should not be called directly. Instead PEVNW

should be called, which in its turn calls PYEVOL for the interleaved evolution of initial-state

radiation with PYPTIS and multiple interactions with PYPTMI.

– 377 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

CALL PYSHOW(IP1,IP2,QMAX)

Purpose: to generate time-like parton showers, conventional or coherent. The perfor-

mance of the program is regulated by the switches MSTJ(38) - MSTJ(50) and

parameters PARJ(80) - PARJ(90). In order to keep track of the colour flow in-

formation, the positions K(I,4) and K(I,5) have to be organized properly for

showering partons. Inside the Pythia programs, this is done automatically, but

for external use proper care must be taken.

IP1 > 0, IP2 = 0 : generate a time-like parton shower for the parton in line IP1 in

common block PYJETS, with maximum allowed mass QMAX. With only one parton

at hand, one cannot simultaneously conserve both energy and momentum: we

here choose to conserve energy and jet direction, while longitudinal momentum

(along the jet axis) is not conserved.

IP1 > 0, IP2 > 0 : generate time-like parton showers for the two partons in lines IP1

and IP2 in the common block PYJETS, with maximum allowed mass for each

parton QMAX. For shower evolution, the two partons are boosted to their c.m.

frame. Energy and momentum is conserved for the pair of partons, although not

for each individually. One of the two partons may be replaced by a nonradiating

particle, such as a photon or a diquark; the energy and momentum of this particle

will then be modified to conserve the total energy and momentum.

IP1 > 0, -80 ≤ IP2 < 0 : generate time-like parton showers for the -IP2 (at most

80) partons in lines IP1, IP1+1, . . . IPI-IP2-1 in the common block PYJETS, with

maximum allowed mass for each parton QMAX. The actions for IP2 = -1 and IP2

= -2 correspond to what is described above, but additionally larger numbers

may be used to generate the evolution starting from three or more given partons.

Then the partons are boosted to their c.m. frame, the direction of the momentum

vector is conserved for each parton individually and energy for the system as a

whole. It should be understood that the uncertainty in this option is larger than

for two-parton systems, and that a number of the sophisticated features (such as

coherence with the incoming colour flow) are not implemented.

IP1 > 0, IP2 = -100 : generate a four-parton system, where a history starting from two

partons has already been constructed as discussed in section 10.2.7. Including

intermediate partons this requires 8 lines. This option is used in PY4JET, whereas

you would normally not want to use it directly yourself.

QMAX : the maximum allowed mass of a radiating parton, i.e. the starting value for the

subsequent evolution. (In addition, the mass of a single parton may not exceed

its energy, the mass of a parton in a system may not exceed the invariant mass

of the system.)

CALL PYPTFS(NPART,IPART,PTMAX,PTMIN,PTGEN)

Purpose: to generate a p⊥-ordered time-like final-state parton shower. The performance
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of the program is regulated by the switches MSTJ(38), MSTJ(41), MSTJ(45),

MSTJ(46) and MSTJ(47), and parameters PARJ(80) PARJ(81), PARJ(82),

PARJ(83) and PARJ(90), i.e. only a subset of the ones available with PYSHOW.

In order to keep track of the colour flow information, the positions K(I,4) and

K(I,5) have to be organized properly for showering partons. Inside the Pythia

programs, this is done automatically, but for external use proper care must be

taken.

NPART : the number of partons in the system to be showered. Must be at least 2, and can

be as large as required (modulo the technical limit below). Is updated at return

to be the new number of partons, after the shower.

IPART : array, of dimension 500 (cf. the Les Houches Accord for user processes), in which

the positions of the relevant partons are stored. To allow the identification of

matrix elements, (the showered copies of) the original resonance decay products,

if any, should be stored in the first two slots, IPART(1) and IPART(2). Is updated

at return to be the new list of partons, by adding new particles at the end. Thus,

for q → qg the quark position is updated and the gluon added, while for g → gg

and g → qq the choice of original and new is arbitrary.

PTMAX : upper scale of shower evolution. An absolute limit is set by kinematical con-

straints inside each ‘dipole’.

PTMIN : lower scale of shower evolution. For QCD evolution, an absolute lower limit is

set by PARJ(82)/2 or 1.1 × Λ
(3)
QCD, whichever is larger. For QED evolution, an

absolute lower limit is set by PARJ(83)/2 or PARJ(90)/2. Normally one would

therefore set PTMIN = 0D0 to run the shower to its intended lower cutoff.

PTGEN : returns the hardest p⊥ generated; if none then PTGEN = 0.

Note 1: the evolution is factorized, so that a set of successive calls, where the PTMIN scale

and the NPART and IPART output of one call becomes the PTMAX scale and the

NPART and IPART input of the next, gives the same result (on the average) as

one single call for the full p⊥ range. In particular, the IPART(1) and IPART(2)

entries continue to point to (the showered copies of) the original decay products

of a resonance if they did so to begin with.

Note 2: in order to read a shower listing, note that each branching now lists three ‘new’

partons. The first two are the daughters of the branching, and point back to the

branching mother. The third is the recoiling parton after it has taken the recoil,

and points back to itself before the recoil. The total energy and momentum is

conserved from the mother and original recoil to the three new partons, but not

separately between the mother and its two daughters.

Note 3: the shower is not (yet) set up to allow showers with a fixed αs nor handle radiation

in baryon-number-violating decays. Neither is there any provision for models with

a scalar gluon or Abelian vector gluons.

Note 4: the PYPTFS can also be used as an integrated element of a normal Pythia run,

in places where PYSHOW would otherwise be used. This is achieved by setting

MSTJ(41) = 11 or = 12. Then PYSHOW will call PYPTFS, provided that the shower-

ing system consists of at least two partons and that the forced four-parton-shower
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option is not used (IP2 = -100). PTMAX is then chosen to be half of the QMAX

scale of the PYSHOW call, and PTMIN is chosen to zero (which means the default

lower limits will be used). This works nicely e.g. in e+e− annihilation and for

resonance decays. Currently it is not so convenient for hadronic events: there

is not yet a matching to avoid double-counting between initial- and final-state

radiation, and sidebranch time-like evolution in space-like showers is currently

handled by evolving one parton with PYSHOW, which PYPTFS is not set up for.

Note 5: for simplicity, all partons are evolved from a common PTMAX scale. The formalism

easily accommodates separate PTMAX scales for each parton, but we have avoided

this for now so as not to complicate the routine unnecessarily for general use.

FUNCTION PYMAEL(NI,X1,X2,R1,R2,ALPHA)

Purpose: returns the ratio of the first-order gluon emission rate normalized to the lowest-

order event rate, eq. (10.20). An overall factor CF αs/2π is omitted, since the

running of αs probably is done better in shower language anyway.

NI : code of the matrix element to be used, see table 26. In each group of four codes

in that table, the first is for the 1 case, the second for the γ5 one, the third for

an arbitrary mixture, see ALPHA below, and the last for 1 ± γ5.

X1, X2 : standard energy fractions of the two daughters.

R1, R2 : mass of the two daughters normalized to the mother mass.

ALPHA: fraction of the no-γ5 (i.e. vector/scalar/. . . ) part of the cross section; a free

parameter for the third matrix element option of each group in table 26 (13, 18,

23, 28, . . . ).

SUBROUTINE PYADSH(NFIN)

Purpose: to administrate a sequence of final-state showers for external processes, where

the order normally is that all resonances have decayed before showers are con-

sidered, and therefore already existing daughters have to be boosted when their

mothers radiate or take the recoil from radiation.

NFIN : line in the event record of the last final-state entry to consider.

SUBROUTINE PYSSPA(IPU1,IPU2)

Purpose: to generate the space-like showers of the initial-state radiation in the ‘old’,

virtuality-ordered model. The performance of the program is regulated by the

switches MSTP(61) - MSTP(69) and parameters PARP(61) - PARP(68).

IPU1, IPU2 : positions of the two partons entering the hard scattering, from which the

backwards evolution is initiated.
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SUBROUTINE PYPTIS(MODE,PT2NOW,PT2CUT,PT2,IFAIL)

Purpose: to generate the space-like showers of the initial-state radiation in the ‘new’,

transverse-momentum-ordered model. The performance of the program is regu-

lated by the switches MSTP(61), MSTP(62), MSTP(68), MSTP(69), MSTP(70) and

MSTP(72), and parameters PARP(61), PARP(62) and PARP(64) i.e. only a subset

of the ones available with PYSSPA, but also with a few new extensions.

MODE : whether initialization (−1), trial emission (0) or kinematics of accepted branching

(+1).

PT2NOW : starting (max) p2
⊥ scale for evolution.

PT2CUT : lower limit for evolution.

PT2 : result of evolution. Generated p2
⊥ for trial emission.

IFAIL : status return code. IFAIL = 0 when all is well.

Note: a few non-standard options have not been implemented, such as evolution with

fixed αs.

SUBROUTINE PYMEMX(MECOR,WTFF,WTGF,WTFG,WTGG)

Purpose: to set the maximum of the ratio of the correct matrix element to the one implied

by the space-like parton shower.

MECOR : kind of hard-scattering process, 1 for f+f → γ∗/Z0/W±/ . . . vector gauge bosons,

2 for g + g → h0/H0/A0.

WTFF, WTGF, WTFG, WTGG : maximum weights for f → f (+g/γ), g/γ → f (+f), f →
g/γ (+f) and g → g (+g), respectively.

SUBROUTINE PYMEWT(MECOR,IFLCB,Q2,Z,PHIBR,WTME)

Purpose: to calculate the ratio of the correct matrix element to the one implied by the

space-like parton shower.

MECOR : kind of hard-scattering process, 1 for f+f → γ∗/Z0/W±/ . . . vector gauge bosons,

2 for g + g → h0/H0/A0.

IFLCB : kind of branching, 1 for f → f (+g/γ), 2 for g/γ → f (+f), 3 for f → g/γ (+f) and

4 for g → g (+g).

Q2, Z : Q2 and z values of shower branching under consideration.

PHIBR : ϕ azimuthal angle of the shower branching; may be overwritten inside routine.

WTME : calculated matrix element correction weight, used in the acceptance/rejection of

the shower branching under consideration.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the

performance of Pythia. Most parameters are described in section 14.3; here only

those related to PYSHOW and PYPTFS are described.
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MSTJ(38) : (D = 0) matrix element code NI for PYMAEL; as in MSTJ(47). If nonzero, the

MSTJ(38) value overrides MSTJ(47), but is then set = 0 in the PYSHOW or PYPTFS

call. The usefulness of this switch lies in processes where sequential decays occur

and thus there are several showers, each requiring its matrix element. Therefore

MSTJ(38) can be set in the calling routine when it is known, and when not set

one defaults back to the attempted matching procedure of MSTJ(47) = 3 (e.g.).

MSTJ(40) : (D = 0) possibility to suppress the branching probability for a branching

q → qg (or q → qγ) of a quark produced in the decay of an unstable particle with

width Γ, where this width has to be specified by you in PARJ(89). The algorithm

used is not exact, but still gives some impression of potential effects. This switch,

valid for PYSHOW, ought to have appeared at the end of the current list of shower

switches (after MSTJ(50)), but because of lack of space it appears immediately

before.

= 0 : no suppression, i.e. the standard parton-shower machinery.

= 1 : suppress radiation by a factor χ(ω) = Γ2/(Γ2 +ω2), where ω is the energy of

the gluon (or photon) in the rest frame of the radiating dipole. Essentially

this means that hard radiation with ω > Γ is removed.

= 2 : suppress radiation by a factor 1−χ(ω) = ω2/(Γ2+ω2), where ω is the energy

of the gluon (or photon) in the rest frame of the radiating dipole. Essentially

this means that soft radiation with ω < Γ is removed.

MSTJ(41) : (D = 2) type of branchings allowed in shower.

= 0 : no branchings at all, i.e. shower is switched off.

= 1 : QCD type branchings of quarks and gluons.

= 2 : also emission of photons off quarks and leptons; the photons are assumed on

the mass shell.

= 3 : QCD type branchings of quarks and gluons, and also emission of photons

off quarks, but leptons do not radiate (unlike = 2). Is not implemented for

PYPTFS.

= 10 : as = 2, but enhance photon emission by a factor PARJ(84). This option

is unphysical, but for moderate values, PARJ(84)≤ 10, it may be used to

enhance the prompt photon signal in qq events. The normalization of the

prompt photon rate should then be scaled down by the same factor. The

dangers of an improper use are significant, so do not use this option if you

do not know what you are doing. Is not implemented for PYPTFS.

= 11 : QCD type branchings of quarks and gluons, like = 1, but if PYSHOW is called

with a parton system that PYPTFS can handle, the latter routine is called

to do the shower. If PYPTFS is called directly by the user, this option is

equivalent to = 1.

= 12 : also emission of photons off quarks and leptons, like = 2, but if PYSHOW is

called with a parton system that PYPTFS can handle, the latter routine is

called to do the shower. If PYPTFS is called directly by the user, this option

is equivalent to = 2.

MSTJ(42) : (D = 2) branching mode, especially coherence level, for time-like showers in
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PYSHOW.

= 1 : conventional branching, i.e. without angular ordering.

= 2 : coherent branching, i.e. with angular ordering.

= 3 : in a branching a → bg, where mb is nonvanishing, the decay angle is re-

duced by a factor (1 + (m2
b/m

2
a)(1 − z)/z)−1, thereby taking into account

mass effects in the decay [Nor01]. Therefore more branchings are acceptable

from an angular ordering point of view. In the definition of the angle in

a g → qq branchings, the näıve massless expression is reduced by a factor√
1 − 4m2

q/m
2
g, which can be motivated by a corresponding actual reduction

in the p⊥ by mass effects. The requirement of angular ordering then kills

fewer potential g → qq branchings, i.e. the rate of such comes up. The

g → gg branchings are not changed from = 2. This option is fully within the

range of uncertainty that exists.

= 4 : as = 3 for a → bg and g → gg branchings, but no angular ordering re-

quirement conditions at all are imposed on g → qq branchings. This is an

unrealistic extreme, and results obtained with it should not be overstressed.

However, for some studies it is of interest. For instance, it not only gives

a much higher rate of charm and bottom production in showers, but also

affects the kinematical distributions of such pairs.

= 5 : new ‘intermediate’ coherence level [Nor01], where the consecutive gluon emis-

sions off the original pair of branching partons is not constrained by angular

ordering at all. The subsequent showering of such a gluon is angular or-

dered, however, starting from its production angle. At LEP energies, this

gives almost no change in the total parton multiplicity, but this multiplicity

now increases somewhat faster with energy than before, in better agreement

with analytical formulae. (The PYSHOW algorithm overconstrains the shower

by ordering emissions in mass and then vetoing increasing angles. This is a

first simple attempt to redress the issue.) Other branchings as in = 2.

= 6 : ‘intermediate’ coherence level as = 5 for primary partons, unchanged for

g → gg and reduced angle for g → qq and secondary q → qg as in = 3.

= 7 : ‘intermediate’ coherence level as = 5 for primary partons, unchanged for

g → gg, reduced angle for secondary q → qg as in = 3 and no angular

ordering for g → qq as in = 4.

MSTJ(43) : (D = 4) choice of z definition in branchings in PYSHOW.

= 1 : energy fraction in grandmother’s rest frame (‘local, constrained’).

= 2 : energy fraction in grandmother’s rest frame assuming massless daughters,

with energy and momentum reshuffled for massive ones (‘local, uncon-

strained’).

= 3 : energy fraction in c.m. frame of the showering partons (‘global, constrained’).

= 4 : energy fraction in c.m. frame of the showering partons assuming massless

daughters, with energy and momentum reshuffled for massive ones (‘global,

unconstrained’).

MSTJ(44) : (D = 2) choice of αs scale for shower in PYSHOW.
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= 0 : fixed at PARU(111) value.

= 1 : running with Q2 = m2/4, m mass of decaying parton, Λ as stored in

PARJ(81) (natural choice for conventional showers).

= 2 : running with Q2 = z(1 − z)m2, i.e. roughly p2
⊥ of branching, Λ as stored in

PARJ(81) (natural choice for coherent showers).

= 3 : while p2
⊥ is used as αs argument in q → qg and g → gg branchings, as in

= 2, instead m2/4 is used as argument for g → qq ones. The argument is

that the soft-gluon resummation results suggesting the p2
⊥ scale [Ama80] in

the former processes is not valid for the latter one, so that any multiple of

the mass of the branching parton is a perfectly valid alternative. The m2/4

ones then gives continuity with p2
⊥ for z = 1/2. Furthermore, with this

choice, it is no longer necessary to have the requirement of a minimum p⊥ in

branchings, else required in order to avoid having αs blow up. Therefore, in

this option, that cut has been removed for g → qq branchings. Specifically,

when combined with MSTJ(42) = 4, it is possible to reproduce the simple

1 + cos2 θ angular distribution of g → qq branchings, which is not possible

in any other approach. (However it may give too high a charm and bottom

production rate in showers [Nor01].)

= 4 : p2
⊥ as in = 2, but scaled down by a factor (1 − m2

b/m
2
a)

2 for a branching

a → bg with b massive, in an attempt better to take into account the mass

effect on kinematics.

= 5 : as for = 4 for q → qg, unchanged for g → gg and as = 3 for g → qq.

MSTJ(45) : (D = 5) maximum flavour that can be produced in shower by g → qq; also

used to determine the maximum number of active flavours in the αs factor in

parton showers (here with a minimum of 3).

MSTJ(46) : (D = 3) nonhomogeneous azimuthal distributions in a shower branching.

= 0 : azimuthal angle is chosen uniformly.

= 1 : nonhomogeneous azimuthal angle in gluon decays due to a kinematics-

dependent effective gluon polarization. Not meaningful for scalar model,

i.e. then same as = 0.

= 2 : nonhomogeneous azimuthal angle in gluon decay due to interference with

nearest neighbour (in colour). Not meaningful for Abelian model, i.e. then

same as = 0.

= 3 : nonhomogeneous azimuthal angle in gluon decay due to both polarization (=

1) and interference (= 2). Not meaningful for Abelian model, i.e. then same

as = 1. Not meaningful for scalar model, i.e. then same as = 2.

Note : PYPTFS only implements nonhomogeneities related to the gluon spin, and so

options 0 and 2 are equivalent, as are 1 and 3.

MSTJ(47) : (D = 3) matrix-element-motivated corrections to the gluon shower emission

rate in generic processes of the type a → bcg. Also, in the massless fermion

approximation, with an imagined vector source, to the lowest-order qqγ, `+`−γ

or `ν`γ matrix elements, i.e. more primitive than for QCD radiation.

= 0 : no corrections.
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= 1 - 5 : yes; try to match to the most relevant matrix element and default back to

an assumed source (e.g. a vector for a qq pair) if the correct mother particle

cannot be found.

= 6 - : yes, match to the specific matrix element code NI = MSTJ(47) of the PYMAEL

function; see table 26.

Warning : since a process may contain sequential decays involving several different

kinds of matrix elements, it may be dangerous to fix MSTJ(47) to a special-

ized value > 5; see MSTJ(38) above.

MSTJ(48) : (D = 0) possibility to impose maximum angle for the first branching in a

PYSHOW shower.

= 0 : no explicit maximum angle.

= 1 : maximum angle given by PARJ(85) for single showering parton, by PARJ(85)

and PARJ(86) for pair of showering partons.

MSTJ(49) : (D = 0) possibility to change the branching probabilities in PYSHOW accord-

ing to some alternative toy models (note that the Q2 evolution of αs may well

be different in these models, but that only the MSTJ(44) options are at your

disposal).

= 0 : standard QCD branchings.

= 1 : branchings according to a scalar gluon theory, i.e. the splitting kernels in the

evolution equations are, with a common factor αs/(2π) omitted, Pq→qg =

(2/3)(1 − z), Pg→gg = PARJ(87), Pg→qq = PARJ(88) (for each separate

flavour). The couplings of the gluon have been left as free parameters, since

they depend on the colour structure assumed. Note that, since a spin 0 object

decays isotropically, the gluon splitting kernels contain no z dependence.

= 2 : branchings according to an Abelian vector gluon theory, i.e. the colour factors

are changed (compared with QCD) according to CF = 4/3 → 1, NC = 3 →
0, TR = 1/2 → 3. Note that an Abelian model is not expected to contain any

coherence effects between gluons, so that one should normally use MSTJ(42)

= 1 and MSTJ(46) = 0 or 1. Also, αs is expected to increase with increasing

Q2 scale, rather than decrease. No such αs option is available; the one that

comes closest is MSTJ(44) = 0, i.e. a fix value.

MSTJ(50) : (D = 3) possibility to introduce colour coherence effects in the first branch-

ing of a PYSHOW final-state shower. Only relevant when colour flows through

from the initial to the final state, i.e. mainly for QCD parton-parton scattering

processes.

= 0 : none.

= 1 : impose an azimuthal anisotropy. Does not apply when the intermediate state

is a resonance, e.g., in a t → bW+ decay the radiation off the b quark is not

restricted.

= 2 : restrict the polar angle of a branching to be smaller than the scattering angle

of the relevant colour flow. Does not apply when the intermediate state is a

resonance.

= 3 : both azimuthal anisotropy and restricted polar angles. Does not apply when
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the intermediate state is a resonance.

= 4 - 6 : as = 1 - 3, except that now also decay products of coloured resonances

are restricted in angle.

Note: for subsequent branchings the (polar) angular ordering is automatic

(MSTP(42) = 2) and MSTJ(46) = 3).

PARJ(80) : (D = 0.5) ‘parity’ mixing parameter, α value for the PYMAEL routine, to be

used when MSTJ(38) is nonvanishing.

PARJ(81) : (D = 0.29 GeV) Λ value in running αs for parton showers (see MSTJ(44)).

This is used in all user calls to PYSHOW, in the PYEEVT/PYONIA e+e− routines, and

in a resonance decay. It is not intended for other time-like showers, however, for

which PARP(72) is used. This parameter ought to be reduced by about a factor

of two for use with the PYPTFS routine.

PARJ(82) : (D = 1.0 GeV) invariant mass cut-off mmin of PYSHOW parton showers, be-

low which partons are not assumed to radiate. For Q2 = p2
⊥ (MSTJ(44) = 2)

PARJ(82)/2 additionally gives the minimum p⊥ of a branching. To avoid infi-

nite αs values, one must have PARJ(82)> 2×PARJ(81) for MSTJ(44) ≥ 1 (this

is automatically checked in the program, with 2.2×PARJ(81) as the lowest value

attainable). When the PYPTFS routine is called, it is twice the p⊥min cut.

PARJ(83) : (D = 1.0 GeV) invariant mass cut-off mmin used for photon emission in PYSHOW

parton showers, below which quarks are not assumed to radiate. The function of

PARJ(83) closely parallels that of PARJ(82) for QCD branchings, but there is a

priori no requirement that the two be equal. The cut-off for photon emission off

leptons is given by PARJ(90). When the PYPTFS routine is called, it is twice the

p⊥min cut.

PARJ(84) : (D = 1.) used for option MSTJ(41) = 10 as a multiplicative factor in the

prompt photon emission rate in final-state parton showers. Unphysical but useful

technical trick, so beware!

PARJ(85), PARJ(86) : (D = 10., 10.) maximum opening angles allowed in the first

branching of parton showers; see MSTJ(48).

PARJ(87) : (D = 0.) coupling of g → gg in scalar gluon shower, see MSTJ(49) = 1.

PARJ(88) : (D = 0.) coupling of g → qq in scalar gluon shower (per quark species), see

MSTJ(49) = 1.

PARJ(89) : (D = 0. GeV) the width of the unstable particle studied for the MSTJ(40) >

0 options; to be set by you (separately for each PYSHOW call, if need be).

PARJ(90) : (D = 0.0001 GeV) invariant mass cut-off mmin used for photon emission in

PYSHOW parton showers, below which leptons are not assumed to radiate, cf.

PARJ(83) for radiation off quarks. When the PYPTFS routine is called, it is twice

the p⊥min cut. By making this separation of cut-off values, photon emission

off leptons becomes more realistic, covering a larger part of the phase space.

The emission rate is still not well reproduced for lepton–photon invariant masses

smaller than roughly twice the lepton mass itself.
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COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to status code and parameters which regulate the performance of

Pythia. Most parameters are described in section 9.3; here only those related

to PYSSPA/PYPTIS and PYSHOW/PYPTFS are described.

MSTP(22) : (D = 0) special override of normal Q2 definition used for maximum of parton-

shower evolution. This option only affects processes 10 and 83 (Deeply Inelastic

Scattering) and only in lepton-hadron events.

= 0 : use the scale as given in MSTP(32).

= 1 : use the DIS Q2 scale, i.e. −t̂.

= 2 : use the DIS W 2 scale, i.e. (−t̂)(1 − x)/x.

= 3 : use the DIS Q × W scale, i.e. (−t̂)
√

(1 − x)/x.

= 4 : use the scale Q2(1 − x)max(1, ln(1/x)), as motivated by first-order matrix

elements [Ing80, Alt78].

Note: in all of these alternatives, a multiplicative factor is introduced by PARP(67)

and PARP(71), as usual.

MSTP(61) : (D = 2) master switch for initial-state QCD and QED radiation.

= 0 : off.

= 1 : on for QCD radiation in hadronic events and QED radiation in leptonic ones.

(Not implemented for PYPTIS, equivalent to 2.).

= 2 : on for QCD and QED radiation in hadronic events and QED radiation in

leptonic ones.

MSTP(62) : (D = 3) level of coherence imposed on the space-like parton-shower evolu-

tion.

= 1 : none, i.e. neither Q2 values nor angles need be ordered in PYSSPA, while p2
⊥

values are ordered in PYPTIS.

= 2 : Q2 values in PYSSPA and p2
⊥ values in PYPTIS are strictly ordered, increasing

towards the hard interaction.

= 3 : Q2/p2
⊥ values and opening angles of emitted (on-mass-shell or time-like)

partons are both strictly ordered, increasing towards the hard interaction.

MSTP(63) : (D = 2) structure of associated time-like showers, i.e. showers initiated by

emission off the incoming space-like partons in PYSSPA.

= 0 : no associated showers are allowed, i.e. emitted partons are put on the mass

shell.

= 1 : a shower may evolve, with maximum allowed time-like virtuality set by the

phase space only.

= 2 : a shower may evolve, with maximum allowed time-like virtuality set by phase

space or by PARP(71) times the Q2 value of the space-like parton created in

the same vertex, whichever is the stronger constraint.

= 3 : a shower may evolve, with maximum allowed time-like virtuality set by phase

space, but further constrained to evolve within a cone with opening angle

(approximately) set by the opening angle of the branching where the show-
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ering parton was produced.

MSTP(64) : (D = 2) choice of αs and Q2 scale in space-like parton showers in PYSSPA.

= 0 : αs is taken to be fix at the value PARU(111).

= 1 : first-order running αs with argument PARP(63)Q2.

= 2 : first-order running αs with argument PARP(64)k2
⊥ =PARP(64)(1− z)Q2.

MSTP(65) : (D = 1) treatment of soft-gluon emission in space-like parton-shower evolution

in PYSSPA.

= 0 : soft gluons are entirely neglected.

= 1 : soft-gluon emission is resummed and included together with the hard radia-

tion as an effective z shift.

MSTP(66) : (D = 5) choice of lower cut-off for initial-state QCD radiation in VMD or

anomalous photoproduction events, and matching to primordial k⊥.

= 0 : the lower Q2 cutoff is the standard one in PARP(62)2.

= 1 : for anomalous photons, the lower Q2 cut-off is the larger of PARP(62)2 and

VINT(283) or VINT(284), where the latter is the virtuality scale for the

γ → qq vertex on the appropriate side of the event. The VINT values are

selected logarithmically even between PARP(15)2 and the Q2 scale of the

parton distributions of the hard process.

= 2 : extended option of the above, intended for virtual photons. For VMD pho-

tons, the lower Q2 cut-off is the larger of PARP(62)2 and the P 2
int scale of

the SaS parton distributions. For anomalous photons, the lower cut-off is

chosen as for = 1, but the VINT(283) and VINT(284) are here selected log-

arithmically even between P 2
int and the Q2 scale of the parton distributions

of the hard process.

= 3 : the k⊥ of the anomalous/GVMD component is distributed like 1/k2
⊥ between

k0 and p⊥min(W
2). Apart from the change of the upper limit, this option

works just like = 1.

= 4 : a stronger damping at large k⊥, like dk2
⊥/(k2

⊥ + Q2/4)2 with k0 < k⊥ <

p⊥min(W
2). Apart from this, it works like = 1.

= 5 : a k⊥ generated as in = 4 is added vectorially with a standard Gaussian k⊥
generated like for VMD states. Ensures that GVMD has typical k⊥’s above

those of VMD, in spite of the large primordial k⊥’s implied by hadronic

physics. (Probably attributable to a lack of soft QCD radiation in parton

showers.)

MSTP(67) : (D = 2) possibility to introduce colour coherence effects in the first branch-

ing of the backwards evolution of an initial-state shower in PYSSPA; mainly of

relevance for QCD parton-parton scattering processes.

= 0 : none.

= 2 : restrict the polar angle of a branching to be smaller than the scattering angle

of the relevant colour flow.

Note 1: azimuthal anisotropies have not yet been included.

Note 2: for subsequent branchings, MSTP(62) = 3 is used to restrict the (polar) an-

gular range of branchings.
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MSTP(68) : (D = 3) choice of maximum virtuality scale and matrix-element matching

scheme for initial-state radiation. To this end, the basic scattering processes are

classified as belonging to one or several of the following categories (hard-coded

for each process):

ISQCD = 1 : QCD processes, i.e. processes for which the hard scattering scale should

normally set the limit for subsequent multiple interactions. Consists of pro-

cesses 11, 12, 13, 28, 53 and 68.

ISQCD = 0 : Other processes. Multiple interactions normally allowed to populate

full phase space.

ISJETS = 1 : Processes of the X+jet type, i.e. processes for which the matrix ele-

ment already contains one radiated jet. For such processes, as well as for

QCD processes, the scale of the already existing jet(s) should set the limit

for further parton-shower evolution.

ISJETS = 0 : Processes which do not contain parton-shower jets at leading order.

ISMECR = 1 : Processes for which matrix element merging to the X+jet rate have

been implemented. This list contains the processes 1, 2, 141, 142, 144, 102,

152 and 157, i.e. single s-channel colourless gauge boson and Higgs produc-

tion: γ∗/Z0, W±, Z′0, W′±, R, h0, H0 and H±. Here the maximum scale of

shower evolution is s, the total squared energy. The nearest branching on

either side of the hard scattering is corrected by the ratio of the first-order

matrix-element weight to the parton-shower one, so as to obtain an improved

description. For gauge boson production, this branching can be of the types

q → q + g, f → f + γ, g → q + q or γ → f + f, while for Higgs production

it is g → g + g. See section 10.3.5 for a detailed description. Note that the

improvements apply both for incoming hadron and lepton beams.

ISMECR = 0 : Processes for which no such corrections are implemented.

Given this information, the following options are available:

= 0 : maximum shower virtuality is the same as the Q2 choice for the parton

distributions, see MSTP(32). (Except that the multiplicative extra factor

PARP(34) is absent and instead PARP(67) can be used for this purpose.) No

matrix-element correction.

= 1 : as = 0 for most processes, but for processes of the ISMECR = 1 type the

maximum evolution scale is the full CM energy, and ME corrections are

applied where available.

= 2 : as = 0 for most processes, but for processes of the ISQCD = 0 and ISJETS

= 0 types the maximum evolution scale is the full CM energy. No ME

corrections are applied.

= 3 : as = 2, but ME corrections are applied where available.

= -1 : as = 0, except that there is no requirement on û being negative. (Only

applies to the old PYSSPA shower.)

MSTP(69) : (D = 0) possibility to change Q2 scale for parton distributions from the

MSTP(32) choice, especially for e+e−.

= 0 : use MSTP(32) scale.
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= 1 : in lepton-lepton collisions, the QED lepton-inside-lepton parton distributions

are evaluated with s, the full squared c.m. energy, as scale.

= 2 : s is used as parton distribution scale also in other processes.

MSTP(70) : (D = 1) regularization scheme for ISR radiation when p⊥ → 0 in the new

p⊥-ordered evolution in PYPTIS.

= 0 : sharp cut-off at p⊥min =PARP(62)/2.

= 1 : sharp cut-off at p⊥min =PARP(81), rescaled with energy, the same as the

p⊥min scale used for multiple interactions when MSTP(82) = 1.

= 2 : a smooth turnoff at p⊥0 =PARP(82), rescaled with energy, the same as

the p⊥0 scale used for multiple interactions when MSTP(82) > 1. Thus

dp2
⊥/p2

⊥ → dp2
⊥/(p2

⊥ + p2
⊥0) and αs(p

2
⊥) → αs(p

2
⊥ + p2

⊥0). Note that, even

though one could in principle allow branching down to vanishing p⊥ this way

(with a highly suppressed rate), the algorithm is nonetheless forced to stop

once the evolution has reached a scale equal to 1.1 times the 3-flavour ΛQCD.

MSTP(71) : (D = 1) master switch for final-state QCD and QED radiation.

= 0 : off.

= 1 : on.

MSTP(72) : (D = 1) maximum scale for radiation off FSR dipoles stretched between ISR

partons in the new p⊥-ordered evolution in PYPTIS.

= 0 : the p⊥max scale of FSR is set as the minimum of the p⊥ production scale of

the two endpoint partons. Dipoles stretched to remnants do not radiate.

= 1 : the p⊥max scale of FSR is set as the p⊥ production scale of the respective

radiating parton. Dipoles stretched to remnants do not radiate.

= 2 : the p⊥max scale of FSR is set as the p⊥ production scale of the respective

radiating parton. Dipoles stretched to remnants can radiate (by emissions

off the perturbative-parton side, not the remnant one).

PARP(61) : (D = 0.25 GeV) Λ value used in space-like parton shower (see MSTP(64)).

This value may be overwritten, see MSTP(3).

PARP(62) : (D = 1. GeV) effective cut-off Q or k⊥ value (see MSTP(64)), below which

space-like parton showers are not evolved. Primarily intended for QCD showers

in incoming hadrons, but also applied to q → qγ branchings.

PARP(63) : (D = 0.25) in space-like shower evolution the virtuality Q2 of a parton is

multiplied by PARP(63) for use as a scale in αs and parton distributions when

MSTP(64) = 1.

PARP(64) : (D = 1.) in space-like parton-shower evolution the squared transverse mo-

mentum evolution scale k2
⊥ is multiplied by PARP(64) for use as a scale in αs and

parton distributions when MSTP(64) = 2.

PARP(65) : (D = 2. GeV) effective minimum energy (in c.m. frame) of time-like or on-shell

parton emitted in space-like shower; see also PARP(66). For a hard subprocess

moving in the rest frame of the hard process, this number is reduced roughly by

a factor 1/γ for the boost to the hard-scattering rest frame.

PARP(66) : (D = 0.001) effective lower cut-off on 1 − z in space-like showers, in addition
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to the cut implied by PARP(65).

PARP(67) : (D = 4.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied by

PARP(67) to define the maximum parton virtuality allowed in Q2-ordered space-

like showers. This does not apply to s-channel resonances, where the m aximum

virtuality is set by m2. It does apply to all user-defined processes,however. The

current default is based on Tevatron studies (see e.g. [Fie02]), while arguments

from a matching of scales in heavy-flavour production [Nor98] might suggest unity.

The range 1–4 should be considered free for variations.

PARP(68) : (D = 0.001 GeV) lower Q cut-off for QED space-like showers. Comes in

addition to a hardcoded cut that the Q2 is at least 2m2
e , 2m2

µ or 2m2
τ , as the case

may be.

PARP(71) : (D = 4.) the Q2 scale of the hard scattering (see MSTP(32)) is multiplied by

PARP(71) to define the maximum parton virtuality allowed in time-like showers.

This does not apply to s-channel resonances, where the maximum virtuality is

set by m2. Like for PARP(67) this number is uncertain.

PARP(72) : (D = 0.25 GeV) Λ value used in running αs for time-like parton showers,

except for showers in the decay of a resonance. (Resonance decay, e.g. γ∗/Z0

decay, is instead set by PARJ(81).)

COMMON/PYPART/NPART,NPARTD,IPART(MAXNUP),PTPART(MAXNUP)

Purpose: to keep track of partons that can radiate in final-state showers.

NPART : the number of partons that may radiate, determining how much of IPART and

PTPART is currently in use.

NPARTD : dummy, to avoid some compiler warnings.

IPART : the line number in /PYJETS/ in which a radiating parton is stored.

PTPART : the p⊥ scale of the parton, from which it is to be evolved downwards in search

of a first branching.
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11. Beam remnants and underlying events

Each incoming beam particle may leave behind a beam remnant, which does not take

active part in the initial-state radiation or hard-scattering process. If nothing else, these

remnants need to be put together and colour connected to the rest of the event. In addition,

in hadron-hadron collisions, the composite nature of the two incoming hadrons implies the

possibility that several pairs of partons can enter into separate but simultaneous scatterings,

‘multiple interactions’. In some fraction of events, these additional scatterings can be hard

or semi-hard, but due to the infrared peaking of the cross section the bulk of them should

normally be fairly soft compared to the primary interaction. This extra component gives

a non-negligible contribution to the ‘underlying event’ structure, and thus to the total

multiplicity. Finally, in high-luminosity colliders, it is possible to have several collisions

between beam particles in one and the same beam crossing, i.e. pile-up events, which

further act to build up the general particle production activity that is to be observed by

detectors. These three aspects are described in turn, with emphasis on the middle one,

that of multiple interactions within a single hadron-hadron collision.

Work is ongoing to improve the theoretical framework for multiple interactions.

Pythia therefore contains two partly separate approaches to this physics, which also leads

to two partly separate descriptions of beam remnants. To make matters worse, from a

pedagogical point of view, also the description of initial- and final-state radiation has been

improved, with the transition from virtuality-ordered to transverse-momentum-ordered

evolution, and with the interleaving of multiple interactions and initial-state emissions in

one common p⊥-ordered sequence. In total we therefore need to distinguish three main

scenarios.

• The ‘old model’, based on [Sjo87a], contains the old beam-remnant and showering

machineries. It remains the default while the new one is being developed, for back-

wards reference and comparisons. For instance, the ‘Tune A’ [Fie02] incarnation

of this model is commonly used at the Tevatron, and offers a convenient reference

against which other models can be compared, without the need to know how to do

a full detector simulation. Furthermore, the newer models below are mainly being

developed for pp and pp collisions so far, so have barely been tested with meson

and fixed-energy resolved-photon beams, and is not at all integrated into a com-

plete consistent set of photon interactions for a spectum of incoming energies and

virtualities.

• The ‘intermediate model’, developed in [Sjo04], attempts a more sophisticated de-

scription of correlations in flavour, colour, longitudinal and (primordial) transverse

momenta between the beam remnants and the shower initiators than offered by the

old one, and also introduces some other improvements. The virtuality-ordered show-

ers are the same as in the old model, but now each interaction can be associated

with its own showering activity, while before only the hardest interaction would be

showered, for technical reasons. In practice, we do not expect much usage of the in-

termediate model: either people stay with the old or move right to the new one below.

We have kept it mainly so that results from our publications can be reproduced.
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• The ‘new model’, with further aspects described in [Sjo04a], where transverse-

momentum-ordered showers are introduced and multiple interactions and initial-state

radiation are interleaved. The beam-remnant description introduced in the interme-

diate model stays essentially unchanged.

Several of the key multiple interactions aspects are common between the models, such

as the generation of kinematics of the multiple (semi)hard interactions and the impact-

parameter picture. Other aspects are addressed in a more or less similar spirit, but in

different ways, such as the desire to reduce the string length relative to näıve expectations.

Therefore the current section starts with a description of the old model, and thereafter

outlines where the intermediate and new models differ.

11.1 Beam remnants — old model

The initial-state radiation algorithm reconstructs one shower initiator in each beam. (If

initial-state radiation is not included, the initiator is nothing but the incoming parton

to the hard interaction.) Together the two initiators delineate an interaction subsystem,

which contains all the partons that participate in the initial-state showers, in the hard

interaction, and in the final-state showers. Left behind are two beam remnants which,

to first approximation, just sail through, unaffected by the hard process. (The issue of

additional interactions is covered in the next section.)

A description of the beam-remnant structure contains a few components. First, given

the flavour content of a (colour-singlet) beam particle, and the flavour and colour of the

initiator parton, it is possible to reconstruct the flavour and colour of the beam remnant.

Sometimes the remnant may be represented by just a single parton or diquark, but often

the remnant has to be subdivided into two separate objects. In the latter case it is necessary

to share the remnant energy and momentum between the two. Due to Fermi motion inside

hadron beams, the initiator parton may have a ‘primordial k⊥’ transverse momentum

motion, which has to be compensated by the beam remnant. If the remnant is subdivided,

there may also be a relative transverse momentum. In the end, total energy and momentum

has to be conserved. To first approximation, this is ensured within each remnant separately,

but some final global adjustments are necessary to compensate for the primordial k⊥ and

any effective beam-remnant mass.

11.1.1 Hadron beams

Consider first a proton (or, with trivial modifications, any other baryon or antibaryon).

• If the initiator parton is a u or d quark, it is assumed to be a valence quark, and

therefore leaves behind a diquark beam remnant, i.e. either a ud or a uu diquark, in a

colour antitriplet state. Relative probabilities for different diquark spins are derived

within the context of the non-relativistic SU(6) model, i.e. flavour SU(3) times spin

SU(2). Thus a ud is 3/4 ud0 and 1/4 ud1, while a uu is always uu1.

• An initiator gluon leaves behind a colour octet uud state, which is subdivided into

a colour triplet quark and a colour antitriplet diquark. SU(6) gives the appropriate

subdivision, 1/2 of the time into u + ud0, 1/6 into u + ud1 and 1/3 into d + uu1.
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• A sea quark initiator, such as an s, leaves behind a uuds four-quark state. The PDG

flavour coding scheme and the fragmentation routines do not foresee such a state, so

therefore it is subdivided into a meson plus a diquark, i.e. 1/2 into us+ud0, 1/6 into

us + ud1 and 1/3 into ds + uu1. Once the flavours of the meson are determined, the

choice of meson multiplet is performed as in the standard fragmentation description.

• Finally, an antiquark initiator, such as an s, leaves behind a uuds four-quark state,

which is subdivided into a baryon plus a quark. Since, to first approximation, the

ss pair comes from the branching g → ss of a colour octet gluon, the subdivision

uud+s is not allowed, since it would correspond to a colour-singlet ss. Therefore the

subdivision is 1/2 into ud0s + u, 1/6 into ud1s + u and 1/3 into uu1s + d. A baryon

is formed among the ones possible for the given flavour content and diquark spin,

according to the relative probabilities used in the fragmentation. One could argue

for an additional weighting to count the number of baryon states available for a given

diquark plus quark combination, but this has not been included.

One may note that any u or d quark taken out of the proton is automatically assumed

to be a valence quark. Clearly this is unrealistic, but not quite as bad as it might seem. In

particular, one should remember that the beam-remnant scenario is applied to the initial-

state shower initiators at a scale of Q0 ≈ 1 GeV and at an x value usually much larger

than the x at the hard scattering. The sea quark contribution therefore normally is small.

For a meson beam remnant, the rules are in the same spirit, but somewhat easier,

since no diquark or baryons need be taken into account. Thus a valence quark (antiquark)

initiator leaves behind a valence antiquark (quark), a gluon initiator leaves behind a valence

quark plus a valence antiquark, and a sea quark (antiquark) leaves behind a meson (which

contains the partner to the sea parton) plus a valence antiquark (quark).

11.1.2 Photon beams

A resolved photon is similar in spirit to a meson. A VMD photon is associated with either

ρ0, ω, φ or J/ψ, and so corresponds to a well-defined valence flavour content. Since the ρ0

and ω are supposed to add coherently, the uu : dd mixing is in the ratio 4 : 1. Similarly a

GVMD state is characterized by its qq classification, in rates according to e2
q times a mass

suppression for heavier quarks.

In the older photon physics options, where a quark content inside an electron is ob-

tained by a numerical convolution, one does not have to make the distinction between

valence and sea flavour. Thus any quark (antiquark) initiator leaves behind the matching

antiquark (quark), and a gluon leaves behind a quark + antiquark pair. The relative quark

flavour composition in the latter case is assumed proportional to e2
q among light flavours,

i.e. 2/3 into u + u, 1/6 into d + d, and 1/6 into s + s. If one wanted to, one could also have

chosen to represent the remnant by a single gluon.

11.1.3 Lepton beams

If no initial-state radiation is assumed, an electron (or, in general, a lepton or a neutrino)

leaves behind no beam remnant. Also when radiation is included, one would expect to re-

cover a single electron with the full beam energy when the shower initiator is reconstructed.
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This does not have to happen, e.g. if the initial-state shower is cut off at a non-vanishing

scale, such that some of the emission at low Q2 values is not simulated. Further, for purely

technical reasons, the distribution of an electron inside an electron, f e
e (x,Q2), is cut off at

x = 1− 10−10. This means that always, when initial-state radiation is included, a fraction

of at least 10−10 of the beam energy has to be put into one single photon along the beam

direction, to represent this not simulated radiation. The physics is here slightly different

from the standard beam-remnant concept, but it is handled with the same machinery.

Beam remnants can also appear when the electron is resolved with the use of parton dis-

tributions, but initial-state radiation is switched off. Conceptually, this is a contradiction,

since it is the initial-state radiation that builds up the parton distributions, but sometimes

the combination is still useful. Finally, since QED radiation has not yet been included

in events with resolved photons inside electrons, also in this case effective beam remnants

have to be assigned by the program.

The beam-remnant assignments inside an electron, in either of the cases above, is as

follows.

• An e− initiator leaves behind a γ remnant.

• A γ initiator leaves behind an e− remnant.

• An e+ initiator leaves behind an e− + e− remnant.

• A q (q) initiator leaves behind a q + e− (q + e−) remnant.

• A g initiator leaves behind a g + e− remnant. One could argue that, in agreement

with the treatment of photon beams above, the remnant should be q + q + e−. The

program currently does not allow for three beam-remnant objects, however.

11.1.4 Primordial k⊥

It is customary to assign a primordial transverse momentum to the shower initiator, to take

into account the motion of quarks inside the original hadron, basically as required by the

uncertainty principle. A number of the order of 〈k⊥〉 ≈ mp/3 ≈ 300 MeV could therefore

be expected. However, in hadronic collisions much higher numbers than that are often

required to describe data, typically of the order of 1 GeV at fixed-target energies[EMC87]

and 2 GeV at collider energies [Miu99, Bal01], if a Gaussian parameterization is used.

Thus, an interpretation as a purely nonperturbative motion inside a hadron is difficult to

maintain.

Instead a likely culprit is the initial-state shower algorithm. This is set up to cover the

region of hard emissions, but may miss out on some of the softer activity, which inherently

borders on nonperturbative physics. By default, the shower does not evolve down to scales

below Q0 = 1 GeV. Any shortfall in shower activity around or below this cutoff then has

to be compensated by the primordial k⊥ source, which thereby largely loses its original

meaning. One specific reason for such a shortfall is that the current initial-state shower

algorithm does not include non-ordered emissions in Q2, as is predicted to occur especially

at small x and Q2 within the BFKL/CCFM framework [Lip76, Cia87].

11.1.5 Remnant kinematics

By the hard scattering and the initial-state radiation machinery, the shower initiator has
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been assigned some fraction x of the four-momentum of the beam particle, leaving behind

1−x to the remnant. If the remnant consists of two objects, this energy and momentum has

to be shared, somehow. For an electron in the old photoproduction machinery, the sharing

is given from first principles: if, e.g., the initiator is a q, then that q was produced in the

sequence of branchings e → γ → q, where xγ is distributed according to the convolution

in eq. (7.10). Therefore the q remnant takes a fraction χ = (xγ − x)/(1 − x) of the total

remnant energy, and the e takes 1 − χ.

For the other beam remnants, the relative energy-sharing variable χ is not known from

first principles, but picked according to some suitable parameterization. Normally several

different options are available, that can be set separately for baryon and meson beams,

and for hadron + quark and quark + diquark (or antiquark) remnants. In one extreme are

shapes in agreement with näıve counting rules, i.e. where energy is shared evenly between

‘valence’ partons. For instance, P(χ) = 2 (1 − χ) for the energy fraction taken by the q

in a q + qq remnant. In the other extreme, an uneven distribution could be used, like in

parton distributions, where the quark only takes a small fraction and most is retained by

the diquark. The default for a q + qq remnant is of an intermediate type,

P(χ) ∝ (1 − χ)3

4

√
χ2 + c2

min

, (11.1)

with cmin = 2〈mq〉/Ecm = (0.6 GeV)/Ecm providing a lower cut-off. The default when a

hadron is split off to leave a quark or diquark remnant is to use the standard Lund sym-

metric fragmentation function. In general, the more uneven the sharing of the energy, the

less the total multiplicity in the beam-remnant fragmentation. If no multiple interactions

are allowed, a rather even sharing is needed to come close to the experimental multiplicity

(and yet one does not quite make it). With an uneven sharing there is room to generate

more of the total multiplicity by multiple interactions [Sjo87a].

In a photon beam, with a remnant q + q, the χ variable is chosen the same way it

would have been in a corresponding meson remnant.

Before the χ variable is used to assign remnant momenta, it is also necessary to con-

sider the issue of primordial k⊥. The initiator partons are thus assigned each a k⊥ value,

vanishing for an electron or photon inside an electron, distributed either according to a

Gaussian or an exponential shape for a hadron, and according to either of these shapes or

a power-like shape for a quark or gluon inside a photon (which may in its turn be inside

an electron). The interaction subsystem is boosted and rotated to bring it from the frame

assumed so far, with each initiator along the ±z axis, to one where the initiators have the

required primordial k⊥ values.

The p⊥ recoil is taken by the remnant. If the remnant is composite, the recoil is evenly

split between the two. In addition, however, the two beam remnants may be given a relative

p⊥, which is then always chosen as for qiqi pairs in the fragmentation description.

The χ variable is interpreted as a sharing of light-cone energy and momentum, i.e.

E + pz for the beam moving in the +z direction and E − pz for the other one. When the

two transverse masses m⊥1 and m⊥2 of a composite remnant have been constructed, the
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total transverse mass can therefore be found as

m2
⊥ =

m2
⊥1

χ
+

m2
⊥2

1 − χ
, (11.2)

if remnant 1 is the one that takes the fraction χ. The choice of a light-cone interpretation

to χ means the definition is invariant under longitudinal boosts, and therefore does not

depend on the beam energy itself. A χ value close to the näıve borders 0 or 1 can lead to

an unreasonably large remnant m⊥. Therefore an additional check is introduced, that the

remnant m⊥ be smaller than the näıve c.m. frame remnant energy, (1 − x)Ecm/2. If this

is not the case, a new χ and a new relative transverse momentum is selected.

Whether there is one remnant parton or two, the transverse mass of the remnant is

not likely to agree with 1− x times the mass of the beam particle, i.e. it is not going to be

possible to preserve the energy and momentum in each remnant separately. One therefore

allows a shuffling of energy and momentum between the beam remnants from each of the

two incoming beams. This may be achieved by performing a (small) longitudinal boost of

each remnant system. Since there are two boost degrees of freedom, one for each remnant,

and two constraints, one for energy and one for longitudinal momentum, a solution may

be found.

Under some circumstances, one beam remnant may be absent or of very low energy,

while the other one is more complicated. One example is Deeply Inelastic Scattering in ep

collisions, where the electron leaves no remnant, or maybe only a low-energy photon. It is

clearly then not possible to balance the two beam remnants against each other. Therefore,

if one beam remnant has an energy below 0.2 of the beam energy, i.e. if the initiator parton

has x > 0.8, then the two boosts needed to ensure energy and momentum conservation

are instead performed on the other remnant and on the interaction subsystem. If there is

a low-energy remnant at all then, before that, energy and momentum are assigned to the

remnant constituent(s) so that the appropriate light-cone combination E±pz is conserved,

but not energy or momentum separately. If both beam remnants have low energy, but both

still exist, then the one with lower m⊥/E is the one that will not be boosted.

11.2 Multiple interactions — old model

In this section we present the original model [Sjo87a] to describe the possibility that several

parton pairs undergo hard interactions in a hadron-hadron collision, and thereby contribute

to the overall event activity, in particular at low p⊥. The same model can also be used to

describe the VMD γp events, where the photon interacts like a hadron. Many basic features

of this model, for instance the introduction of a p⊥ cutoff corresponding to an inverse

colour screening distance, and the options for a non-trivial transverse density structure in

the incoming hadrons, carry over to the new scenario. It is therefore recommended first to

read this section, even if the objective should be to learn about the new scenario.

It should from the onset be made clear that this is not an easy topic. In fact, in the

full event generation process, probably no other area is as poorly understood as this one.

The whole concept of multiple interactions has been very controversial, with contradictory

experimental conclusions [AFS87], but a CDF study [CDF97] some years ago started to
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bring more general acceptance, further accelerated by the underlying-event studies of R.D.

Field [Fie02].

The multiple interactions scenario presented here [Sjo87a] was the first detailed model

for this kind of physics, and is still one of the very few available. We will present two

related but separate scenarios, one ‘simple’ model and one somewhat more sophisticated.

In fact, neither of them are all that simple, which may make the models look unattractive.

However, the world of hadron physics is complicated, and if we err, it is most likely in

being too unsophisticated. The experience gained with the model(s), in failures as well as

successes, could be used as a guideline in the evolution of yet more detailed and accurate

models.

Our basic philosophy will be as follows. The total rate of parton-parton interactions,

as a function of the transverse momentum scale p⊥, is assumed to be given by perturbative

QCD. This is certainly true for reasonably large p⊥ values, but here we shall also extend the

perturbative parton-parton scattering framework into the low-p⊥ region. A regularization

of the divergence in the cross section for p⊥ → 0 has to be introduced, however, which will

provide us with the main free parameter of the model. Since each incoming hadron is a

composite object, consisting of many partons, there should exist the possibility of several

parton pairs interacting when two hadrons collide. It is not unreasonable to assume that

the different pairwise interactions take place essentially independently of each other, and

that therefore the number of interactions in an event is given by a Poisson distribution.

This is the strategy of the ‘simple’ scenario.

Furthermore, hadrons are not only composite but also extended objects, meaning that

collisions range from very central to rather peripheral ones. Reasonably, the average num-

ber of interactions should be larger in the former than in the latter case. Whereas the

assumption of a Poisson distribution should hold for each impact parameter separately,

the distribution in number of interactions should be widened by the spread of impact pa-

rameters. The amount of widening depends on the assumed matter distribution inside the

colliding hadrons. In the ‘complex’ scenario, different matter distributions are therefore

introduced.

11.2.1 The basic cross sections

The QCD cross section for hard 2 → 2 processes, as a function of the p2
⊥ scale, is given by

dσ

dp2
⊥

=
∑

i,j,k

∫
dx1

∫
dx2

∫
dt̂ fi(x1, Q

2) fj(x2, Q
2)

dσ̂k
ij

dt̂
δ

(
p2
⊥ − t̂û

ŝ

)
, (11.3)

cf. section 7.2. Implicitly, from now on we are assuming that the ‘hardness’ of processes is

given by the p⊥ scale of the scattering. For an application of the formula above to small

p⊥ values, a number of caveats could be made. At low p⊥, the integrals receive major

contributions from the small-x region, where parton distributions are poorly understood

theoretically (Regge-limit behaviour, dense-packing problems etc. [Lev90]) and not yet

measured. Different sets of parton distributions can therefore give numerically rather

different results for the phenomenology of interest. One may also worry about higher-order
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corrections to the jet rates, K factors, beyond what is given by parton-shower corrections

— one simple option we allow here is to evaluate αs of the hard-scattering process at an

optimized scale, such as αs(0.075p
2
⊥) [Ell86].

The hard-scattering cross section above some given p⊥min is given by

σhard(p⊥min) =

∫ s/4

p2
⊥min

dσ

dp2
⊥

dp2
⊥ . (11.4)

Since the differential cross section diverges roughly like dp2
⊥/p4

⊥, σhard is also divergent for

p⊥min → 0. We may compare this with the total inelastic, non-diffractive cross section

σnd(s) — elastic and diffractive events are not the topic of this section. At current collider

energies σhard(p⊥min) becomes comparable with σnd for p⊥min ≈ 2–3 GeV, and at larger

energies this occurs at even larger p⊥min. This need not lead to contradictions: σhard

does not give the hadron-hadron cross section but the parton-parton one. Each of the

incoming hadrons may be viewed as a beam of partons, with the possibility of having

several parton-parton interactions when the hadrons pass through each other. In this

language, σhard(p⊥min)/σnd(s) is simply the average number of parton-parton scatterings

above p⊥min in an event, and this number may well be larger than unity.

While the introduction of several interactions per event is the natural consequence of

allowing small p⊥min values and hence large σhard ones, it is not the solution of σhard(p⊥min)

being divergent for p⊥min → 0: the average ŝ of a scattering decreases slower with p⊥min

than the number of interactions increases, so näıvely the total amount of scattered partonic

energy becomes infinite. One cut-off is therefore obtained via the need to introduce proper

multi-parton correlated parton distributions inside a hadron. This is not a part of the

standard perturbative QCD formalism and is therefore not built into eq. (11.4). In practice,

even correlated parton-distribution functions seems to provide too weak a cut, i.e. one is

lead to a picture with too little of the incoming energy remaining in the small-angle beam-

jet region [Sjo87a].

A more credible reason for an effective cut-off is that the incoming hadrons are colour

neutral objects. Therefore, when the p⊥ of an exchanged gluon is made small and the

transverse wavelength correspondingly large, the gluon can no longer resolve the individ-

ual colour charges, and the effective coupling is decreased. This mechanism is not in

contradiction with perturbative QCD calculations, which are always performed assuming

scattering of free partons (rather than partons inside hadrons), but neither does present

knowledge of QCD provide an understanding of how such a decoupling mechanism would

work in detail. In the simple model one makes use of a sharp cut-off at some scale p⊥min,

while a more smooth dampening is assumed for the complex scenario.

One key question is the energy-dependence of p⊥min; this may be relevant e.g. for

comparisons of jet rates at different Tevatron/RHIC energies, and even more for any ex-

trapolation to LHC energies. The problem actually is more pressing now than at the time

of the original study [Sjo87a], since nowadays parton distributions are known to be rising

more steeply at small x than the flat xf(x) behaviour normally assumed for small Q2 before

HERA. This translates into a more dramatic energy dependence of the multiple-interactions

rate for a fixed p⊥min.
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The larger number of partons should also increase the amount of screening, however,

as confirmed by toy simulations [Dis01]. As a simple first approximation, p⊥min is assumed

to increase in the same way as the total cross section, i.e. with some power ε ≈ 0.08 [Don92]

that, via reggeon phenomenology, should relate to the behaviour of parton distributions at

small x and Q2. Thus the default in Pythia is

p⊥min(s) = (1.9 GeV)

(
s

1 TeV2

)0.08

(11.5)

for the simple model, with the same ansatz for p⊥0 in the impact-parameter-dependent

approach, except that then 1.9 GeV → 2.0 GeV. At any energy scale, the simplest crite-

ria to fix p⊥min is to require the average charged multiplicity 〈nch〉 or the height of the

(pseudo)rapidity ‘plateau’ dnch/dη|η=0 to agree with the experimentally determined one.

In general, there is quite a strong dependence of the multiplicity on p⊥min, with a lower

p⊥min corresponding to more multiple interactions and therefore a higher multiplicity. This

is one of the possible inputs into the 1.9 GeV and 2.0 GeV numbers, making use of UA5

data in the energy range 200–900 GeV [UA584]. The energy dependence inside this range

is also consistent with the chosen ansatz [But05]. However, clearly, neither the experimen-

tal nor the theoretical precision is high enough to make too strong statements. It should

also be remembered that the p⊥min values are determined within the context of a given

calculation of the QCD jet cross section, and given model parameters within the multiple-

interactions scenario. If anything of this is changed, e.g. the parton distributions used,

then p⊥min ought to be retuned accordingly.

11.2.2 The simple model

In an event with several interactions, it is convenient to impose an ordering. The logical

choice is to arrange the scatterings in falling sequence of x⊥ = 2p⊥/Ecm. The ‘first’

scattering is thus the hardest one, with the ‘subsequent’ (‘second’, ‘third’, etc.) successively

softer. It is important to remember that this terminology is in no way related to any

picture in physical time; we do not know anything about the latter. (In a simplified

picture with the incoming hadrons Lorentz-contracted into flat pancakes, the interactions

would tend to have a specelike separation, i.e. without meaningful time ordering.) In

principle, all the scatterings that occur in an event must be correlated somehow, näıvely

by momentum and flavour conservation for the partons from each incoming hadron, less

näıvely by various quantum mechanical effects. When averaging over all configurations

of soft partons, however, one should effectively obtain the standard QCD phenomenology

for a hard scattering, e.g. in terms of parton distributions. Correlation effects, known

or estimated, can be introduced in the choice of subsequent scatterings, given that the

‘preceding’ (harder) ones are already known.

With a total cross section of hard interactions σhard(p⊥min) to be distributed among

σnd(s) (non-diffractive, inelastic) events, the average number of interactions per event is

just the ratio n = σhard(p⊥min)/σnd(s). As a starting point we will assume that all hadron

collisions are equivalent (no impact-parameter dependence), and that the different parton-

parton interactions take place completely independently of each other. The number of
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scatterings per event is then distributed according to a Poisson distribution with mean

n. A fit to SppS collider multiplicity data [UA584] gave p⊥min ≈ 1.6 GeV (for parton

distributions in use at the time), which corresponds to n ≈ 1. For Monte Carlo generation

of these interactions it is useful to define

f(x⊥) =
1

σnd(s)

dσ

dx⊥
, (11.6)

with dσ/dx⊥ obtained by analogy with eq. (11.3). Then f(x⊥) is simply the probability

to have a parton-parton interaction at x⊥, given that the two hadrons undergo a non-

diffractive, inelastic collision.

The probability that the hardest interaction, i.e. the one with highest x⊥, is at x⊥1, is

now given by

f(x⊥1) exp

{
−

∫ 1

x⊥1

f(x′
⊥) dx′

⊥

}
, (11.7)

i.e. the näıve probability to have a scattering at x⊥1 multiplied by the probability that there

was no scattering with x⊥ larger than x⊥1. This is the familiar exponential dampening in

radioactive decays, encountered e.g. in parton showers in section 10.1.2. Using the same

technique as in the proof of the veto algorithm, section 4.2, the probability to have an i:th

scattering at an x⊥i < x⊥i−1 < · · · < x⊥1 < 1 is found to be

f(x⊥i)
1

(i − 1)!

(∫ 1

x⊥i

f(x′
⊥) dx′

⊥

)i−1

exp

{
−

∫ 1

x⊥i

f(x′
⊥) dx′

⊥

}
. (11.8)

The total probability to have a scattering at a given x⊥, irrespectively of it being the

first, the second or whatever, obviously adds up to give back f(x⊥). The multiple inter-

action formalism thus retains the correct perturbative QCD expression for the scattering

probability at any given x⊥.

With the help of the integral

F (x⊥) =

∫ 1

x⊥

f(x′
⊥) dx′

⊥ =
1

σnd(s)

∫ s/4

sx2
⊥

/4

dσ

dp2
⊥

dp2
⊥ (11.9)

(where we assume F (x⊥) → ∞ for x⊥ → 0) and its inverse F−1, the iterative procedure to

generate a chain of scatterings 1 > x⊥1 > x⊥2 > · · · > x⊥i is given by

x⊥i = F−1(F (x⊥i−1) − ln Ri) . (11.10)

Here the Ri are random numbers evenly distributed between 0 and 1. The iterative chain

is started with a fictitious x⊥0 = 1 and is terminated when x⊥i is smaller than x⊥min =

2p⊥min/Ecm. Since F and F−1 are not known analytically, the standard veto algorithm is

used to generate a much denser set of x⊥ values, whereof only some are retained in the end.

In addition to the p2
⊥ of an interaction, it is also necessary to generate the other flavour

and kinematics variables according to the relevant matrix elements.

Whereas the ordinary parton distributions should be used for the hardest scattering,

in order to reproduce standard QCD phenomenology, the parton distributions to be used
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for subsequent scatterings must depend on all preceding x values and flavours chosen. We

do not know enough about the hadron wave function to write down such joint probability

distributions. To take into account the energy ‘already’ used in harder scatterings, a

conservative approach is to evaluate the parton distributions, not at xi for the i:th scattered

parton from hadron, but at the rescaled value

x′
i =

xi

1 − ∑i−1
j=1 xj

. (11.11)

This is our standard procedure in the simple model; we have tried a few alternatives without

finding any significantly different behaviour in the final physics.

In a fraction exp(−F (x⊥min)) of the events studied, there will be no hard scattering

above x⊥min when the iterative procedure in eq. (11.10) is applied. It is therefore also

necessary to have a model for what happens in events with no (semi)hard interactions.

The simplest possible way to produce an event is to have an exchange of a very soft gluon

between the two colliding hadrons. Without (initially) affecting the momentum distribution

of partons, the ‘hadrons’ become colour octet objects rather than colour singlet ones. If

only valence quarks are considered, the colour octet state of a baryon can be decomposed

into a colour triplet quark and an antitriplet diquark. In a baryon-baryon collision, one

would then obtain a two-string picture, with each string stretched from the quark of one

baryon to the diquark of the other. A baryon-antibaryon collision would give one string

between a quark and an antiquark and another one between a diquark and an antidiquark.

In a hard interaction, the number of possible string drawings are many more, and the

overall situation can become quite complex when several hard scatterings are present in

an event. Specifically, the string drawing now depends on the relative colour arrangement,

in each hadron individually, of the partons that are about to scatter. This is a subject

about which nothing is known. To make matters worse, the standard string fragmentation

description would have to be extended, to handle events where two or more valence quarks

have been kicked out of an incoming hadron by separate interactions. In particular, the

position of the baryon number would be unclear. Such issues will be further discussed

below, when we go on to describe more recent models, but in the original studies they were

sidestepped. Specifically, we assumed that, following the hardest interaction, all subsequent

interactions belong to one of three classes.

• Scatterings of the gg → gg type, with the two gluons in a colour-singlet state, such

that a double string is stretched directly between the two outgoing gluons, decoupled

from the rest of the system.

• Scatterings gg → gg, but colour correlations assumed to be such that each of the

gluons is connected to one of the strings ‘already’ present. Among the different

possibilities of connecting the colours of the gluons, the one which minimizes the total

increase in string length is chosen. This is in contrast to the previous alternative,

which roughly corresponds to a maximization (within reason) of the extra string

length.

• Scatterings gg → qq, with the final pair again in a colour-singlet state, such that a

single string is stretched between the outgoing q and q.
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By default, the three possibilities were assumed equally probable. (More recent studies

[Fie02] have suggested the minimal string length topology to dominate, an issue well worth

studying further.) Note that the total jet rate is maintained at its nominal value, i.e.

scatterings such as qg → qg are included in the cross section, but are replaced by a mixture

of gg and qq events for string drawing issues. Only the hardest interaction is guaranteed

to give strings coupled to the beam remnants. One should not take this approach to colour

flow too seriously — clearly it is a simplification — but the overall picture does not tend

to be very dependent on the particular choice you make.

Since a gg → gg or qq scattering need not remain of this character if initial- and

final-state showers were to be included (e.g. it could turn into a qg-initiated process),

radiation is only included for the hardest interaction. In practice, this need not be a serious

problem: except for the hardest interaction, which can be hard because of experimental

trigger conditions, it is unlikely for a parton scattering to be so hard that radiation plays

a significant rôle.

In events with multiple interactions, the beam-remnant treatment is slightly modified.

First the hard scattering is generated, with its associated initial- and final-state radiation,

and next any additional multiple interactions. Only thereafter are beam remnants attached

to the initiator partons of the hardest scattering, using the same machinery as before, except

that the energy and momentum already taken away from the beam remnants also include

that of the subsequent interactions.

11.2.3 A model with varying impact parameters

Up to this point, it has been assumed that the initial state is the same for all hadron

collisions, whereas in fact each collision also is characterized by a varying impact parameter

b. Within the classical framework of the model reviewed here, b is to be thought of as a

distance of closest approach, not as the Fourier transform of the momentum transfer. A

small b value corresponds to a large overlap between the two colliding hadrons, and hence

an enhanced probability for multiple interactions. A large b, on the other hand, corresponds

to a grazing collision, with a large probability that no parton-parton interactions at all take

place.

In order to quantify the concept of hadronic matter overlap, one may assume a spher-

ically symmetric distribution of matter inside the hadron, ρ(x) d3x = ρ(r) d3x. For sim-

plicity, the same spatial distribution is taken to apply for all parton species and momenta.

Several different matter distributions have been tried, and are available. We will here

concentrate on the most extreme one, a double Gaussian

ρ(r) ∝ 1 − β

a3
1

exp

{
−r2

a2
1

}
+

β

a3
2

exp

{
−r2

a2
2

}
. (11.12)

This corresponds to a distribution with a small core region, of radius a2 and containing a

fraction β of the total hadronic matter, embedded in a larger hadron of radius a1. While

it is mathematically convenient to have the origin of the two Gaussians coinciding, the

physics could well correspond to having three disjoint core regions, reflecting the presence

of three valence quarks, together carrying the fraction β of the proton momentum. One
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could alternatively imagine a hard hadronic core surrounded by a pion cloud. Such details

would affect e.g. the predictions for the t distribution in elastic scattering, but are not of

any consequence for the current topics. To be specific, the values β = 0.5 and a2/a1 = 0.2

were picked as default values. It should be noted that the overall distance scale a1 never

enters in the subsequent calculations, since the inelastic, non-diffractive cross section σnd(s)

is taken from literature rather than calculated from the ρ(r).

Compared to other shapes, like a simple Gaussian, the double Gaussian tends to give

larger fluctuations, e.g. in the multiplicity distribution of minimum-bias events: a collision

in which the two cores overlap tends to have a strongly increased activity, while ones

where they do not are rather less active. One also has a biasing effect: hard processes are

more likely when the cores overlap, thus hard scatterings are associated with an enhanced

multiple interaction rate. This provides one possible explanation for the experimental

‘pedestal effect’ [UA187]. Recent studies of CDF data [Fie02, Mor02] have confirmed

that indeed something more peaked than a single Gaussian is required to understand the

transition from minimum-bias to underlying-event activity.

For a collision with impact parameter b, the time-integrated overlap O(b) between the

matter distributions of the colliding hadrons is given by

O(b) ∝
∫

dt

∫
d3x ρ(x, y, z) ρ(x + b, y, z + t) (11.13)

∝ (1 − β)2

2a2
1

exp

{
− b2

2a2
1

}
+

2β(1 − β)

a2
1 + a2

2

exp

{
− b2

a2
1 + a2

2

}
+

β2

2a2
2

exp

{
− b2

2a2
2

}
.

The necessity to use boosted ρ(x) distributions has been circumvented by a suitable scale

transformation of the z and t coordinates.

The overlap O(b) is obviously strongly related to the eikonal Ω(b) of optical models. We

have kept a separate notation, since the physics context of the two is slightly different: Ω(b)

is based on the quantum mechanical scattering of waves in a potential, and is normally

used to describe the elastic scattering of a hadron-as-a-whole, while O(b) comes from a

purely classical picture of point-like partons distributed inside the two colliding hadrons.

Furthermore, the normalization and energy dependence is differently realized in the two

formalisms.

The larger the overlap O(b) is, the more likely it is to have interactions between partons

in the two colliding hadrons. In fact, there should be a linear relationship

〈ñ(b)〉 = kO(b) , (11.14)

where ñ = 0, 1, 2, . . . counts the number of interactions when two hadrons pass each other

with an impact parameter b. The constant of proportionality, k, is related to the parton-

parton cross section and hence increases with c.m. energy.

For each given impact parameter, the number of interactions is assumed to be dis-

tributed according to a Poisson. If the matter distribution has a tail to infinity (as the

double Gaussian does), events may be obtained with arbitrarily large b values. In order to

obtain finite total cross sections, it is necessary to assume that each event contains at least
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one semi-hard interaction. The probability that two hadrons, passing each other with an

impact parameter b, will actually undergo a collision is then given by

Pint(b) = 1 − exp(−〈ñ(b)〉) = 1 − exp(−kO(b)) , (11.15)

according to Poisson statistics. The average number of interactions per event at impact

parameter b is now

〈n(b)〉 =
〈ñ(b)〉
Pint(b)

=
kO(b)

1 − exp(−kO(b))
, (11.16)

where the denominator comes from the removal of hadron pairs which pass without collid-

ing, i.e. with ñ = 0.

The relationship 〈n〉 = σhard/σnd was earlier introduced for the average number of

interactions per non-diffractive, inelastic event. When averaged over all impact parameters,

this relation must still hold true: the introduction of variable impact parameters may give

more interactions in some events and less in others, but it does not affect either σhard or

σnd. For the former this is because the perturbative QCD calculations only depend on the

total parton flux, for the latter by construction. Integrating eq. (11.16) over b, one then

obtains

〈n〉 =

∫
〈n(b)〉Pint(b) d2b∫

Pint(b) d2b
=

∫
kO(b) d2b∫

(1 − exp(−kO(b))) d2b
=

σhard

σnd
. (11.17)

For O(b), σhard and σnd given, with σhard/σnd > 1, k can thus always be found (numerically)

by solving the last equality.

The absolute normalization of O(b) is not interesting in itself, but only the relative

variation with impact parameter. It is therefore useful to introduce an ‘enhancement factor’

e(b), which gauges how the interaction probability for a passage with impact parameter b

compares with the average, i.e.

〈ñ(b)〉 = kO(b) = e(b) 〈kO(b)〉 . (11.18)

The definition of the average 〈kO(b)〉 is a bit delicate, since the average number of inter-

actions per event is pushed up by the requirement that each event contain at least one

interaction. However, an exact meaning can be given [Sjo87a].

With the knowledge of e(b), the f(x⊥) function of the simple model generalizes to

f(x⊥, b) = e(b) f(x⊥) . (11.19)

The näıve generation procedure is thus to pick a b according to the phase space d2b, find

the relevant e(b) and plug in the resulting f(x⊥, b) in the formalism of the simple model.

If at least one hard interaction is generated, the event is retained, else a new b is to be

found. This algorithm would work fine for hadronic matter distributions which vanish

outside some radius, so that the d2b phase space which needs to be probed is finite. Since

this is not true for the distributions under study, it is necessary to do better.

By analogy with eq. (11.7), it is possible to ask what the probability is to find the

hardest scattering of an event at x⊥1. For each impact parameter separately, the probability
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to have an interaction at x⊥1 is given by f(x⊥1, b), and this should be multiplied by the

probability that the event contains no interactions at a scale x′
⊥ > x⊥1, to yield the total

probability distribution

dPhardest

d2bdx⊥1
= f(x⊥1, b) exp

{
−

∫ 1

x⊥1

f(x′
⊥, b) dx′

⊥

}

= e(b) f(x⊥1) exp

{
−e(b)

∫ 1

x⊥1

f(x′
⊥) dx′

⊥

}
. (11.20)

If the treatment of the exponential is deferred for a moment, the distribution in b and x⊥1

appears in factorized form, so that the two can be chosen independently of each other.

In particular, a high-p⊥ QCD scattering or any other hard scattering can be selected

with whatever kinematics desired for that process, and thereafter assigned some suitable

‘hardness’ x⊥1. With the b chosen according to e(b) d2b, the neglected exponential can now

be evaluated, and the event retained with a probability proportional to it. From the x⊥1

scale of the selected interaction, a sequence of softer x⊥i values may again be generated as

in the simple model, using the known f(x⊥, b). This sequence may be empty, i.e. the event

need not contain any further interactions.

It is interesting to understand how the algorithm above works. By selecting b according

to e(b) d2b, i.e. O(b) d2b, the primary b distribution is maximally biased towards small

impact parameters. If the first interaction is hard, by choice or by chance, the integral

of the cross section above x⊥1 is small, and the exponential close to unity. The rejection

procedure is therefore very efficient for all standard hard processes in the program — one

may even safely drop the weighting with the exponential completely. The large e(b) value

is also likely to lead to the generation of many further, softer interactions. If, on the other

hand, the first interaction is not hard, the exponential is no longer close to unity, and many

events are rejected. This pulls down the efficiency for ‘minimum bias’ event generation.

Since the exponent is proportional to e(b), a large e(b) leads to an enhanced probability

for rejection, whereas the chance of acceptance is larger with a small e(b). Among events

where the hardest interaction is soft, the b distribution is therefore biased towards larger

values (smaller e(b)), and there is a small probability for yet softer interactions.

To evaluate the exponential factor, the program pretabulates the integral of f(x⊥) at

the initialization stage, and further increases the Monte Carlo statistics of this tabulation

as the run proceeds. The x⊥ grid is concentrated towards small x⊥, where the integral

is large. For a selected x⊥1 value, the f(x⊥) integral is obtained by interpolation. After

multiplication by the known e(b) factor, the exponential factor may be found.

In this section, nothing has yet been assumed about the form of the dσ/dp⊥ spectrum.

Like in the impact-parameter-independent case, it is possible to use a sharp cut-off at some

given p⊥min value. However, now each event is required to have at least one interaction,

whereas before events without interactions were retained and put at p⊥ = 0. It is therefore

aesthetically more appealing to assume a gradual turn-off, so that a (semi)hard interaction

can be rather soft part of the time. The matrix elements roughly diverge like αs(p
2
⊥) dp2

⊥/p4
⊥

for p⊥ → 0. They could therefore be regularized as follows. Firstly, to remove the 1/p4
⊥

behaviour, multiply by a factor p4
⊥/(p2

⊥ + p2
⊥0)

2. Secondly, replace the p2
⊥ argument in αs
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by p2
⊥+p2

⊥0. If one has included a K factor by a rescaling of the αs argument, as mentioned

earlier, replace 0.075 p2
⊥ by 0.075 (p2

⊥ + p2
⊥0).

With these substitutions, a continuous p⊥ spectrum is obtained, stretching from p⊥ = 0

to Ecm/2. For p⊥ À p⊥0 the standard perturbative QCD cross section is recovered, while

values p⊥ ¿ p⊥0 are strongly damped. The p⊥0 scale, which now is the main free parameter

of the model, in practice comes out to be of the same order of magnitude as the sharp cut-off

p⊥min did, i.e. 1.5–2 GeV at collider energies, but typically about 10% higher.

Above we have argued that p⊥min and p⊥0 should only have a slow energy dependence,

and even allowed for the possibility of fixed values. For the impact-parameter-independent

picture this works out fine, with all events being reduced to low-p⊥ two-string ones when

the c.m. energy is reduced. In the variable-impact-parameter picture, the whole formalism

only makes sense if σhard > σnd, see e.g. eq. (11.17). Since σnd does not vanish with

decreasing energy, but σhard would do that for a fixed p⊥0, this means that p⊥0 has to

be reduced significantly at low energies, possibly even more than implied by our assumed

energy dependence. The more ‘sophisticated’ model of this section therefore makes sense at

collider energies, whereas it may not be well suited for applications at fixed-target energies.

There one should presumably attach to a picture of multiple soft Pomeron exchanges.

11.3 Beam remnants (and multiple interactions) — intermediate model

A new description of multiple interactions and beam remnants is introduced with

Pythia 6.3 [Sjo04]. It is more sophisticated than the old one, but unfortunately as a

consequence less robust. Therefore extra caution should be exercised. Currently it should

only be used for the study of single minimum-bias events or events underlying hard pro-

cesses in pp or pp collisions. It is not fully developed and tested for meson or photon

beams, and cannot be used with pile-up events, or with baryon-number-violating SUSY

events.

The basic scheme for the generation of the multiple interactions is kept from the

old models. That is, based on the standard 2 → 2 QCD matrix elements convoluted with

standard parton densities, a sequence of p⊥-ordered interactions is generated: p⊥1 > p⊥2 >

p⊥3 > . . . . The sequence is stopped at some lower cut-off scale p⊥min, or alternatively

the matrix elements are damped smoothly around and below a scale p⊥0. An impact-

parameter-dependent picture of hadron-hadron interactions can lead to further elements

of variability between events. See above for details on the basic framework.

The main limitation of the old approach is that there was no way to handle complicated

beam remnants, e.g. where two valence quarks had been kicked out. Therefore the structure

of all interactions subsequent to the first one, i.e. the one with largest p⊥, had to be

substantially simplified. The introduction of junction fragmentation in [Sjo03] allowed this

restriction to be lifted.

11.3.1 Flavour and x correlations

In the new beam-remnants approach, the flavour content of the remnant is bookkept, and is

used to determine possible flavours in consecutive interactions. Thus, the standard parton

densities are only used to describe the hardest interaction. Already in the old model,

– 407 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

the x scale of parton densities is rescaled in subsequent interactions, such that the new

x′ = 1 corresponds to the remaining momentum rather than the original beam momentum,

eq. (11.11). But now the distributions are not only squeezed in this manner, their shapes

are also changed, as follows:

• Whenever a valence quark is kicked out, the number of remaining valence quarks of

that species is reduced accordingly. Thus, for a proton, the valence d distribution is

completely removed if the valence d quark has been kicked out, whereas the valence

u distribution is halved when one of the two is kicked out. In cases where the

valence and sea u and d quark distributions are not separately provided from the

PDF libraries, it is assumed that the sea is flavour-antiflavour symmetric, so that one

can write e.g.

u(x,Q2) = uval(x,Q2) + usea(x,Q2) = uval(x,Q2) + u(x,Q2). (11.21)

The parametrized u and u distributions are then used to find the relative probability

for a kicked-out u quark to be either valence or sea.

• When a sea quark is kicked out, it must leave behind a corresponding antisea parton

in the beam remnant, by flavour conservation. We call this a companion quark, and

bookkeep it separately from the normal sea. In the perturbative approximation the

sea quark qs and its companion qc (not to be confused with flavour labels) come

from a gluon branching g → qs + qc, where it is implicitly understood that if qs is

a quark, qc is its antiquark, and vice versa. This branching often would not be in

the perturbative regime, but we choose to make a perturbative ansatz, and also to

neglect subsequent perturbative evolution of the qc distribution. If so, the shape of

the companion qc distribution as a function of xc, given a sea parton at xs, becomes

qc(xc;xs) ∝
g(xc + xs)

xc + xs
Pg→qsqc

(z), (11.22)

where

z =
xc

xc + xs
, (11.23)

Pg→qsqc
(z) =

1

2

(
z2 + (1 − z)2

)
, (11.24)

g(x) ∝ (1 − x)n

x
; (n = MSTP(87)) (11.25)

is chosen. (Remember that this is supposed to occur at some low Q2 scale, so g(x)

above should not be confused with the high-Q2 gluon behaviour.)

• The normalization of valence and companion distributions is fixed by the respective

number of quarks, i.e. the sum rules

∫ xrem

0
qv(x) dx = nqv

, (11.26)

∫ xrem

0
qc,i(x;xs,i) dx = 1 (for each i), (11.27)
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where xrem is the longitudinal momentum fraction left after the previous interactions

and nqv
is the number of q valence quarks remaining. Gluon and sea distributions

do not have corresponding requirements. Therefore their normalization is adjusted,

up or down, so as to obtain overall momentum conservation in the parton densities,

i.e. to fulfil the remaining sum rule:

∫ xrem

0

(
∑

q

q(x) + g(x)

)
dx = xrem (11.28)

Detailed formulae may be found in [Sjo04]. However, in that article, the sea+gluon

rescaling factor, eq. (4.26), was derived assuming the momentum fraction taken by a com-

panion quark scaled like 1/X, where X is the total remaining momentum. As it happens,

the momentum fraction, xs, taken by the sea quark that originally gave rise to the com-

panion quark, is already taken into account in the definition of the companion distribu-

tion. Hence a factor (X + xs)/X should be introduced for each companion distribution in

eq. (4.26). With this change, the companions take up more ‘room’ in momentum space.

In fact, in extreme cases it is possible to create so many companions in the beam remnant

that the sum of their momenta is larger than allowed by momentum conservation, i.e. the

rescaling factor becomes negative. Note that this occurs extremely rarely, and only when

very many multiple interactions have occurred in an event. Since the companions are now

taking up more room than allowed, we address the problem by scaling them (all of them)

down by precisely the amount needed to restore momentum conservation.

The above parton-density strategy is not only used to pick a succession of hard in-

teractions. Each interaction may now, unlike before, have initial- and final-state shower

activity associated with it. The initial-state shower is constructed by backwards evolution,

using the above parton densities. Even if the hard scattering does not involve a valence

quark, say, the possibility exists that the shower will reconstruct back to one.

11.3.2 Colour topologies

The second part of the model is to hook up the scattered partons to the beam remnants,

in colours, in transverse momenta and in longitudinal momenta. The order in which these

choices are made is partly intertwined, and one has to consider several special cases. In this

description we only give an outline, evading many of the details. Especially the assignment

of colours is physically uncertain and technically challenging.

Each of the two incoming beam hadrons can be viewed — post facto — as having

consisted of a set of ‘initiator’ and ‘remnant’ partons. An initiator is the ‘original’ parton

that starts the initial-state cascade that leads up to one of the hard interactions. Together

the initiators and remnants make up the original proton, so together they carry the proton

net flavour content, and energy and momentum, and are in a colour singlet state. Therefore

the remnant partons are constrained to carry ‘what is left’ when the initiators are removed.

The one exception is that we do not attempt to conserve longitudinal momentum (and

thereby energy) exactly within each incoming proton, but only for the system as a whole.

The reason here is that we have put all initiators and remnants on mass shell, whereas a
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more proper treatment ought to have included (moderate) space-like virtualities for them.

Such virtualities would have dissipated in the hard interactions, and so not survived to the

final state. The current choice therefore shortcuts a number of technical details that in the

end should not matter.

In an event with n multiple interactions, a corresponding set of n initiator partons

is defined for each of the two incoming beams. This also defines the left-behind flavour

content of the remnants. At most there could be n + 3 remnant partons for a proton with

its 3 valence flavours, but there could also be none, if all valence quarks have been kicked

out and no unmatched companions have been added. In the latter case a gluon is inserted

to represent the beam remnant and carry leftover momentum, but else we do not introduce

gluons in the beam remnant.

In the string model, the simplest representation of a baryon is the Y-shape topology,

where each of the three valence quarks is connected via its string piece to the central

junction (see section 12.2.5). This junction does not carry energy or momentum of its own,

but topologically it is the carrier of the baryon number. Under normal circumstances,

the legs in the Y are quite short. Interactions may deform the topology, however. The

simplest example would be Deeply Inelastic Scattering, where one of the valence quarks

is kicked violently, so that one of the three strings of the Y will stretch out and fragment

into hadrons. In this topology the other two will remain so close to each other and to the

junction that they effectively act as a single unit, a diquark.

In a hadronic interaction, a valence quark is kicked out by a coloured gluon rather than

a colourless photon. This colour exchange implies that the string from the junction will no

longer attach to the scattered quark but rather to some other quark or gluon, but the other

two quarks still effectively form a diquark. When two or three valence quarks are kicked

out, the junction motion will become more complicated, and must be considered in full.

Equivalently, when all of the valence quarks have large relative momenta, by definition

no two of them have a small invariant mass and hence a diquark description would be

inappropriate.

Multiple valence quark interactions are rare, however. The bulk of interactions are

gluonic. In this case we can imagine that the gluon originates from an unresolved emission

off one of the valence quarks, i.e. that its anticolour is attached to one of the quarks and its

colour attached to the junction. After the gluon is kicked out, colour lines will then connect

this quark and the junction to partons in the final state of the interaction. If a second gluon

is kicked out, it can, in colour space, have been located either between the quark and the

first gluon, or between this gluon and the junction, or between the junction and one of the

other two quarks. (We do not include the possibility that this gluon together with the first

one could have been radiated from the system as an overall colour singlet system, i.e. we do

not (yet) address diffractive event topologies in this framework.) If all of these possibilities

had equal probability, the junction would often have two or all three legs reconnected,

and the baryon number could be moved quite dramatically in the event. Empirically, this

does not appear to happen (?), and furthermore it could be argued that perturbative and

impact-parameter arguments both allow much of the activity to be correlated in ‘hot spot’

regions that leave much of the rest of the proton unaffected. Therefore a free suppression
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parameter is introduced, such that further gluons preferably connect to a string piece that

has already been disturbed. In this way, gluons preferentially will be found on one of the

three colour lines to the junction.

The order in which they appear along that line is more difficult to make statements

about. So far in our description, no consideration has been given to the resulting momen-

tum picture, specified after transverse and longitudinal momenta have been picked (see

below). This in general implies that strings will be stretched criss-cross in the event, if the

initiator gluons are just randomly ordered along the string piece on which they sit. It is

unlikely that such a scenario catches all the relevant physics. More likely is that, among all

the possible colour topologies for the final state, those that correspond to the smaller total

string length are favoured, all other aspects being the same. Several options have been intro-

duced that approach this issue from different directions (see MSTP(89) and MSTP(95)). One

is to attach the initiator gluons preferentially in those places that order the hard-scattering

systems in rapidity (the default), another to prefer the attachments that will give rise to

the smaller string lengths in the final state. A third option is to rearrange the colour flow

between the final-state partons themselves, again giving preference to those rearrangements

which minimize the overall string length. So far no preferred scenario has been identified.

A complication is the following. Two g + g → g + g scatterings each on their own

may have a perfectly sensible colour flow. Still, when the two initial gluons on each side of

the event are attached to each other and to the rest of the remnants, the resulting colour

flow may become unphysical. Specifically the colour flow may ‘loop back’ on itself, such

that a single gluon comes to form a separate colour singlet system. Such configurations are

rejected and alternative colour arrangements are tried.

Another, rare, occurence is that the two junctions of the event can come to be connected

to each other via two strings (graphical representation: -j=j-, where each dash corresponds

to a string piece). Since we have not (yet) programmed a fragmentation scheme for such

events, we simply reject them and generate a new event instead.

So far, interactions with sea quarks have not been mentioned, either a quark-antiquark

pair that both scatter or a single sea scatterer with a leftover companion quark in the

remnant. However, we have already argued that each such pair can be viewed as coming

from the branching of some initial nonperturbative gluon. This gluon can now be attached

to the beam Y topology just like the gluons considered above, and therefore does not

introduce any new degrees of freedom. When then the colours are traced, it could well

happen that a companion quark together with two remaining valence quarks form a separate

colour singlet system. It is then likely that this system will be of low mass and collapse to a

single baryon. Such possibilities are optionally allowed (see MSTP(88)), and correspondingly

a companion antiquark could form a meson together with a single valence quark. As already

mentioned, diquarks can be formed from two valence quarks.

11.3.3 Primordial k⊥

Partons are expected to have primordial k⊥ values of the order of a few hundred MeV from

Fermi motion inside the incoming hadrons. In reality, one notes a need for a larger input in

the context of shower evolution, either in parton showers or in resummation descriptions.
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This is not yet understood, but could e.g. represent a breakdown of the DGLAP evolution

equations at small Q2. Until a better solution has been found, we therefore have reason

to consider an effective ‘primordial k⊥’, at the level of the initiators, larger than the one

above. For simplicity, a parametrized Q-dependent width

σ(Q) = max

(
2.1 GeV × Q

7 GeV + Q
, PARJ(21)

)
(11.29)

is introduced, where σ is the width of the two-dimensional Gaussian distribution of the

initiator primordial k⊥ (so that 〈k2
⊥〉 = σ2), Q is the scale of the hard interaction and

PARJ(21) is the standard fragmentation p⊥ width. The remnant partons correspond to

Q = 0 and thus hit the lower limit. Apart from the selection of each individual k⊥, there

is also the requirement that the total k⊥ of a beam adds up to zero. Different strategies

can be used here, from sharing the recoil of one parton uniformly among all other initiator

and remnant partons, to only sharing it among those initiator/remnant partons that have

been assigned as nearest neighbours in colour space.

11.3.4 Beam-remnant kinematics

The longitudinal momenta of the initiator partons have been defined by the x values picked.

The remaining longitudinal momentum is shared between the remnants in accordance with

their character. A valence quark receives an x picked at random according to a small-Q2

valence-like parton density, proportional to (1 − x)a/
√

x, where a = 2 for a u quark in a

proton and a = 3.5 for a d quark. A sea quark must be the companion of one of the initiator

quarks, and can have an x picked according to the qc(xc;xs) distribution introduced above.

A diquark would obtain an x given by the sum of its constituent quarks. (But with the

possibility to enhance this x, to reflect the extra gluon cloud that could go with such a

bigger composite object.) If a baryon or meson is in the remnant, its x is equated with

the z value obtainable from the Lund symmetric fragmentation function, again with the

possibility of enhancing this x as for a diquark. A gluon only appears in an otherwise

empty remnant, and can thus be given x = 1. Once x values have been picked for each of

the remnants, an overall rescaling is performed such that the remnants together carry the

desired longitudinal momentum.

11.4 Multiple interactions (and beam remnants) – new model

Each multiple interaction is associated with its set of initial- and final-state radiation. In

the old model such radiation was only considered for the first, i.e. hardest, interaction.

The technical reason had to do with the inability to handle junction string topologies,

and therefore the need to simplify the description. In practice, it could be argued that

the subsequent interactions would tend to be soft, near the lower p⊥min or p⊥0 scales, and

therefore not be associated with additional hard radiation. Nevertheless it was a limitation.

The new junction and beam-remnant description allows radiation to be associated with

each interactions. In the intermediate model, this is done in a disjoint manner: for each

interaction, all initial- and final-state radiation activity associated with it is considered

in full before the next interaction is selected and the showers are still the old, virtuality-

ordered ones.
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In the new model, the new, transverse-momentum-ordered showers are introduced.

Thus p⊥ becomes the common evolution scale both for multiple interactions (MI), initial-

state radiation (ISR) and final-state radiation (FSR), although the technical definition of

transverse momentum is slightly different in the three cases.

One can argue that, to a good approximation, the addition of FSR can be deferred

until after ISR and MI have been considered in full. Specifically, FSR does not modify the

total amount of energy carried by perturbatively defined partons, it only redistributes that

energy among more partons. By contrast, both the addition of a further ISR branching

and the addition of a further interaction implies more perturbative energy, taken from the

limited beam-remnants reservoir. These two mechanisms therefore are in direct competition

with each other.

We have already advocated in favour of ordering multiple interactions in a sequence of

falling p⊥ values. This does not correspond to an ordering in a physical time, but rather to

the requirement that the hardest interaction should be the one for which standard parton

densities should apply. Any corrections, e.g. from the kind of flavour correlations already

discussed, would have to be introduced by approximate prescriptions, that would become

increasingly uncertain as further interactions are considered.

We now advocate that, by the same reasoning, also ISR emissions should be interleaved

with the MI chain, in one common sequence of decreasing p⊥ values. That is, a hard second

interaction should be considered before a soft ISR branching associated with the hardest

interaction. This is made possible by the adoption of p⊥ as common evolution variable.

Thus, the standard parton densities are only used to describe the hardest interaction and

the ISR branchings that occur above the p⊥-scales of any secondary interactions.

In passing, note that the old showers requires two matching parameters, Q2
max,shower =

f p2
⊥,MI. These f values, typically in the range 1 to 4, separate for space-like and time-

like showers, are there to compensate on the average for the extra z-dependent factors in

the relations p2
⊥ ≈ (1 − z)Q2 and p2

⊥ ≈ z(1 − z)Q2, respectively, so that the showers can

start from a p⊥ scale comparable with that of the interaction. In our new model, with

Q2
shower ≈ p2

⊥, this matching is automatic, i.e. f = 1.

The evolution downwards in p⊥ can now be viewed as a generalization of the

backwards evolution philosophy [Sjo85]: given a configuration at some p⊥ resolution scale,

what can that configuration have come from at a lower scale? Technically, starting from

a hard interaction, a common sequence of subsequent evolution steps — interactions and

branchings mixed — can therefore be found. Assuming that the latest step occurred

at some p⊥i−1 scale, this sets the maximum p⊥max = p⊥i−1 for the continued evolution.

What can happen next is then either a new interaction or a new ISR branching on one of

the two incoming sides in one of the existing interactions. The probability distribution for

p⊥ = p⊥i is given by

dP
dp⊥

=

(
dPMI

dp⊥
+

∑ dPISR

dp⊥

)
exp

(
−

∫ p⊥i−1

p⊥

(
dPMI

dp′⊥
+

∑ dPISR

dp′⊥

)
dp′⊥

)
(11.30)

in simplified notation. Technically, the p⊥i can be found by selecting a new trial interaction

according to dPMI exp(−
∫

dPMI), and a trial ISR branching in each of the possible places
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according to dPISR exp(−
∫

dPISR). The one of all of these possibilities that occurs at

the largest p⊥ preempts the others, and is allowed to be realized. The whole process is

iterated, until a lower cutoff is reached, below which no further interactions or branchings

are allowed.

If there were no flavour and momentum constraints linking the different subsystems,

it is easy to see that such an interleaved evolution actually is equivalent to considering the

ISR of each interaction in full before moving on to the next interaction. Competition is

introduced via the correlated parton densities already discussed. Thus distributions are

squeezed to be nonvanishing in a range x ∈ [0,X], where X < 1 represents the fraction

of the original beam-remnant momentum still available for an interaction or branching.

When a trial n’th interaction is considered, X = 1 − ∑n−1
i=1 xi, where the sum runs over

all the already existing interactions. The xi are the respective momentum fractions of the

ISR shower initiators at the current resolution scale, i.e., an xi is increased each time an

ISR branching is backwards-constructed on an incoming parton leg. Similarly, the flavour

content is modified to take into account the partons already extracted by the n−1 previous

interactions, including the effects of ISR branchings. When instead a trial shower branching

is considered, the X sum excludes the interaction under consideration, since this energy is

at the disposal of the interaction, and similarly for the flavour content.

The choice of p⊥max scale for this combined evolution is process-dependent, as before.

For minimum-bias QCD events the full phase space is allowed, while the p⊥ scale of a QCD

hard process sets the maximum for the continued evolution, in order not to doublecount.

When the hard process represents a possibility not present in the MI/ISR machinery —

production of Z0, top, or supersymmetry, say — again the full (remaining) phase space

is available, though for processes that contain explicit jets in the matrix element, such

as W+jet, the ISR evolution is restricted to be below the jet cutoff. Note that, when

interfacing events from an external matrix element generator, special care has to be taken

to ensure that these scales are set consistently.

There is also the matter of a lower p⊥min scale. Customarily such scales are chosen

separately for ISR and MI, and typically lower for the former than the latter. Both cutoffs

are related to the resolution of the incoming hadronic wave function, however, and in

the current formalism ISR and MI are interleaved, so it makes sense to use the same

regularization procedure.Therefore also the branching probability is smoothly turned off

at a p⊥0 scale, like for MI, but the ISR suppression factor is the square root of the MI

one, since only one Feynman vertex is involved in a shower branching relative to the

two of a hard process. Thus the αs(p
2
⊥) dp2

⊥/p2
⊥ divergence in a branching is tamed to

αs(p
2
⊥0+p2

⊥) dp2
⊥/(p2

⊥0+p2
⊥). The scale of parton densities in ISR and MI alike is maintained

at p2
⊥, however, the argument being that the actual evolution of the partonic content is

given by standard DGLAP evolution, and that it is only when this content is to be resolved

that a dampening is to be imposed. This also has the boon that flavour thresholds appear

where they are expected.

The cutoff for FSR is still kept separate and lower, since that scale deals with the

matching between perturbative physics and the nonperturbative hadronization at long

time scales, and so has a somewhat different function.
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The description of beam remnants offers the same scenarios as outlined for the in-

termediate model above, and as further described in [Sjo04a]. A more recent option, not

found there, is the following ‘colour annealing’ scenario [San05], available only for the new

model, through the options MSTP(95) = 2 - 5. It has been constructed to produce similar

effects as ‘Tune A’ and similar tunes of the old model, but is also in some sense intended

to be representative of the ‘most extreme’ case. It starts from the assumption that, at

hadronization time, no information from the perturbative colour history of the event is

relevant. Instead, what determines how hadronizing strings form between the partons is

a minimization of the total potential energy stored in these strings. That is, the partons,

regardless of their formation history, will tend to be colour connected to the partons closest

to them in momentum space, hence minimizing the total ‘string length’, as measured by

the so-called λ measure [And83a, Sjo03]. Technically, the model implementation starts

by erasing the colour tags of all final-state coloured partons. It then begins an iterative

procedure (which unfortunately can be quite time-consuming):

1. Loop over all final-state coloured partons

2. For each such parton,

(i) compute the λ measure for each possible string connection from that parton to

other ‘colour-compatible’ final-state partons which do not already have string pieces

connected to them (for MSTP(95) = 2 and MSTP(95) = 3 with the extra condition

that closed gluon loops are suppressed), and

(ii) store the connection with the smallest λ measure for later comparison.

3. Compare all the possible ‘minimal string pieces’ found, one for each parton. Select

the largest of these to be carried out physically. (That parton is in some sense the

one that is currently furthest away from all other partons.)

4. If any ‘dangling colour tags’ are left, repeat from 1.

5. At the end of the iteration, it is possible that the last parton is a gluon, and that all

other partons already form a complete colour singlet system. In this case, the gluon

is simply attached between the two partons where its presence will increase the total

λ measure the least.

Finally, let it be re-emphasized that the issue of colour correllations and reconnections,

especially in hadron collisions, is an extremely challenging one, about which very little is

known for certain at present (see e.g. the discussions in [San05] and references therein).

The present models are therefore in this respect best regarded as vast simplifications of a

presumably much more complex physical picture.

11.4.1 Joined interactions

When the backwards evolution of initial-state radiation traces the prehistory to hard inter-

actions, two partons participating in two separate hard scatterings may turn out to have

a common ancestor, joined interactions (JI).

The joined interactions are well-known in the context of the evolution of multiparton

densities [Kon79], but have not been applied to a multiple-interactions framework. A full

implementation of the complete kinematics, intertwining MI, ISR and JI all possible ways, is

– 415 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

a major undertaking, worth the effort only if the expected effects are non-negligible. Given

the many uncertainties in all the other processes at play, one would otherwise expect that

the general tuning of MI/ISR/FSR/. . . to data would hide the effects of JI.

The current program can simulate the joining term in the evolution equations, and

thereby estimate how often and at what p⊥ values joinings should occur. However, the

actual kinematics has not been worked out, so the suggested joinings are never performed.

Instead the evolution is continued as if nothing had happened. Therefore this facility is

more for general guidance than for detailed studies.

To see how it works, define the two-parton density f
(2)
bc (xb, xc, Q

2) as the probability

to have a parton b at energy fraction xb and a parton c at energy fraction xc when the

proton is probed at a scale Q2. The evolution equation for this distribution is

df
(2)
bc (xb, xc, Q

2) =
dQ2

Q2

αs

2π

∫∫
dxa dz

{
f (2)

ac (xa, xc, Q
2)Pa→bd(z) δ(xb − zxa)

+ f
(2)
ba (xb, xa, Q

2)Pa→cd(z) δ(xc − zxa)

+ fa(xa, Q
2)Pa→bc(z) δ(xb − zxa) δ(xc − (1 − z)xa)

}
. (11.31)

As usual, we assume implicit summation over the allowed flavour combinations. The first

two terms in the above expression are the standard ones, where b and c evolve indepen-

dently, up to flavour and momentum conservation constraints, and are already taken into

account in the ISR framework. It is the last term that describes the new possibility of two

evolution chains having a common ancestry.

Rewriting this into a backwards-evolution probability, the last term gives

dPbc(xb, xc, Q
2) =

∣∣∣∣
dQ2

Q2

∣∣∣∣
αs

2π

xafa(xa, Q
2)

xbxcf
(2)
bc (xb, xc, Q2)

z(1 − z)Pa→bc(z)

'
∣∣∣∣
dQ2

Q2

∣∣∣∣
αs

2π

xafa(xa, Q
2)

xbfb(xb, Q2)xcfc(xc, Q2)
z(1 − z)Pa→bc(z) , (11.32)

introducing the approximation f
(2)
bc (xb, xc, Q

2) ' fb(xb, Q
2) fc(xc, Q

2) to put the equation

in terms of more familiar quantities. Just like for MI and normal ISR, a form factor is given

by integration over the relevant Q2 range and exponentiation. In practice, eq. (11.30) is

complemented by one more term given by the above probability.

11.5 Pile-up events

In high-luminosity colliders, there is a non-negligible probability that one single bunch

crossing may produce several separate events, so-called pile-up events. This in particular

applies to future pp colliders like LHC, but one could also consider e.g. e+e− colliders

with high rates of γγ collisions. The program therefore contains an option, currently only

applicable to hadron-hadron collisions, wherein several events may be generated and put

one after the other in the event record, to simulate the full amount of particle production

a detector might be facing.

The program needs to know the assumed luminosity per bunch–bunch crossing, ex-

pressed in mb−1. Multiplied by the cross section for pile-up processes studied, σpile, this
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gives the average number of collisions per beam crossing, n. These pile-up events are taken

to be of the minimum-bias type, with diffractive and elastic events included or not (and

a further subdivision of diffractive events into single and double). This means that σpile

may be either σtot, σtot − σel or σtot − σel − σdiffr. Which option to choose depends on the

detector: most detectors would not be able to observe elastic pp scattering, and therefore

it would be superfluous to generate that kind of events. In addition, we allow for the

possibility that one interaction may be of a rare kind, selected freely by you. There is no

option to generate two ‘rare’ events in the same crossing; normally the likelihood for that

kind of occurrences should be small.

If only minimum-bias type events are generated, i.e. if only one cross section is involved

in the problem, then the number of events in a crossing is distributed according to a Poisson

with the average number n as calculated above. The program actually will simulate only

those beam crossings where at least one event occurs, i.e. not consider the fraction exp(−n)

of zero-event crossings. Therefore the actually generated average number of pile-up events

is 〈n〉 = n/(1 − exp(−n)).

Now instead consider the other extreme, where one event is supposed be rare, with a

cross section σrare much smaller than σpile, i.e. f ≡ σrare/σpile ¿ 1. The probability that a

bunch crossing will give i events, whereof one of the rare kind, now is

Pi = f i exp(−n)
ni

i!
= f n exp(−n)

ni−1

(i − 1)!
. (11.33)

The näıve Poisson is suppressed by a factor f , since one of the events is rare rather than

of the normal kind, but enhanced by a factor i, since any one of the i events may be the

rare one. As the equality shows, the probability distribution is now a Poisson in i− 1: in a

beam crossing which produces one rare event, the multiplicity of additional pile-up events

is distributed according to a Poisson with average number n. The total average number of

events thus is 〈n〉 = n + 1.

Clearly, for processes with intermediate cross sections, n σrare/σpile ' 1, also the aver-

age number of events will be intermediate, and it is not allowed to assume only one event

to be of the ‘rare’ type. We do not consider that kind of situations.

Each pileup event can be assigned a separate collision vertex within the envelope

provided by the colliding beams, see MSTP(151). Only simple Gaussian shapes in space

and time are implemented internally, however. If this is too restrictive, you would have

to assign interaction points yourself, and then shift each event separately by the required

amount in space and time.

When the pile-up option is used, one main limitation is that event records may become

very large when several events are put one after the other, so that the space limit in the

PYJETS common block is reached. It is possible to expand the dimension of the common

block, see MSTU(4) and MSTU(5), but only up to about 20 000 entries, which may not

always be enough, especially not for LHC. Simplifications like switching off π0 decay may

help keep down the size, but also has its limits.

For practical reasons, the program will only allow an n up to 120. The multiplicity

distribution is truncated above 200, or when the probability for a multiplicity has fallen

– 417 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

below 10−6, whichever occurs sooner. Also low multiplicities with probabilities below 10−6

are truncated.

11.6 Common-block variables and routines

Of the routines used to generate beam remnants, multiple interactions and pile-up events,

none are intended to be called directly by the user. The only way to regulate these aspects

is therefore via the variables in the PYPARS common block. Therefore most emphasis is put

on the latter, while routines and additional commonblocks are listed more briefly.

COMMON/PYPARS/MSTP(200),PARP(200),MSTI(200),PARI(200)

Purpose: to give access to a number of status codes and parameters which regulate the

performance of Pythia. Most parameters are described in section 9.3; here

only those related to beam remnants, multiple interactions and pile-up events are

described. If the default values, below denoted by (D = . . . ), are not satisfactory,

they must in general be changed before the PYINIT call. Exceptions, i.e. variables

which can be changed for each new event, are denoted by (C).

MSTP(81) : (D = 1) master switch for multiple interactions (MI), and also for the as-

sociated treatment of initial- and final-state showers and beam remnants. Its

meaning depends on whether PYEVNT (old and intermediate models) or PYEVNW

(new model) are called.

= 0 : MI off; old model (new model if PYEVNW called directly).

= 1 : MI on; old model (new model if PYEVNW called directly).

= 10 : MI off; intermediate model (new model if PYEVNW called directly).

= 11 : MI on; intermediate model (new model if PYEVNW called directly).

= 20 : MI off; new model for PYEVNT and PYEVNW alike.

= 21 : MI on; new model for PYEVNT and PYEVNW alike.

Note: when PYEVNT is called for the options = 20 and = 21, the one and only action

this routine takes is to hand on execution to PYEVNW. Whenever, anywhere

else in this manual, a distinction is made between PYEVNT and PYEVNW, for =

20 and = 21 it is the PYEVNW rules that apply. The only reason for hooking

up PYEVNT and PYEVNW this way is to allow a uniform interface to some

experimental setups, where the only way to steer program execution is by a

cards file.

Warning: many parameters have to be tuned differently for the old and new scenar-

ios, such as PARP(81) - PARP(84), PARP(89) and PARP(90), and others are

specific to each scenario. In addition, the optimal parameter values depend

on the choice of parton densities and so on. Therefore you must pick a

consistent set of values, rather than simply changing MSTP(81) by

itself.

An example, for the old multiple interactions scenario, is R.D. Field’s Tune

A [Fie02] (which agrees with the current default, except for PARP(90)):
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MSTP(81) = 1, MSTP(82) = 4, PARP(67) = 4.0, PARP(82) = 2.0,

PARP(83) = 0.5, PARP(84) = 0.4, PARP(85) = 0.9, PARP(86) = 0.95,

PARP(89) = 1800.0 and PARP(90) = 0.25, with CTEQ5L (default).

The same values cannot be used with the new scenario available with PYEVNW.

Specifically, the fact that each multiple interaction here can radiate on its

own, which only is the case for the first one in PYEVNT, means that each gives

more activity. Thus fewer interactions, i.e. a higher p⊥0 scale, is required.

Also other parameters are used in the new scenario. No tune of equivalent

quality to Tune A is available so far. An example of a possible set is (where

some are default values while others need to be set):

New model, smooth ISR, high FSR: MSTP(81) = 1, MSTP(70) = 2,

MSTP(72) = 2;

p⊥0 and reconnect: PARP(82) = 2.5D0, MSTP(95) = 1, PARP(78) = 1.3D0;

ExpOfPow(1.8) overlap profile: MSTP(82) = 5, PARP(83) = 1.8D0;

Reference energy and rescaling pace: PARP(89) = 1800D0,

PARP(90) = 0.25D0;

ΛFSR scale: PARJ(81) = 0.14D0;

Beam remnants: MSTP(89) = 1, MSTP(88) = 0, PARP(79) = 2D0,

PARP(80) = 0.01D0.

MSTP(82) : (D = 4) structure of multiple interactions. For QCD processes, used down to

p⊥ values below p⊥min, it also affects the choice of structure for the one hard/semi-

hard interaction.

= 0 : simple two-string model without any hard interactions. Toy model only!

= 1 : multiple interactions assuming the same probability in all events, with an

abrupt p⊥min cut-off at PARP(81). (With a slow energy dependence given

by PARP(89) and PARP(90).) This option has not been implemented for the

new model in PYEVNW.

= 2 : multiple interactions assuming the same probability in all events, with a

continuous turn-off of the cross section at p⊥0 =PARP(82). (With a slow

energy dependence given by PARP(89) and PARP(90).)

= 3 : multiple interactions assuming a varying impact parameter and a hadronic

matter overlap consistent with a Gaussian matter distribution, with a con-

tinuous turn-off of the cross section at p⊥0 =PARP(82). (With a slow energy

dependence given by PARP(89) and PARP(90).)

= 4 : multiple interactions assuming a varying impact parameter and a hadronic

matter overlap consistent with a double Gaussian matter distribution given

by PARP(83) and PARP(84), with a continuous turn-off of the cross section

at p⊥0 =PARP(82). (With a slow energy dependence given by PARP(89) and

PARP(90).)

= 5 : multiple interactions assuming a varying impact parameter and a hadronic

matter overlap O(b) ∝ exp(−bd). This shape does not have to correspond

to a simple functional form for the matter distributions themselves. The

power d =PARP(83) (note changed meaning of this parameter relative to
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the MSTP(82) = 4 option) can be varied continuously, with a lower cutoff

at 0.4 for technical reasons. The physically interersting range is between 1

and 2, i.e. between an exponential and a Gaussian. As above, there is a

continuous turn-off of the cross section at p⊥0 =PARP(82). (With a slow

energy dependence given by PARP(89) and PARP(90).)

Note 1: for MSTP(82) ≥ 2 and CKIN(3) > PARP(82) (modulo the slow energy depen-

dence noted above), cross sections given with PYSTAT(1) may be somewhat

too large, since (for reasons of efficiency) the probability factor that the hard

interaction is indeed the hardest in the event is not included in the cross sec-

tions. It is included in the event selection, however, so the events generated

are correctly distributed. For CKIN(3) values a couple of times larger than

PARP(82) this ceases to be a problem.

Note 2: the PARP(81) and PARP(82) values are sensitive to the choice of parton dis-

tributions, ΛQCD, etc., in the sense that a change in the latter variables leads

to a net change in the multiple-interaction rate, which has to be compensated

by a retuning of PARP(81) or PARP(82) if one wants to keep the net multiple-

interaction structure the same. The default PARP(81) and PARP(82) values

are consistent with the other default values give, i.e. parton distributions of

the proton etc.

Note 3: the multiple interactions combination of MSTP(81) = 0 (or = 10, = 20)

and MSTP(82) ≥ 2 is not so common, and certainly not intended to simulate

realistic events, but it is an allowed way to obtain events with only the

hardest interaction of those the events would contain with the corresponding

MSTP(81) = 1 scenario. If also CKIN(3) is set larger than the respective

p⊥0 scale (see PARP(82)), however, the program misbehaves. To avoid this,

MSTP(82) is now set to 1 in such cases, in PYINIT. This may require some

extra care if a run contains a loop over various MSTP(81) and MSTP(82)

values.

Note 4: for technical reasons, options 2 and above have not been implemented for

γp and γγ physics, i.e. there only the option 1 is available for multiple

interactions. Furthermore (and partly related), it is not possible, at least not

without some precautions, to run the MSTP(82) ≥ 2 options with varying

beam energies, see 9.8.

MSTP(83) : (D = 100) number of Monte Carlo generated phase-space points per bin

(whereof there are 20) in the initialization (in PYMULT) of multiple interactions

for MSTP(82) ≥ 2.

MSTP(84) : (D = 1) switch for initial-state radiation in interactions after the first one

in the intermediate and new models. (In the old model, no such radiation is

implemented.)

= 0 : off.

= 1 : on, provided that MSTP(61) = 1.

Note : initial-state radiation in the first (hardest) interaction is not affected by

MSTP(84), but only by MSTP(61).
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MSTP(85) : (D = 1) switch for final-state radiation in interactions after the first one

in the intermediate and new models. (In the old model, no such radiation is

implemented.)

= 0 : off.

= 1 : on, provided that MSTP(71) = 1.

Note : final-state radiation in the first (hardest) interaction is not affected by

MSTP(85), but only by MSTP(71).

MSTP(86) : (D = 2) requirements on multiple interactions based on the hardness scale of

the main process.

= 1 : the main collision is harder than all the subsequent ones. This is the old

behaviour, preserved for reasons of backwards compatibility, and most of

the time quite sensible, but with dangers as follows.

The traditional multiple interactions procedure is to let the main interaction

set the upper p⊥ scale for subsequent multiple interactions. For QCD, this

is a matter of avoiding double-counting. Other processes normally are hard,

so the procedure is then also sensible. However, for a soft main interaction,

further softer interactions are hardly possible, i.e. multiple interactions are

more or less killed. Such a behaviour could be motivated by the rejected

events instead appearing as part of the interactions underneath a normal

QCD hard interaction, but in practice the latter mechanism is not imple-

mented. (And would have been very inefficient to work with, had it been.)

For MSTP(82) ≥ 3 it is even worse, since also the events themselves are likely

to be rejected in the impact-parameter selection stage. Thus the spectrum

of main events that survive is biased, with the low-p⊥, soft tail suppressed.

Furthermore, even when events are rejected by the impact-parameter pro-

cedure, this is not reflected in the cross section for the process, as it should

have been. Results may thus be misleading.

= 2 : when the main process is of the QCD jets type (the same as those in multiple

interactions) subsequent interactions are requested to be softer, but for other

processes no such requirement exists.

= 3 : no requirements at all that multiple interactions have to be softer than the

main interactions (of dubious use for QCD processes but intended for cross-

checks).

Note: process cross sections are unreliable whenever the main process does restrict

subsequent interactions, and the main process can become soft. For QCD

jet studies in this region it is then better to put CKIN(3) = 0 and get the

‘correct’ total cross section.

MSTP(87) : (D = 4) when a sea quark (antiquark) is picked from a hadron at some xs

value in the new model, there has to be a companion sea antiquark (quark) at

some other xc value. The xc distribution is assumed given by a convolution of a

mother gluon distribution g(x = xs+xc) with the perturbative g → q+q DGLAP

splitting kernel. The simple ansatz g(x) = N(1 − x)n/x is used, where N is a

normalization constant and n = MSTP(87). MSTP(87) thus controls the large-x
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behaviour of the assumed gluon distribution. Only integers MSTP(87) = 0 - 4

are available; values below or above this range are set at the lower or upper limit,

respectively.

MSTP(88) : (D = 1) strategy for the collapse of a quark–quark–junction configuration to

a diquark, or a quark–quark–junction–quark configuration to a baryon, in a beam

remnant in the new model.

= 0 : only allowed when valence quarks only are involved.

= 1 : sea quarks can be used for diquark formation, but not for baryon formation.

= 2 : sea quarks can be used also for baryon formation.

MSTP(89) : (D = 1) Selection of method for colour connections in the initial state of

the new model. Note that all options respect the suppression provided by

PARP(80).

= 0 : random.

= 1 : the hard-scattering systems are ordered in rapidity. The initiators on each

side are connected so as to minimize the rapidity difference between neigh-

bouring systems.

= 2 : each connection is chosen so as to minimize an estimate of the total string

length resulting from it. (This is the most technically complicated, and hence

a computationally slow approach.)

MSTP(90) : (D = 0) strategy to compensate the ‘primordial k⊥’ assigned to a parton-

shower initiator or beam-remnant parton in the new model.

= 0 : all other such partons compensate uniformly.

= 1 : compensation spread out across colour chain as (1/2)n, where n is number

of steps the parton is removed in the chain.

= 2 : nearest colour neighbours only compensate.

MSTP(91) : (D = 1) (C) primordial k⊥ distribution in hadron. See MSTP(93) for pho-

ton.

= 0 : no primordial k⊥.

= 1 : Gaussian, width given in PARP(91), upper cut-off in PARP(93).

= 2 : exponential, width given in PARP(92), upper cut-off in PARP(93). Not avail-

able in the new model.

= 3 : distribution proportional to 1/(k2
⊥+3σ2/2)3, i.e. with 1/k6

⊥ tails. RMS width

given in PARP(91) and upper cutoff in PARP(93). Not available in the old

model.

= 4 : flat distribution (on limited interval), RMS width given in PARP(91) and

upper cutoff in PARP(93). Not available in the old model.

= 11 : As 1, but width depends on the scale Q of the hard interaction, being the

maximum of the fragmentation width and 2.1 × Q/(7. + Q). Not available

in the old model.

= 13 : As 3, but the width scales with Q as for 11.

= 14 : As 4, but the width scales with Q as for 11.

Note: when multiple interactions are switched on, the distribution used for the

subsequent interactions vanishes in the old model, and has a RMS width
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forced equal to the fragmentation one in the new model, but the shape still

follows the choice of MSTP(91).

MSTP(92) : (D = 3) (C) energy partitioning in hadron or resolved-photon remnant, when

this remnant is split into two jets in the old model. (For a splitting into a hadron

plus a jet, see MSTP(94).) The energy fraction χ taken by one of the two objects,

with conventions as described for PARP(94) and PARP(96), is chosen according to

the different distributions below. Here cmin = 0.6 GeV/Ecm ≈ 2〈mq〉/Ecm.

= 1 : 1 for meson or resolved photon, 2(1 − χ) for baryon, i.e. simple counting

rules.

= 2 : (k + 1)(1 − χ)k, with k given by PARP(94) or PARP(96).

= 3 : proportional to (1−χ)k/ 4

√
χ2 + c2

min, with k given by PARP(94) or PARP(96).

= 4 : proportional to (1−χ)k/
√

χ2 + c2
min, with k given by PARP(94) or PARP(96).

= 5 : proportional to (1 − χ)k/(χ2 + c2
min)

b/2, with k given by PARP(94) or

PARP(96), and b by PARP(98).

MSTP(93) : (D = 1) (C) primordial k⊥ distribution in photon, either it is one of the

incoming particles or inside an electron.

= 0 : no primordial k⊥.

= 1 : Gaussian, width given in PARP(99), upper cut-off in PARP(100).

= 2 : exponential, width given in PARP(99), upper cut-off in PARP(100).

= 3 : power-like of the type dk2
⊥/(k2

⊥0 +k2
⊥)2, with k⊥0 in PARP(99) and upper k⊥

cut-off in PARP(100).

= 4 : power-like of the type dk2
⊥/(k2

⊥0 + k2
⊥), with k⊥0 in PARP(99) and upper k⊥

cut-off in PARP(100).

= 5 : power-like of the type dk2
⊥/(k2

⊥0 + k2
⊥), with k⊥0 in PARP(99) and upper k⊥

cut-off given by the p⊥ of the hard process or by PARP(100), whichever is

smaller.

Note: for options 1 and 2 the PARP(100) value is of minor importance, once

PARP(100)ÀPARP(99). However, options 3 and 4 correspond to distribu-

tions with infinite 〈k2
⊥〉 if the k⊥ spectrum is not cut off, and therefore the

PARP(100) value is as important for the overall distribution as is PARP(99).

MSTP(94) : (D = 3) (C) energy partitioning in hadron or resolved-photon remnant, when

this remnant is split into a hadron plus a remainder-jet in the old model. The

energy fraction χ is taken by one of the two objects, with conventions as described

below or for PARP(95) and PARP(97).

= 1 : 1 for meson or resolved photon, 2(1 − χ) for baryon, i.e. simple counting

rules.

= 2 : (k + 1)(1 − χ)k, with k given by PARP(95) or PARP(97).

= 3 : the χ of the hadron is selected according to the normal fragmentation func-

tion used for the hadron in jet fragmentation, see MSTJ(11). The possibility

of a changed fragmentation function shape in diquark fragmentation (see

PARJ(45)) is not included.

= 4 : as = 3, but the shape is changed as allowed in diquark fragmentation (see
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PARJ(45)); this change is here also allowed for meson production. (This

option is not so natural for mesons, but has been added to provide the same

amount of freedom as for baryons).

MSTP(95) : (D = 1) selection of method for colour reconnections in the final state in the

new model. For MSTP(95) = 1, the amount of reconnections is controlled by

PARP(78). Note that the meaning of this switch differs between events generated

with the new model (in PYEVNW) and ones generated with the intermediate model

(in PYEVNT). For the former case, the reconnections are performed after multiple

interactions and the initial-state showers have been generated, but before the

final-state showers, whereas in the latter case also the final-state showers are

generated before reconnections are tried. (In the old model, instead PARP(85)

and PARP(86) regulate colour connections, but in a different way.)

= 0 : off.

= 1 : on. (NB: reconnections are still only allowed if there was actually more than

one interaction in the given event, (1) since the colour flow of 1 interaction

should be defined entirely by the shower, and (2) since one otherwise obtains

a (probably unwanted) component of diffractive topologies.)

= 2 : on for hadron-hadron collisions simulated with PYEVNW, else off. Is based on

the new approach described in section 11.4, where an attempt is made to

minimize the total string length λ. In this variant, closed loops of colour-

connected gluons are only accepted if all else fails.

= 3 : on for all collisions simulated with PYEVNW, else off. Same model as = 2.

= 4 : same as = 2, but closed loops of colour-connected gluons are not suppressed.

= 5 : same as = 3, but closed loops of colour-connected gluons are not suppressed.

MSTP(96) : (D = 0) joined interactions (JI) on/off. JI is the possibility that partons

entering different multiple interactions turn out to stem from a common mother

when the initial-state showers are traced backwards.

= 0 : no joinings allowed.

= 1 : p⊥ scales of joinings are found, but joinings are not actually performed.

= 2 : (joinings allowed — not yet implemented).

Note: at present, only the splitting kernels have been implemented, allowing to es-

timate the overall rates and p⊥ spectra of joinings, but the actual kinematics

has not yet been worked out, so that only ‘trial joinings’ can be generated.

Even if switched on, joinings will therefore not at present occur physically

in the generated events.

MSTP(131) : (D = 0) master switch for pile-up events, i.e. several independent hadron-

hadron interactions generated in the same bunch–bunch crossing, with the events

following one after the other in the event record.

= 0 : off, i.e. only one event is generated at a time.

= 1 : on, i.e. several events are allowed in the same event record. Information on

the processes generated may be found in MSTI(41) - MSTI(50).

MSTP(132) : (D = 4) the processes that are switched on for pile-up events. The first event

may be set up completely arbitrarily, using the switches in the PYSUBS common
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block, while all the subsequent events have to be of one of the ‘inclusive’ processes

which dominate the cross section, according to the options below. It is thus not

possible to generate two rare events in the pile-up option.

= 1 : low-p⊥ processes (ISUB = 95) only. The low-p⊥ model actually used, both

in the hard event and in the pile-up events, is the one set by MSTP(81) etc.

This means that implicitly also high-p⊥ jets can be generated in the pile-up

events.

= 2 : low-p⊥ + double diffractive processes (ISUB = 95 and 94).

= 3 : low-p⊥ + double diffractive + single diffractive processes (ISUB = 95, 94, 93

and 92).

= 4 : low-p⊥ + double diffractive + single diffractive + elastic processes, together

corresponding to the full hadron-hadron cross section (ISUB = 95, 94, 93, 92

and 91).

MSTP(133) : (D = 0) multiplicity distribution of pile-up events.

= 0 : selected by you, before each PYEVNT call, by giving the MSTP(134) value.

= 1 : a Poisson multiplicity distribution in the total number of pile-up events. This

is the relevant distribution if the switches set for the first event in PYSUBS give

the same subprocesses as are implied by MSTP(132). In that case the mean

number of events per beam crossing is n = σpile×PARP(131), where σpile is

the sum of the cross section for allowed processes. Since bunch crossings

which do not give any events at all (probability exp(−n)) are not simulated,

the actual average number per PYEVNT call is 〈n〉 = n/(1 − exp(−n)).

= 2 : a biased distribution, as is relevant when one of the events to be generated

is assumed to belong to an event class with a cross section much smaller

than the total hadronic cross section. If σrare is the cross section for this

rare process (or the sum of the cross sections of several rare processes) and

σpile the cross section for the processes allowed by MSTP(132), then define

n = σpile×PARP(131) and f = σrare/σpile. The probability that a bunch

crossing will give i events is then Pi = f i exp(−n)ni/i!, i.e. the näıve Poisson

is suppressed by a factor f since one of the events will be rare rather than

frequent, but enhanced by a factor i since any of the i events may be the

rare one. Only beam crossings which give at least one event of the required

rare type are simulated, and the distribution above normalized accordingly.

Note: for practical reasons, it is required that n < 120, i.e. that an average beam

crossing does not contain more than 120 pile-up events. The multiplicity

distribution is truncated above 200, or when the probability for a multiplicity

has fallen below 10−6, whichever occurs sooner. Also low multiplicities with

probabilities below 10−6 are truncated. See also PARI(91) - PARI(93).

MSTP(134) : (D = 1) a user-selected multiplicity, i.e. total number of pile-up events, to be

generated in the next PYEVNT call when MSTP(133) = 0. May be reset for each

new event, but must be in the range 1 ≤MSTP(134)≤ 200.

PARP(78) : (D = 0.025) parameter controlling the amount of colour reconnection in the
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final state (the F and F ′ parameters in [Sjo04, Sjo04a]), when MSTP(95) = 1. Try

a fraction PARP(78) of the total number of possible reconnections. Perform all

reconnections which reduce the total string length and which are consistent with

the choice of strategy in MSTP(90). If at least one reconnection is successfully

made, loop back and try again, else keep the final-state topology arrived to at this

point. Note that a random colour reconnection is tested each time, so that the

same reconnection may be tried twice and some not at all even when PARP(78) =

1D0. Thus, values somewhat larger than 1D0 are necessary if the ‘most extreme

case’ scenario is desired. Also note that the meaning of this parameter will most

likely be changed in future updates. At present, it merely represents a crude way

of turning up and down the amount of colour reconnections going on in the final

state.

PARP(79) : (D = 2.0) enhancement factor applied when assigning x to composite systems

(e.g. diquarks) in the beam remnant in the new model. Modulo a global rescaling

(= normalization) of all the BR parton x values, the x of a composite system is

PARP(79) times the trivial sum over x values of its individual constituents.

PARP(80) : (D = 0.1) when colours of partons kicked out from a beam remnant are to

be attached to the remnant, PARP(80) gives a suppression for the probability of

attaching those partons to the colour line between two partons which themselves

both lie in the remnant. A smaller value thus corresponds to a smaller probability

that several string pieces will go back and forth between the beam remnant and

the hard-scattering systems.

PARP(81) : (D = 1.9 GeV) effective minimum transverse momentum p⊥min for multiple

interactions with MSTP(82) = 1, at the reference energy scale PARP(89), with

the degree of energy rescaling given by PARP(90). The optimal value depends on

a number of other assumptions, especially which parton distributions are being

used. The default is intended for CTEQ 5L.

PARP(82) : (D = 2.0 GeV) regularization scale p⊥0 of the transverse-momentum spec-

trum for multiple interactions with MSTP(82) ≥ 2, at the reference energy scale

PARP(89), with the degree of energy rescaling given by PARP(90). (Current

default based on the MSTP(82) = 4 option, without any change of MSTP(2) or

MSTP(33).) The optimal value depends on a number of other assumptions, es-

pecially which parton distributions are being used. The default is intended for

CTEQ 5L.

PARP(83), PARP(84) : (D = 0.5, 0.4) parameters of the assumed matter overlap between

the two colliding hadrons. For MSTP(82) = 4, a double Gaussian matter distri-

bution of the form given in eq. (11.12) is used, i.e. with a core of radius PARP(84)

of the main radius and containing a fraction PARP(83) of the total hadronic mat-

ter. For MSTP(82) = 5 the hadronic matter overlap (i.e. the convolution of the

two colliding matter distributions) is O(b) ∝ exp(−bd), with power d =PARP(83)

while PARP(84 is unused. The interesting range of PARP(83) values is different

in the two cases, so this parameter should always be updated when MSTP(82) is

changed.
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PARP(85) : (D = 0.9) probability that an additional interaction in the old multiple-

interaction formalism gives two gluons, with colour connections to ‘nearest neigh-

bours’ in momentum space.

PARP(86) : (D = 0.95) probability that an additional interaction in the old multiple-

interaction formalism gives two gluons, either as described in PARP(85) or as a

closed gluon loop. Remaining fraction is supposed to consist of quark-antiquark

pairs.

PARP(87), PARP(88) : (D = 0.7, 0.5) in order to account for an assumed dominance of

valence quarks at low transverse momentum scales, a probability is introduced

that a gg-scattering according to näıve cross section is replaced by a qq one; this

is used only for MSTP(82) ≥ 2. The probability is parameterized as P = a(1 −
(p2

⊥/(p2
⊥ + b2))2), where a =PARP(87) and b =PARP(88)×PARP(82) (including

the slow energy rescaling of the p⊥0 parameter).

PARP(89) : (D = 1800. GeV) reference energy scale, at which PARP(81) and PARP(82)

give the p⊥min and p⊥0 values directly. Has no physical meaning in itself, but is

used for convenience only. (A form p⊥min = PARP(81)E
PARP(90)
cm would have been

equally possible but then with a less transparent meaning of PARP(81).) For

studies of the p⊥min dependence at some specific energy it may be convenient to

choose PARP(89) equal to this energy.

PARP(90) : (D = 0.16) power of the energy-rescaling term of the p⊥min and p⊥0 parame-

ters, which are assumed proportional to E
PARP(90)
cm . The default value is inspired by

the rise of the total cross section by the pomeron term, sε = E2ε
cm = E2×0.08

cm , which

is not inconsistent with the small-x behaviour. It is also reasonably consistent

with the energy-dependence implied by a comparison with the UA5 multiplicity

distributions at 200 and 900 GeV [UA584]. PARP(90) = 0 is an allowed value,

i.e. it is possible to have energy-independent parameters.

PARP(91) : (D = 2. GeV/c) (C) width of Gaussian primordial k⊥ distribution in-

side hadron for MSTP(91) = 1, i.e. exp(−k2
⊥/σ2) k⊥ dk⊥ with σ =PARP(91) and

〈k2
⊥〉 =PARP(91)2.

Warning: the current default value is much larger than could be explained in purely

nonperturbative terms. It is thus likely that the large value compensates

for imperfections in the perturbative description and, as such, will have an

energy and process dependence. It may therefore be necessary to vary this

parameter for an optimal description.

PARP(92) : (D = 0.40 GeV/c) (C) width parameter of exponential primordial k⊥ distribu-

tion inside hadron for MSTP(91) = 2, i.e. exp(−k⊥/σ) k⊥ dk⊥ with σ =PARP(92)

and 〈k2
⊥〉 = 6×PARP(92)2. Thus one should put PARP(92) ≈ PARP(91)/

√
6 to

have continuity with the option above.

PARP(93) : (D = 5. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside

hadron.

PARP(94) : (D = 1.) (C) for MSTP(92) ≥ 2 this gives the value of the parameter k for the

case when a meson or resolved-photon remnant is split into two fragments (which

is which is chosen at random).
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PARP(95) : (D = 0.) (C) for MSTP(94) = 2 this gives the value of the parameter k for

the case when a meson or resolved-photon remnant is split into a meson and a

spectator fragment jet, with χ giving the energy fraction taken by the meson.

PARP(96) : (D = 3.) (C) for MSTP(92) ≥ 2 this gives the value of the parameter k for the

case when a nucleon remnant is split into a diquark and a quark fragment, with

χ giving the energy fraction taken by the quark jet.

PARP(97) : (D = 1.) (C) for MSTP(94) = 2 this gives the value of the parameter k for the

case when a nucleon remnant is split into a baryon and a quark jet or a meson

and a diquark jet, with χ giving the energy fraction taken by the quark jet or

meson, respectively.

PARP(98) : (D = 0.75) (C) for MSTP(92) = 5 this gives the power of an assumed basic

1/χb behaviour in the splitting distribution, with b =PARP(98).

PARP(99) : (D = 1. GeV/c) (C) width parameter of primordial k⊥ distribution inside

photon; exact meaning depends on MSTP(93) value chosen (cf. PARP(91) and

PARP(92) above).

PARP(100) : (D = 5. GeV/c) (C) upper cut-off for primordial k⊥ distribution inside

photon.

PARP(131) : (D = 0.01 mb−1) in the pile-up events scenario, PARP(131) gives the assumed

luminosity per bunch–bunch crossing, i.e. if a subprocess has a cross section

σ, the average number of events of this type per bunch–bunch crossing is n =

σ×PARP(131). PARP(131) may be obtained by dividing the integrated luminosity

over a given time (1 s, say) by the number of bunch–bunch crossings that this

corresponds to. Since the program will not generate more than 200 pile-up events,

the initialization procedure will crash if n is above 120.

Further subroutines and commonblocks:

SUBROUTINE PYMULT(MMUL) : to generate semi-hard interactions according to the old

multiple-interaction formalism.

SUBROUTINE PYREMN(IPU1,IPU2) : to add on target remnants and include primordial k⊥
according to the old beam-remnant treatment.

SUBROUTINE PYMIGN(MMUL) : initialises multiple interactions. Also generates multiple in-

teraction kinematics and flavours in the ‘intermediate model’ (equivalently to

PYMULT in the ‘old model’).

SUBROUTINE PYEVOL(MODE,PT2MAX,PT2MIN) : initializes and evolves an event consisting

of a single 2 → 2 hard scattering down in p2
⊥ from some PT2MAX scale down to

PT2MIN, with interleaved multiple interactions and initial-state radiation accord-

ing to the new model.

MODE = -1 : initialize interleaved MI/ISR/JI evolution first time for each event. De-

termine physical PT2MAX and PT2MIN scales.

MODE = 0 : (re-)initialize ISR/MI/JI evolution: resets relevant parameters (saved

during the first call). Is re-done every time an evolution must be restarted.

(This only applies to a restart of the entire evolution, not to the case when

PYEVOL is called multiple times for factorized evolution.)
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MODE = 1 : evolve ISR/MI/JI from PT2MAX to PT2MIN.

MODE = 2 : finalize MI/ISR/JI evolution.

Note: multiple calls to PYEVOL using MODE = 1 can be made, with the PT2MIN

scale of one call being the PT2MAX scale of the next, producing a sequence of

factorized evolution steps, if so desired. (Only relevant for some specialized

applications like L-CKKW style PS/ME matching [Cat01].)

SUBROUTINE PYPTMI(MODE,PT2NOW,PT2CUT,PT2,IFAIL) : initialises, generates, and ac-

cepts additional trial interactions in the new model. Also collapses the flavour

wave function of newly created quarks (from interactions or ISR branchings) into

valence, sea or companion quarks.

MODE = -1 : initialize MI from scratch.

MODE = 0 : generate trial interaction. Start at PT2NOW, solve Sudakov for PT2, abort

if below PT2CUT.

MODE = 1 : accept interaction at PT2NOW and store variables.

MODE = 2 : decide sea/valence/companion for kicked-out quark at PT2NOW.

PT2NOW : starting (max) p2
⊥ scale for evolution.

PT2CUT : lower limit for evolution.

PT2 : result of evolution. Generated p2
⊥ for trial interaction.

IFAIL : status return code.

= 0: all is well.

< 0: phase space exhausted, generation to be terminated.

> 0: additional interaction vetoed, but continue evolution.

SUBROUTINE PYMIHK : finds left-behind remnant flavour content and hooks up the colour

flow between the hard scattering and remnants in the new model (part of PYREMN

in the old scheme).

SUBROUTINE PYCTTR(I,KCS,IEND) : auxiliary to PYMIHK. Traces the colour flow in the

Pythia event record and translates it into a structure (/PYCTAG/) based on Les

Houches Accord style colour tags.

SUBROUTINE PYMIHG(JCP1,JCG1,JCP2,JCG2) : auxiliary routine to PYMIHK used to test

initial-state colour connections. Keeps track of which colour tags have been col-

lapsed with each other and tests whether a given new collapse will result in singlet

gluons. Uses /PYCBLS/ to communicate with PYMIHK.

SUBROUTINE PYMIRM : picks primordial k⊥ and shares longitudinal momentum among

beam remnants in the new model (part of PYREMN in the old scheme).

FUNCTION PYFCMP(XC,XS,NPOW) : gives the approximate xf(x;xs) distribution of a com-

panion quark.

FUNCTION PYPCMP(XS,NPOW) : gives the approximate momentum integral of a companion-

quark xf(x) distribution.
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COMMON/PYINTM/KFIVAL(2,3),NMI(2),IMI(2,800,2),NVC(2,-6:6),

&XASSOC(2,-6:6,240),XPSVC(-6:6,-1:240),PVCTOT(2,-1:1),

&XMI(2,240),Q2MI(240),IMISEP(0:240)

Purpose: to carry information relevant for multiple interactions in the new model.

KFIVAL(JS,J) : enumeration of the initial valence quark content on side JS. A baryon

requires all three slots J, while a meson only requires the first two, so that

KFIVAL(JS,3) = 0. The contents are initially zero for a γ, π0, K0
S and KL,

and are only set once a valence quark is kicked out. (For instance, a π0 can be

either uu or dd, only a scattering will tell.)

NMI(JS) : total number of scattered and remnant partons on side JS, including hypothe-

sized gluons that each branch to a sea (anti)quark and its companion.

IMI(JS,I,1) : position in the /PYJETS/ event record of a scattered or remnant parton,

or a hypothesized gluon that branches to a sea (anti)quark and its companion.

Here JS gives the side and 1 ≤ I ≤ NMI(JS) enumerates the partons.

IMI(JS,I,2) : nature of the partons described above.

= 0 : a valence quark or a gluon.

> 0 : parton is part of a sea quark-antiquark pair, and IMI(JS,I,2) gives the

position in the event record of the companion.

< 0 : flag that parton is a sea quark for which no companion has yet been defined;

useful at intermediate stages but should not be found in the final event.

NVC(JS,IFL) : total number of unmatched sea quarks on side JS of flavour IFL.

XASSOC(JS,IFL,I) : the x value of an unmatched sea quark, on side JS of flavour IFL

and with 1 ≤ I ≤ NVC(JS,IFL). When a companion quark is found then both

XASSOC and NVC are updated.

XPSVC(IFL,J) : subdivision of the parton density xf(x) for flavour IFL obtained by a

PYPDFU call (with MINT(30) = side JS).

J = -1 : sea contribution.

J = 0 : valence contribution.

1 ≤ J ≤ NVC(JS,IFL) : sea companion contribution from each of the above un-

matched sea quarks.

PVCTOT(JS,J) : momentum fraction, i.e. integral of xf(x), inside the remaining hadron

on side JS.

J = -1 : total carried originally by valence quarks.

J = 0 : total carried by valence quarks that have been removed.

J = 1 : total carried by unmatched sea companion quarks.

XMI(JS,I) : x value of incoming parton on side JS for interaction number I, 1 ≤ I ≤
MINT(31). When there is an initial-state shower, x refers to the initiator of this

shower rather than to the incoming parton at the hard interaction. The x values

are normalized to the full energy of the incoming hadron, i.e. are not rescaled by

previous interactions.

Q2MI(I) : the Q2 scale of the hard interaction number I, 1 ≤ I ≤ MINT(31). This is the
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scale stored in VINT(54), i.e. the Q2 used to evaluate parton densities at the hard

scattering.

IMISEP(I) : last line in the event record filled by partons belonging to the interaction

number I, 1 ≤ I ≤ MINT(31). Thus interaction I is stored in lines IMISEP(I-1)

+ 1 through IMISEP(I), where IMISEP(0) has been set so that this holds also

for I = 1.

COMMON/PYCBLS/MCO(4000,2),NCC,JCCO(4000,2),JCCN(4000,2),MACCPT

Purpose: to store temporary colour-tag information while hooking up initial state; used

to communicate between PYMIHK and PYMIHG.

MCO(I,J) : original colour tag J of parton I before initial-state connection procedure was

started.

NCC : number of colour tags that have so far been collapsed.

JCCO(I,J) : colour tag collapse array, I ≤ NCC. The I’th collapse is between colour tags

JCCO(I,1) and JCCO(I,2).

JCCN(I,J) : temporary storage for collapse being tested. If collapse is accepted, JCCO is

set equal to JCCN.

COMMON/PYCTAG/NCT, MCT(4000,2)

Purpose: to carry Les Houches Accord style colour tag information for partons in the

event record.

NCT : number of colour lines in the event, from 1 to NCT.

MCT(I,1) : colour tag of parton I in /PYJETS/.

MCT(I,2) : anticolour tag of parton I in /PYJETS/.

COMMON/PYISMX/MIMX,JSMX,KFLAMX,KFLCMX,KFBEAM(2),NISGEN(2,240),

&PT2MX,PT2AMX,ZMX,RM2CMX,Q2BMX,PHIMX

Purpose: to carry information on hardest initial-state radiation trial branching so far,

during the interleaved generation with multiple interactions in PYEVOL. All quan-

tities except NISGEN refer to this hardest trial branching so far.

MIMX : interaction number.

JSMX : side. JSMX determines which evolution step has ‘won’ in the PYEVOL evolution.

Its possible values are:

= -1 : no evolution step was found above the current PT2MIN.

= 0 : an additional interaction should be generated.

= 1 : an ISR branching on side 1 (interaction number MIMX).

= 2 : an ISR branching on side 2 (interaction number MIMX).

= 3 : a joining on side 1 (interactions MJN1MX and MJN2MX).

= 4 : a joining on side 2 (interactions MJN1MX and MJN2MX).

– 431 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

KFLAMX : mother flavour.

KFLCMX : time-like sister flavour.

KFBEAM(JS) : KF code of beam on side JS.

NISGEN(JS,MI) : number of already generated ISR branchings on interaction number MI,

side JS.

PT2MX : evolution p2
⊥ scale.

PT2AMX : physical p2
⊥ value.

ZMX : z energy sharing fraction.

RM2CMX : time-like sister mass-squared.

Q2BMX : space-like virtuality.

PHIMX : azimuthal (φ) angle.

COMMON/PYISJN/MJN1MX,MJN2MX,MJOIND(2,240)

Purpose: to carry information on possible joinings, i,e. when two separate showers are

reconstructed to a common ancestor in the backwards evolution.
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12. Fragmentation

The main fragmentation option in Pythia is the Lund string scheme, but some simple

independent fragmentation options are also available. These latter options should not be

taken too seriously, since we know that independent fragmentation does not provide a

consistent alternative, but occasionally one may like to compare string fragmentation with

something else.

The subsequent four sections give further details; the first one on flavour selection,

which is common to the two approaches, the second on string fragmentation, the third on

independent fragmentation, while the fourth and final contains information on a few other

issues.

The Lund fragmentation model is described in [And83], where all the basic ideas are

presented and earlier papers [And79, And80, And82, And82a] summarized. The details

given there on how a multiparton jet system is allowed to fragment are out of date, however,

and for this one should turn to [Sjo84]. Also the ‘popcorn’ baryon production mechanism

is not covered, see [And85], and [Ede97] for a more sophisticated version. The most recent

comprehensive description of the Lund model is found in [And98]. Reviews of fragmentation

models in general may be found in [Sjo88, Sjo89].

12.1 Flavour selection

In either string or independent fragmentation, an iterative approach is used to describe

the fragmentation process. Given an initial quark q = q0, it is assumed that a new q1q1

pair may be created, such that a meson q0q1 is formed, and a q1 is left behind. This q1

may at a later stage pair off with a q2, and so on. What need be given is thus the relative

probabilities to produce the various possible qiqi pairs, uu, dd, ss, etc., and the relative

probabilities that a given qi−1qi quark pair combination forms a specific meson, e.g. for ud

either π+, ρ+ or some higher state.

In Pythia, to first approximation it is assumed that the two aspects can be factorized,

i.e. that it is possible first to select a qiqi pair, without any reference to allowed physical

meson states, and that, once the qi−1qi flavour combination is given, it can be assigned to

a given meson state with total probability unity. Corrections to this factorized ansatz will

come especially in the baryon sector.

12.1.1 Quark flavours and transverse momenta

In order to generate the quark-antiquark pairs qiqi which lead to string breakups, the Lund

model invokes the idea of quantum mechanical tunnelling, as follows. If the qi and qi have

no (common) mass or transverse momentum, the pair can classically be created at one

point and then be pulled apart by the field. If the quarks have mass and/or transverse

momentum, however, the qi and qi must classically be produced at a certain distance so

that the field energy between them can be transformed into the sum of the two transverse

masses m⊥. Quantum mechanically, the quarks may be created in one point (so as to keep

the concept of local flavour conservation) and then tunnel out to the classically allowed
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region. In terms of a common transverse mass m⊥ of the qi and the qi, the tunnelling

probability is given by

exp

(
−πm2

⊥

κ

)
= exp

(
−πm2

κ

)
exp

(
−πp2

⊥

κ

)
, (12.1)

where the string tension κ ≈ 1 GeV/fm ≈ 0.2 GeV2.

The factorization of the transverse momentum and the mass terms leads to a flavour-

independent Gaussian spectrum for the px and py components of qiqi pairs. Since the

string is assumed to have no transverse excitations, this p⊥ is locally compensated between

the quark and the antiquark of the pair. The p⊥ of a meson qi−1qi is given by the vector

sum of the p⊥’s of the qi−1 and qi constituents, which implies Gaussians in px and py with

a width
√

2 that of the quarks themselves. The assumption of a Gaussian shape may be a

good first approximation, but there remains the possibility of non-Gaussian tails, that can

be important in some situations.

In a perturbative QCD framework, a hard scattering is associated with gluon radiation,

and further contributions to what is näıvely called fragmentation p⊥ comes from unresolved

radiation. This is used as an explanation why the experimental 〈p⊥〉 is somewhat higher

than obtained with the formula above.

The formula also implies a suppression of heavy quark production u : d : s : c ≈
1 : 1 : 0.3 : 10−11. Charm and heavier quarks are hence not expected to be produced in the

soft fragmentation. Since the predicted flavour suppressions are in terms of quark masses,

which are notoriously difficult to assign (should it be current algebra, or constituent, or

maybe something in between?), the suppression of ss production is left as a free parameter

in the program: uu : dd : ss = 1 : 1 : γs, where by default γs = 0.3. At least qualitatively,

the experimental value agrees with theoretical prejudice. Currently there is no production

at all of heavier flavours in the fragmentation process, but only in the hard process or as

part of the shower evolution.

12.1.2 Meson production

Once the flavours qi−1 and qi have been selected, a choice is made between the possible

multiplets. The relative composition of different multiplets is not given from first principles,

but must depend on the details of the fragmentation process. To some approximation one

would expect a negligible fraction of states with radial excitations or non-vanishing orbital

angular momentum. Spin counting arguments would then suggest a 3:1 mixture between

the lowest lying vector and pseudoscalar multiplets. Wave function overlap arguments lead

to a relative enhancement of the lighter pseudoscalar states, which is more pronounced the

larger the mass splitting is [And82a].

In the program, six meson multiplets are included. If the nonrelativistic classification

scheme is used, i.e. mesons are assigned a valence quark spin S and an internal orbital

angular momentum L, with the physical spin s denoted J , J = L + S, then the multiplets

are:

• L = 0, S = 0, J = 0: the ordinary pseudoscalar meson multiplet;

• L = 0, S = 1, J = 1: the ordinary vector meson multiplet;
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• L = 1, S = 0, J = 1: an axial vector meson multiplet;

• L = 1, S = 1, J = 0: the scalar meson multiplet;

• L = 1, S = 1, J = 1: another axial vector meson multiplet; and

• L = 1, S = 1, J = 2: the tensor meson multiplet.

Each multiplet has the full five-flavour setup of 5×5 states included in the program. Some

simplifications have been made; for instance there is no mixing included between the two

axial vector multiplets.

In the program, the spin S is first chosen to be either 0 or 1. This is done according to

parameterized relative probabilities, where the probability for spin 1 by default is taken to

be 0.5 for a meson consisting only of u and d quark, 0.6 for one which contains s as well,

and 0.75 for quarks with c or heavier quark, in accordance with the deliberations above.

By default, it is assumed that L = 0, such that only pseudoscalar and vector mesons

are produced. For inclusion of L = 1 production, four parameters can be used, one to give

the probability that a S = 0 state also has L = 1, the other three for the probability that

a S = 1 state has L = 1 and J either 0, 1, or 2. Experimentally a non-negligible rate

of L = 1 production is observed. This is visible in the appropriate invariant-mass plots,

but does not have a significant impact on event shapes in general, i.e. comparably good

descriptions can be obtained with and without L = 1 mesons. The reason is likely that the

mass spectrum of intermediate string pieces, as reconstructed from the primary hadrons,

is not too dissimilar from a smeared-out setup with higher mesonic states. That is, the

string model already implicitly contains higher-excited mesons.

For the flavour-diagonal meson states uu, dd and ss, it is also necessary to include

mixing into the physical mesons. This is done according to a parameterization, based on

the mixing angles given in the Review of Particle Properties [PDG88]. In particular, the

default choices correspond to

η =
1

2
(uu + dd) − 1√

2
ss ;

η′ =
1

2
(uu + dd) +

1√
2
ss ;

ω =
1√
2
(uu + dd)

φ = ss , (12.2)

i.e. ideal mixing in the ω − φ system and θP ∼ −10 deg in the η − η′ system. In the

π0 − η − η′ system, no account is thus taken of the difference in masses, an approximation

which seems to lead to an overestimate of η′ rates [ALE92]. Therefore parameters have

been introduced to allow an additional ‘brute force’ suppression of η and η′ states.

12.1.3 Baryon production

The mechanism for meson production follows rather naturally from the simple picture of a

meson as a short piece of string between two q/q endpoints. There is no unique recipe to

generalize this picture to baryons. The program actually contains three different scenarios:

diquark, simple popcorn, and advanced popcorn. In the diquark model the baryon and
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antibaryon are always produced as nearest neighbours along the string, while mesons may

(but need not) be produced in between in the popcorn scenarios. The simpler popcorn

alternative admits at most one intermediate meson, while the advanced one allows many.

Further differences may be found, but several aspects are also common between the three

scenarios. Below they are therefore described in order of increasing sophistication. Finally

the application of the models to baryon remnant fragmentation, where a diquark originally

sits at one endpoint of the string, is discussed.

Diquark picture. Baryon production may, in its simplest form, be obtained by assuming

that any flavour qi given above could represent either a quark or an antidiquark in a colour

triplet state. Then the same basic machinery can be run through as above, supplemented

with the probability to produce various diquark pairs. In principle, there is one parameter

for each diquark, but if tunnelling is still assumed to give an effective description, mass

relations can be used to reduce the effective number of parameters. There are three main

ones appearing in the program:

• the relative probability to pick a qq diquark rather than a q;

• the extra suppression associated with a diquark containing a strange quark (over and

above the ordinary s/u suppression factor γs); and

• the suppression of spin 1 diquarks relative to spin 0 ones (apart from the factor of 3

enhancement of the former based on counting the number of spin states).

The extra strange diquark suppression factor comes about since what appears in the expo-

nent of the tunnelling formula is m2 and not m, so that the diquark and the strange quark

suppressions do not factorize.

Only two baryon multiplets are included, i.e. there are no L = 1 excited states. The

two multiplets are:

• S = J = 1/2: the ‘octet’ multiplet of SU(3);

• S = J = 3/2: the ‘decuplet’ multiplet of SU(3).

In contrast to the meson case, different flavour combinations have different numbers of

states available: for uuu only ∆++, whereas uds may become either Λ, Σ0 or Σ∗0.

An important constraint is that a baryon is a symmetric state of three quarks, ne-

glecting the colour degree of freedom. When a diquark and a quark are joined to form a

baryon, the combination is therefore weighted with the probability that they form a sym-

metric three-quark state. The program implementation of this principle is to first select

a diquark at random, with the strangeness and spin 1 suppression factors above included,

but then to accept the selected diquark with a weight proportional to the number of states

available for the quark-diquark combination. This means that, were it not for the tun-

nelling suppression factors, all states in the SU(6) (flavour SU(3) times spin SU(2))

56-multiplet would become equally populated. Of course also heavier baryons may come

from the fragmentation of e.g. c quark jets, but although the particle classification scheme

used in the program is SU(10), i.e. with five flavours, all possible quark-diquark combi-

nations can be related to SU(6) by symmetry arguments. As in the case for mesons, one

could imagine an explicit further suppression of the heavier spin 3/2 baryons.
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In case of rejection, one again chooses between a diquark or a quark. If choosing

diquark, a new baryon is selected and tested, etc. (In versions earlier than Pythia 6.106,

the algorithm was instead to always produce a new diquark if the previous one had been

rejected. However, the probability that a quark will produce a baryon and a antidiquark is

then flavour independent, which is not in agreement with the model.) Calling the tunnelling

factor for diquark D TD, the number of spin states σD and the SU(6) factor for D and a

quark q SUD,q, the model prediction for the (q → B + D)/(q → M + q′) ratio is

Sq =
P (qq)

P (q)

∑

D

TDσDSUD,q . (12.3)

(Neglecting this flavour dependence e.g. leads to an enhancement of the Ω− relative to

primary proton production with approximately a factor 1.2, using Jetset 7.4 default

values.) Since the chosen algorithm implies the normalization
∑

D TDσD = 1 and SUD,q ≤
1, the final diquark production rate is somewhat reduced from the P (qq)/P (q) input value.

When a diquark has been fitted into a symmetrical three-particle state, it should

not suffer any further SU(6) suppressions. Thus the accompanying antidiquark should

‘survive’ with probability 1. When producing a quark to go with a previously produced

diquark, this is achieved by testing the configuration against the proper SU(6) factor, but

in case of rejection keep the diquark and pick a new quark, which then is tested, etc.

There is no obvious corresponding algorithm available when a quark from one side and

a diquark from the other are joined to form the last hadron of the string. In this case the

quark is a member of a pair, in which the antiquark already has formed a specific hadron.

Thus the quark flavour cannot be reselected. One could consider the SU(6) rejection as

a major joining failure, and restart the fragmentation of the original string, but then the

already accepted diquark does suffer extra SU(6) suppression. In the program the joining

of a quark and a diquark is always accepted.

Simple popcorn. A more general framework for baryon production is the ‘popcorn’ one

[And85], in which diquarks as such are never produced, but rather baryons appear from

the successive production of several qiqi pairs. The picture is the following. Assume that

the original q is red r and the q is r. Normally a new q1q1 pair produced in the field would

also be rr, so that the q1 is pulled towards the q end and vice versa, and two separate

colour-singlet systems qq1 and q1q are formed. Occasionally, the q1q1 pair may be e.g. gg

(g = green), in which case there is no net colour field acting on either q1 or q1. Therefore,

the pair cannot gain energy from the field, and normally would exist only as a fluctuation.

If q1 moves towards q and q1 towards q, the net field remaining between q1 and q1 is bb (b

= blue; g + r = b if only colour triplets are assumed). In this central field, an additional

q2q2 pair can be created, where q2 now is pulled towards qq1 and q2 towards qq1, with no

net colour field between q2 and q2. If this is all that happens, the baryon B will be made

up out of q1, q2 and some q4 produced between q and q1, and B of q1, q2 and some q5, i.e.

the B and B will be nearest neighbours in rank and share two quark pairs. Specifically, q1

will gain energy from q2 in order to end up on mass shell, and the tunnelling formula for

an effective q1q2 diquark is recovered.
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Part of the time, several bb colour pair productions may take place between the q1 and

q1, however. With two production vertices q2q2 and q3q3, a central meson q2q3 may be

formed, surrounded by a baryon q4q1q2 and an antibaryon q3q1q5. We call this a BMB

configuration to distinguish it from the q4q1q2 + q2q1q5 BB configuration above. For

BMB the B and B only share one quark-antiquark pair, as opposed to two for BB con-

figurations. The relative probability for a BMB configuration is given by the uncertainty

relation suppression for having the q1 and q1 sufficiently far apart that a meson may be

formed in between. The suppression of the BMB system is estimated by

|∆F |2 ≈ exp(−2µ⊥M⊥/κ) (12.4)

where µ⊥ and M⊥ is the transverse mass of q1 and the meson, respectively. Strictly

speaking, also configurations like BMMB, BMMMB, etc. should be possible, but since

the total invariant M⊥ grows rapidly with the number of mesons, the probability for this is

small in the simple model. Further, since larger masses corresponds to longer string pieces,

the production of pseudoscalar mesons is favoured over that of vector ones. If only BB

and BMB states are included, and if the probability for having a vector meson M is not

suppressed extra, two partly compensating errors are made (since a vector meson typically

decays into two or more pseudoscalar ones).

In total, the flavour iteration procedure therefore contains the following possible sub-

processes (plus, of course, their charge conjugates):

• q1 → q2 + (q1q2) meson;

• q1 → q2q3 + (q1q2q3) baryon;

• q1q2 → q3 + (q1q2q3) baryon;

• q1q2 → q1q3 + (q2q3) meson;

with the constraint that the last process cannot be iterated to obtain several mesons in

between the baryon and the antibaryon.

When selecting flavours for qq → M + qq′, the quark coming from the accepted qq is

kept, and the other member of qq′, as well as the spin of qq′, is chosen with weights taking

SU(6) symmetry into account. Thus the flavour of qq is not influenced by SU(6) factors

for qq′, but the flavour of M is.

Unfortunately, the resulting baryon production model has a fair number of parame-

ters, which would be given by the model only if quark and diquark masses were known

unambiguously. We have already mentioned the s/u ratio and the qq/q one; the latter has

to be increased from 0.09 to 0.10 for the popcorn model, since the total number of possible

baryon production configurations is lower in this case (the particle produced between the

B and B is constrained to be a meson). With the improved SU(6) treatment introduced

in Pythia 6.106, a rejected q → B + qq may lead to the splitting q → M + q′ instead.

This calls for an increase of the qq/q input ratio by approximately 10%. For the popcorn

model, exactly the same parameters as already found in the diquark model are needed to

describe the BB configurations. For BMB configurations, the square root of a suppression

factor should be applied if the factor is relevant only for one of the B and B, e.g. if the B

is formed with a spin 1 ‘diquark’ q1q2 but the B with a spin 0 diquark q1q3. Additional
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parameters include the relative probability for BMB configurations, which is assumed to

be roughly 0.5 (with the remaining 0.5 being BB), a suppression factor for having a strange

meson M between the B and B (as opposed to having a lighter nonstrange one) and a

suppression factor for having a ss pair (rather than a uu one) shared between the B and

B of a BMB configuration. The default parameter values are based on a combination of

experimental observation and internal model predictions.

In the diquark model, a diquark is expected to have exactly the same transverse mo-

mentum distribution as a quark. For BMB configurations the situation is somewhat more

unclear, but we have checked that various possibilities give very similar results. The option

implemented in the program is to assume no transverse momentum at all for the q1q1 pair

shared by the B and B, with all other pairs having the standard Gaussian spectrum with

local momentum conservation. This means that the B and B p⊥’s are uncorrelated in a

BMB configuration and (partially) anticorrelated in the BB configurations, with the same

mean transverse momentum for primary baryons as for primary mesons.

Advanced popcorn. In [Ede97], a revised popcorn model is presented, where the sepa-

rate production of the quarks in an effective diquark is taken more seriously. The production

of a qq pair which breaks the string is in this model determined by eq. (12.1), also when

ending up in a diquark. Furthermore, the popcorn model is re-implemented in such a way

that eq (12.4) could be used explicitly in the Monte Carlo. The two parameters

βq ≡ 2 〈µ⊥q〉 /κ, or βu and ∆β ≡ βs − βu, (12.5)

then govern both the diquark and the intermediate meson production. In this algorithm,

configurations like BMMB etc. are considered in a natural way. The more independent

production of the diquark partons implies a moderate suppression of spin 1 diquarks.

Instead the direct suppression of spin 3/2 baryons, in correspondence to the suppression of

vector mesons relative to pseudo-scalar ones, is assumed to be important. Consequently, a

suppression of Σ-states relative to Λ0 is derived from the spin 3/2 suppression parameter.

Several new routines have been added, and the diquark code has been extended with

information about the curtain quark flavour, i.e. the qq pair that is shared between the

baryon and antibaryon, but this is not visible externally. Some parameters are no longer

used, while others have to be given modified values. This is described in section 14.3.1.

Baryon remnant fragmentation. Occasionally, the endpoint of a string is not a single

parton, but a diquark or antidiquark, e.g. when a quark has been kicked out of a proton

beam particle. One could consider fairly complex schemes for the resulting fragmentation.

One such [And81] was available in Jetset version 6 but is no longer found here. Instead

the same basic scheme is used as for diquark pair production above. Thus a qq diquark

endpoint is fragmented just as if produced in the field behind a matching qq flavour, i.e.

either the two quarks of the diquark enter into the same leading baryon, or else a meson

is first produced, containing one of the quarks, while the other is contained in the baryon

produced in the next step.

Similarly, the revised algorithm for baron production can be applied to endpoint di-

quarks, though only with some care [Ede97]. The suppression factor for popcorn mesons is
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derived from the assumption of colour fluctuations violating energy conservation and thus

being suppressed by the Heisenberg uncertainty principle. When splitting an original di-

quark into two more independent quarks, the same kind of energy shift does not obviously

emerge. One could still expect large separations of the diquark constituents to be sup-

pressed, but the shape of this suppression is beyond the scope of the model. For simplicity,

the same kind of exponential suppression as in the ”true popcorn” case is implemented

in the program. However, there is little reason for the strength of the suppression to be

exactly the same in the different situations. Thus the leading rank meson production in a

diquark jet is governed by a new β parameter, which is independent of the popcorn param-

eters βu and ∆β in eq. (12.5). Furthermore, in the process (original diquark → baryon+q)

the spin 3/2 suppression should not apply at full strength. This suppression factor stems

from the normalization of the overlapping q and q wavefunctions in a newly produced qq

pair, but in the process considered here, two out of three valence quarks already exist as

an initial condition of the string.

The diquark picture above is not adequate when two or more quarks are kicked out

of a proton. Below, in section 12.2.5, we will introduce string junctions to describe such

topologies.

12.2 String fragmentation

An iterative procedure can also be used for other aspects of the fragmentation. This is

possible because, in the string picture, the various points where the string breaks are

causally disconnected. Whereas the space-time picture in the c.m. frame is such that slow

particles (in the middle of the system) are formed first, this ordering is Lorentz-frame-

dependent and hence irrelevant. One may therefore make the convenient choice of starting

an iteration process at the ends of the string and proceeding towards the middle.

The string fragmentation scheme is rather complicated for a generic multiparton state.

In order to simplify the discussion, we will therefore start with the simple qq process,

and only later survey the complications that appear when additional gluons are present.

(This distinction is made for pedagogical reasons, in the program there is only one general-

purpose algorithm).

12.2.1 Fragmentation functions

Assume a qq jet system, in its c.m. frame, with the quark moving out in the +z direction

and the antiquark in the −z one. We have discussed how it is possible to start the flavour

iteration from the q end, i.e. pick a q1q1 pair, form a hadron qq1, etc. It has also been noted

that the tunnelling mechanism is assumed to give a transverse momentum p⊥ for each new

qiqi pair created, with the p⊥ locally compensated between the qi and the qi member of

the pair, and with a Gaussian distribution in px and py separately. In the program, this

is regulated by one parameter, which gives the root-mean-square p⊥ of a quark. Hadron

transverse momenta are obtained as the sum of p⊥’s of the constituent qi and qi+1, where

a diquark is considered just as a single quark.

What remains to be determined is the energy and longitudinal momentum of the

hadron. In fact, only one variable can be selected independently, since the momentum of
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the hadron is constrained by the already determined hadron transverse mass m⊥,

(E + pz)(E − pz) = E2 − p2
z = m2

⊥ = m2 + p2
x + p2

y . (12.6)

In an iteration from the quark end, one is led (by the desire for longitudinal boost invariance

and other considerations) to select the z variable as the fraction of E + pz taken by the

hadron, out of the available E + pz. As hadrons are split off, the E + pz (and E − pz) left

for subsequent steps is reduced accordingly:

(E + pz)new = (1 − z)(E + pz)old ,

(E − pz)new = (E − pz)old − m2
⊥

z(E + pz)old
. (12.7)

The fragmentation function f(z), which expresses the probability that a given z is

picked, could in principle be arbitrary — indeed, several such choices can be used inside

the program, see below.

If one, in addition, requires that the fragmentation process as a whole should look the

same, irrespectively of whether the iterative procedure is performed from the q end or the q

one, ‘left-right symmetry’, the choice is essentially unique [And83a]: the ‘Lund symmetric

fragmentation function’,

f(z) ∝ 1

z
zaα

(
1 − z

z

)aβ

exp

(
−bm2

⊥

z

)
. (12.8)

There is one separate parameter a for each flavour, with the index α corresponding to the

‘old’ flavour in the iteration process, and β to the ‘new’ flavour. It is customary to put all

aα,β the same, and thus arrive at the simplified expression

f(z) ∝ z−1(1 − z)a exp(−bm2
⊥/z) . (12.9)

In the program, only two separate a values can be given, that for quark pair production

and that for diquark one. In addition, there is the b parameter, which is universal.

The explicit mass dependence in f(z) implies a harder fragmentation function for

heavier hadrons. The asymptotic behaviour of the mean z value for heavy hadrons is

〈z〉 ≈ 1 − 1 + a

bm2
⊥

. (12.10)

Unfortunately it seems this predicts a somewhat harder spectrum for B mesons than ob-

served in data. However, Bowler [Bow81] has shown, within the framework of the Artru–

Mennessier model [Art74], that a massive endpoint quark with mass mQ leads to a modifi-

cation of the symmetric fragmentation function, due to the fact that the string area swept

out is reduced for massive endpoint quarks, compared with massless ditto. The Artru–

Mennessier model in principle only applies for clusters with a continuous mass spectrum,

and does not allow an a term (i.e. a ≡ 0); however, it has been shown [Mor89] that, for

a discrete mass spectrum, one may still retain an effective a term. In the program an

approximate form with an a term has therefore been used:

f(z) ∝ 1

z1+rQbm2
Q

zaα

(
1 − z

z

)aβ

exp

(
−bm2

⊥

z

)
. (12.11)
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In principle the prediction is that rQ ≡ 1, but so as to be able to extrapolate smoothly

between this form and the original Lund symmetric one, it is possible to pick rQ separately

for c and b hadrons.

For future reference we note that the derivation of f(z) as a by-product also gives the

probability distribution in proper time τ of qiqi breakup vertices. In terms of Γ = (κτ)2,

this distribution is

P(Γ) dΓ ∝ Γa exp(−bΓ) dΓ , (12.12)

with the same a and b as above. The exponential decay allows an interpretation in terms

of an area law for the colour flux [And98].

Many different other fragmentation functions have been proposed, and a few are avail-

able as options in the program.

• The Field–Feynman parameterization [Fie78],

f(z) = 1 − a + 3a(1 − z)2 , (12.13)

with default value a = 0.77, is intended to be used only for ordinary hadrons made

out of u, d and s quarks.

• Since there are indications that the shape above is too strongly peaked at z = 0,

instead a shape like

f(z) = (1 + c)(1 − z)c (12.14)

may be used.

• Charm and bottom data clearly indicate the need for a harder fragmentation function

for heavy flavours. The best known of these is the Peterson/SLAC formula [Pet83]

f(z) ∝ 1

z
(
1 − 1

z − εQ
1 − z

)2 , (12.15)

where εQ is a free parameter, expected to scale between flavours like εQ ∝ 1/m2
Q.

• As a crude alternative, that is also peaked at z = 1, one may use

f(z) = (1 + c)zc . (12.16)

• In [Ede97], it is argued that the quarks responsible for the colour fluctuations in

stepwise diquark production cannot move along the light-cones. Instead there is an

area of possible starting points for the colour fluctuation, which is essentially given

by the proper time of the vertex squared. By summing over all possible starting

points, one obtains the total weight for the colour fluctuation. The result is a relative

suppression of diquark vertices at early times, which is found to be of the form

1 − exp(−ρΓ), where Γ ≡ κ2τ2 and ρ ≈ 0.7GeV−2. This result, and especially

the value of ρ, is independent of the fragmentation function, f(z), used to reach a

specific Γ-value. However, if using a f(z) which implies a small average value 〈Γ〉,
the program implementation is such that a large fraction of the q → B +qq attempts

will be rejected. This dilutes the interpretation of the input P (qq)/P (q) parameter,
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which needs to be significantly enhanced to compensate for the rejections.

A property of the Lund Symmetric Fragmentation Function is that the first vertices

produced near the string ends have a lower 〈Γ〉 than central vertices. Thus an effect

of the low-Γ suppression is a relative reduction of the leading baryons. The effect is

smaller if the baryon is very heavy, as the large mass implies that the first vertex

almost reaches the central region. Thus the leading-baryon suppression effect is

reduced for c- and b jets.

12.2.2 Joining the jets

The f(z) formula above is only valid, for the breakup of a jet system into a hadron plus

a remainder-system, when the remainder mass is large. If the fragmentation algorithm

were to be used all the way from the q end to the q one, the mass of the last hadron to

be formed at the q end would be completely constrained by global energy and momentum

conservation, and could not be on its mass shell. In theory it is known how to take such

effects into account [Ede00], but the resulting formulae are wholly unsuitable for Monte

Carlo implementation.

The practical solution to this problem is to carry out the fragmentation both from the

q and the q end, such that for each new step in the fragmentation process, a random choice

is made as to from what side the step is to be taken. If the step is on the q side, then z

is interpreted as fraction of the remaining E + pz of the system, while z is interpreted as

E − pz fraction for a step from the q end. At some point, when the remaining mass of the

system has dropped below a given value, it is decided that the next breakup will produce

two final hadrons, rather than a hadron and a remainder-system. Since the momenta of

two hadrons are to be selected, rather than that of one only, there are enough degrees of

freedom to have both total energy and total momentum completely conserved.

The mass at which the normal fragmentation process is stopped and the final two

hadrons formed is not actually a free parameter of the model: it is given by the require-

ment that the string everywhere looks the same, i.e. that the rapidity spacing of the final

two hadrons, internally and with respect to surrounding hadrons, is the same as elsewhere

in the fragmentation process. The stopping mass, for a given setup of fragmentation pa-

rameters, has therefore been determined in separate runs. If the fragmentation parameters

are changed, some retuning should be done but, in practice, reasonable changes can be

made without any special arrangements.

Consider a fragmentation process which has already split off a number of hadrons from

the q and q sides, leaving behind a a qiqj remainder system. When this system breaks by

the production of a qnqn pair, it is decided to make this pair the final one, and produce

the last two hadrons qiqn and qnqj , if

((E + pz)(E − pz))remaining = W 2
rem < W 2

min . (12.17)

The Wmin is calculated according to

Wmin = (Wmin0 + mqi + mqj + k mqn) (1 ± δ) . (12.18)
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Here Wmin0 is the main free parameter, typically around 1 GeV, determined to give a flat

rapidity plateau (separately for each particle species), while the default k = 2 corresponds

to the mass of the final pair being taken fully into account. Smaller values may also be

considered, depending on what criteria are used to define the ‘best’ joining of the q and

the q chain. The factor 1± δ, by default evenly distributed between 0.8 and 1.2, signifies a

smearing of the Wmin value, to avoid an abrupt and unphysical cut-off in the invariant mass

distribution of the final two hadrons. Still, this distribution will be somewhat different from

that of any two adjacent hadrons elsewhere. Due to the cut there will be no tail up to very

high masses; there are also fewer events close to the lower limit, where the two hadrons are

formed at rest with respect to each other.

This procedure does not work all that well for heavy flavours, since it does not fully

take into account the harder fragmentation function encountered. Therefore, in addition

to the check above, one further test is performed for charm and heavier flavours, as follows.

If the check above allows more particle production, a heavy hadron qiqn is formed, leaving

a remainder qnqj . The range of allowed z values, i.e. the fraction of remaining E + pz

that may be taken by the qiqn hadron, is constrained away from 0 and 1 by the qiqn

mass and minimal mass of the qnqj system. The limits of the physical z range is obtained

when the qnqj system only consists of one single particle, which then has a well-determined

transverse mass m
(0)
⊥ . From the z value obtained with the infinite-energy fragmentation

function formulae, a rescaled z′ value between these limits is given by

z′ =
1

2





1 +
m2

⊥in

W 2
rem

−
m

(0)2
⊥nj

W 2
rem

+

√√√√√

1 − m2

⊥in

W 2
rem

−
m

(0)2
⊥nj

W 2
rem




2

− 4
m2

⊥in

W 2
rem

m
(0)2
⊥nj

W 2
rem

(2z − 1)





.

(12.19)

From the z′ value, the actual transverse mass m⊥nj ≥ m
(0)
⊥nj of the qnqj system may be

calculated. For more than one particle to be produced out of this system, the requirement

m2
⊥nj = (1 − z′)

(
W 2

rem − m2
⊥in

z′

)
> (mqj + Wmin0)

2 + p2
⊥ (12.20)

has to be fulfilled. If not, the qnqj system is assumed to collapse to one single particle.

The consequence of the procedure above is that, the more the infinite energy fragmen-

tation function f(z) is peaked close to z = 1, the more likely it is that only two particles are

produced. The procedure above has been constructed so that the two-particle fraction can

be calculated directly from the shape of f(z) and the (approximate) mass spectrum, but it

is not unique. For the symmetric Lund fragmentation function, a number of alternatives

tried all give essentially the same result, whereas other fragmentation functions may be

more sensitive to details.

Assume now that two final hadrons have been picked. If the transverse mass of the

remainder-system is smaller than the sum of transverse masses of the final two hadrons,

the whole fragmentation chain is rejected, and started over from the q and q endpoints.

This does not introduce any significant bias, since the decision to reject a fragmentation

chain only depends on what happens in the very last step, specifically that the next-to-last

step took away too much energy, and not on what happened in the steps before that.
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If, on the other hand, the remainder-mass is large enough, there are two kinematically

allowed solutions for the final two hadrons: the two mirror images in the rest frame of the

remainder-system. Also the choice between these two solutions is given by the consistency

requirements, and can be derived from studies of infinite-energy jets. The probability for

the reverse ordering, i.e. where the rapidity and the flavour orderings disagree, is given by

the area law as

Preverse =
1

1 + eb∆
where ∆ = Γ2 − Γ1 =

√
(W 2

rem − m2
⊥in + m2

⊥nj)
2 − 4m2

⊥inm2
⊥nj .

(12.21)

For the Lund symmetric fragmentation function, b is the familiar parameter, whereas for

other functions the b value becomes an effective number to be fitted to the behaviour when

not in the joining region.

When baryon production is included, some particular problems arise (also see section

12.1.3). First consider BB situations. In the näıve iterative scheme, away from the middle

of the event, one already has a quark and is to choose a matching diquark flavour or the

other way around. In either case the choice of the new flavour can be done taking into

account the number of SU(6) states available for the quark-diquark combination. For a

case where the final qnqn breakup is an antidiquark-diquark one, the weights for forming

qiqn and qnqi enter at the same time, however. We do not know how to handle this

problem; what is done is to use weights as usual for the qiqn baryon to select qn, but then

consider qnqi as given (or the other way around with equal probability). If qnqi turns

out to be an antidiquark-diquark combination, the whole fragmentation chain is rejected,

since we do not know how to form corresponding hadrons. A similar problem arises, and

is solved in the same spirit, for a BMB configuration in which the B (or B) was chosen as

third-last particle. When only two particles remain to be generated, it is obviously too late

to consider having a BMB configuration. This is as it should, however, as can be found

by looking at all possible ways a hadron of given rank can be a baryon.

While some practical compromises have to be accepted in the joining procedure, the

fact that the joining takes place in different parts of the string in different events means

that, in the end, essentially no visible effects remain.

12.2.3 String motion and infrared stability

We have now discussed the string fragmentation scheme for the fragmentation of a simple

qq jet system. In order to understand how these results generalize to arbitrary jet systems,

it is first necessary to understand the string motion for the case when no fragmentation

takes place. In the following we will assume that quarks as well as gluons are massless, but

the generalisation to massive quarks is relatively straightforward.

For a qq event viewed in the c.m. frame, with total energy W , the partons start

moving out back-to-back, carrying half the energy each. As they move apart, energy and

momentum is lost to the string. When the partons are a distance W/κ apart, all the energy

is stored in the string. The partons now turn around and come together again with the

original momentum vectors reversed. This corresponds to half a period of the full string

motion; the second half the process is repeated, mirror-imaged. For further generalizations
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to multiparton systems, a convenient description of the energy and momentum flow is given

in terms of ‘genes’ [Art83], infinitesimal packets of the four-momentum given up by the

partons to the string. Genes with pz = E, emitted from the q end in the initial stages of

the string motion above, will move in the q direction with the speed of light, whereas genes

with pz = −E given up by the q will move in the q direction. Thus, in this simple case,

the direction of motion for a gene is just opposite to that of a free particle with the same

four-momentum. This is due to the string tension. If the system is not viewed in the c.m.

frame, the rules are that any parton gives up genes with four-momentum proportional to

its own four-momentum, but the direction of motion of any gene is given by the momentum

direction of the genes it meets, i.e. that were emitted by the parton at the other end of

that particular string piece. When the q has lost all its energy, the q genes, which before

could not catch up with q, start impinging on it, and the q is pulled back, accreting q genes

in the process. When the q and q meet in the origin again, they have completely traded

genes with respect to the initial situation.

A 3-jet qqg event initially corresponds to having a string piece stretched between q

and g and another between g and q. Gluon four-momentum genes are thus flowing towards

the q and q. Correspondingly, q and q genes are flowing towards the g. When the gluon

has lost all its energy, the g genes continue moving apart, and instead a third string region

is formed in the ‘middle’ of the total string, consisting of overlapping q and q genes. The

two ‘corners’ on the string, separating the three string regions, are not of the gluon-kink

type: they do not carry any momentum.

If this third region would only appear at a time later than the typical time scale for

fragmentation, it could not affect the sharing of energy between different particles. This

is true in the limit of high energy, well separated partons. For a small gluon energy, on

the other hand, the third string region appears early, and the overall drawing of the string

becomes fairly 2-jet-like, since the third string region consists of q and q genes and therefore

behaves exactly as a string pulled out directly between the q and q. In the limit of vanishing

gluon energy, the two initial string regions collapse to naught, and the ordinary 2-jet event

is recovered [Sjo84]. Also for a collinear gluon, i.e. θqg (or θqg) small, the stretching becomes

2-jet-like. In particular, the q string endpoint first moves out a distance pq/κ losing genes

to the string, and then a further distance pg/κ, a first half accreting genes from the g and

the second half re-emitting them. (This latter half actually includes yet another string

piece; a corresponding piece appears at the q end, such that half a period of the system

involves five different string regions.) The end result is, approximately, that a string is

drawn out as if there had only been a single parton with energy |pq + pg|, such that the

simple 2-jet event again is recovered in the limit θqg → 0. These properties of the string

motion are the reason why the string fragmentation scheme is ‘infrared safe’ with respect

to soft or collinear gluon emission.

The discussions for the 3-jet case can be generalized to the motion of a string with q

and q endpoints and an arbitrary number of intermediate gluons. For n partons, whereof

n − 2 gluons, the original string contains n − 1 pieces. Anytime one of the original gluons

has lost its energy, a new string region is formed, delineated by a pair of ‘corners’. As the

extra ‘corners’ meet each other, old string regions vanish and new are created, so that half
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a period of the string contains 2n2 − 6n + 5 different string regions. Each of these regions

can be understood simply as built up from the overlap of (opposite-moving) genes from

two of the original partons, according to well-specified rules.

12.2.4 Fragmentation of multiparton systems

The full machinery needed for a multiparton system is very complicated, and is described in

detail in [Sjo84]. The following outline is far from complete, and is complicated nonetheless.

The main message to be conveyed is that a Lorentz covariant algorithm exists for handling

an arbitrary parton configuration, but that the necessary machinery is more complex than

in either cluster or independent fragmentation.

Assume n partons, with ordering along the string, and related four-momenta, given

by q(p1)g(p2)g(p3) · · · g(pn−1)q(pn). The initial string then contains n − 1 separate pieces.

The string piece between the quark and its neighbouring gluon is, in four-momentum space,

spanned by one side with four-momentum p
(1)
+ = p1 and another with p

(1)
− = p2/2. The

factor of 1/2 in the second expression comes from the fact that the gluon shares its energy

between two string pieces. The indices ‘+’ and ‘−’ denotes direction towards the q and

q end, respectively. The next string piece, counted from the quark end, is spanned by

p
(2)
+ = p2/2 and p

(2)
− = p3/2, and so on, with the last one being p

(n−1)
+ = pn−1/2 and

p
(n−1)
− = pn.

For the algorithm to work, it is important that all p
(i)
± be light-cone-like, i.e. p

(i)2
± = 0.

Since gluons are massless, it is only the two endpoint quarks which can cause problems. The

procedure here is to create new p± vectors for each of the two endpoint regions, defined to

be linear combinations of the old p± ones for the same region, with coefficients determined

so that the new vectors are light-cone-like. De facto, this corresponds to replacing a

massive quark at the end of a string piece with a massless quark at the end of a somewhat

longer string piece. With the exception of the added fictitious piece, which anyway ends

up entirely within the heavy hadron produced from the heavy quark, the string motion

remains unchanged by this.

In the continued string motion, when new string regions appear as time goes by, the

first such string regions that appear can be represented as being spanned by one p
(j)
+

and another p
(k)
− four-vector, with j and k not necessarily adjacent. For instance, in the

qgq case, the ‘third’ string region is spanned by p
(1)
+ and p

(3)
− . Later on in the string

evolution history, it is also possible to have regions made up of two p+ or two p− momenta.

These appear when an endpoint quark has lost all its original momentum, has accreted the

momentum of a gluon, and is now re-emitting this momentum. In practice, these regions

may be neglected. Therefore only pieces made up by a (p
(j)
+ , p

(k)
− ) pair of momenta are

considered in the program.

The allowed string regions may be ordered in an abstract parameter plane, where

the (j, k) indices of the four-momentum pairs define the position of each region along the

two (parameter plane) coordinate axes. In this plane the fragmentation procedure can be

described as a sequence of steps, starting at the quark end, where (j, k) = (1, 1), and ending

at the antiquark one, (j, k) = (n − 1, n − 1). Each step is taken from an ‘old’ qi−1qi−1
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pair production vertex, to the production vertex of a ‘new’ qiqi pair, and the string piece

between these two string breaks represent a hadron. Some steps may be taken within

one and the same region, while others may have one vertex in one region and the other

vertex in another region. Consistency requirements, like energy-momentum conservation,

dictates that vertex j and k region values be ordered in a monotonic sequence, and that

the vertex positions are monotonically ordered inside each region. The four-momentum of

each hadron can be read off, for p+ (p−) momenta, by projecting the separation between

the old and the new vertex on to the j (k) axis. If the four-momentum fraction of p
(i)
±

taken by a hadron is denoted x
(i)
± , then the total hadron four-momentum is given by

p =

j2∑

j=j1

x
(j)
+ p

(j)
+ +

k2∑

k=k1

x
(k)
− p

(k)
− + px1ê

(j1k1)
x + py1ê

(j1k1)
y + px2ê

(j2k2)
x + py2ê

(j2k2)
y , (12.22)

for a step from region (j1, k1) to region (j2, k2). By necessity, x
(j)
+ is unity for a j1 < j < j2,

and correspondingly for x
(k)
− .

The (px, py) pairs are the transverse momenta produced at the two string breaks,

and the (êx, êy) pairs four-vectors transverse to the string directions in the regions of the

respective string breaks:

ê(jk)2
x = ê(jk)2

y = −1 ,

ê(jk)
x ê(jk)

y = ê(jk)
x,y p

(j)
+ = ê(jk)

x,y p
(k)
− = 0 . (12.23)

The fact that the hadron should be on mass shell, p2 = m2, puts one constraint on

where a new breakup may be, given that the old one is already known, just as eq. (12.6)

did in the simple 2-jet case. The remaining degree of freedom is, as before, to be given by

the fragmentation function f(z). The interpretation of the z is only well-defined for a step

entirely constrained to one of the initial string regions, however, which is not enough. In

the 2-jet case, the z values can be related to the proper times of string breaks, as follows.

The variable Γ = (κτ)2, with κ the string tension and τ the proper time between the

production vertex of the partons and the breakup point, obeys an iterative relation of the

kind

Γ0 = 0 ,

Γi = (1 − zi)

(
Γi−1 +

m2
⊥i

zi

)
. (12.24)

Here Γ0 represents the value at the q and q endpoints, and Γi−1 and Γi the values at

the old and new breakup vertices needed to produce a hadron with transverse mass m⊥i,

and with the zi of the step chosen according to f(zi). The proper time can be defined

in an unambiguous way, also over boundaries between the different string regions, so for

multijet events the z variable may be interpreted just as an auxiliary variable needed to

determine the next Γ value. (In the Lund symmetric fragmentation function derivation,

the Γ variable actually does appear naturally, so the choice is not as arbitrary as it may

seem here.) The mass and Γ constraints together are sufficient to determine where the next
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string breakup is to be chosen, given the preceding one in the iteration scheme. In reality,

several ambiguities remain, however none of these are of importance to the overall picture.

The algorithm for finding the next breakup then works something like follows. Pick a

hadron, p⊥, and z, and calculate the next Γ. If the old breakup is in the region (j, k), and

if the new breakup is also assumed to be in the same region, then the m2 and Γ constraints

can be reformulated in terms of the fractions x
(j)
+ and x

(k)
− the hadron must take of the

total four-vectors p
(j)
+ and p

(k)
− :

m2 = c1 + c2x
(j)
+ + c3x

(k)
− + c4x

(j)
+ x

(k)
− ,

Γ = d1 + d2x
(j)
+ + d3x

(k)
− + d4x

(j)
+ x

(k)
− . (12.25)

Here the coefficients cn are fairly simple expressions, obtainable by squaring eq. (12.22),

while dn are slightly more complicated in that they depend on the position of the old

string break, but both the cn and the dn are explicitly calculable. What remains is an

equation system with two unknowns, x
(j)
+ and x

(k)
− . The absence of any quadratic terms is

due to the fact that all p
(i)2
± = 0, i.e. to the choice of a formulation based on light-cone-like

longitudinal vectors. Of the two possible solutions to the equation system (elimination of

one variable gives a second degree equation in the other), one is unphysical and can be

discarded outright. The other solution is checked for whether the x± values are actually

inside the physically allowed region, i.e. whether the x± values of the current step, plus

whatever has already been used up in previous steps, are less than unity. If yes, a solution

has been found. If no, it is because the breakup could not take place inside the region

studied, i.e. because the equation system was solved for the wrong region. One therefore

has to change either index j or index k above by one step, i.e. go to the next nearest

string region. In this new region, a new equation system of the type in eq. (12.25) may be

written down, with new coefficients. A new solution is found and tested, and so on until

a physically acceptable solution is found. The hadron four-momentum is now given by an

expression of the type (12.22). The breakup found forms the starting point for the new

step in the fragmentation chain, and so on. The final joining in the middle is done as in

the 2-jet case, with minor extensions.

12.2.5 Junction topologies

When several valence quarks are kicked out of an incoming proton, or when baryon number

is violated, another kind of string topology can be produced. In its simplest form, it can

be illustrated by the decay χ̃0
1 → udd which can take place in baryon-number-violating

supersymmetric theories. If we assume that the ‘colour triplet’ string kind encountered

above is the only basic building block, we are led to a Y-shaped string topology, with a

quark at each end and a ‘junction’ where the strings meet. This picture is similar to that

adopted, for instance, in models of baryon wavefunctions [Art75]. The following gives a

(very) brief overview of a detailed model of junction fragmentation developed in [Sjo03].

As the quarks move out, also the string junction would move, so as to minimize the

total string energy. It is at rest in a frame where the opening angle between any pair of

quarks is 120◦, so that the forces acting on the junction cancel. In such a frame, each of
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the three strings would fragment pretty much as ordinary strings, e.g. in a back-to-back qq

pair of jets, at least as far as reasonably high-momentum particles are concerned. Thus an

iterative procedure can be used, whereby the leading q is combined with a newly produced

q1, to form a meson and leave behind a remainder-jet q1. (As above, this has nothing to

do with the ordering in physical time, where the fragmentation process again starts in the

middle and spreads outwards.) Eventually, when little energy is left, the three remainders

qiqjqk form a single baryon, which thus has a reasonably small momentum in the rest

frame of the junction. We see that the junction thereby implicitly comes to be the carrier

of the net baryon number of the system. Further baryon production can well occur at

higher momenta in each of the three jets, but then always in pairs of a baryon and an

antibaryon. While the fragmentation principles as such are clear, the technical details of

the joining of the jets become more complicated than in the qq case. Some approximations

can be made that allow a reasonably compact and efficient algorithm, which gives sensible

results [Sjo03]. Specifically, two of the strings, preferably the ones with lowest energy,

can be fragmented until their remaining energy is below some cut-off value. In the actual

implementation, one of the two is required to have rather little energy left, while the other

could have somewhat more. At this point, the two remainder flavours are combined into

one effective diquark, which is assigned all the remaining energy and momentum. The final

string piece, between this diquark and the third quark, can now be considered as described

for simple qq strings above.

Among the additional complications are that the diquark formed from the leftovers

may have a larger momentum than energy and thereby nominally may be space-like. If

only by a little, it normally would not matter, but in extreme cases the whole final string

may come to have a negative squared mass. Such configurations are rejected on grounds of

being unphysical and the whole fragmentation procedure is restarted from the beginning.

As above, the fragmentation procedure can be formulated in a Lorentz-frame-

independent manner, given the four-vector that describes the motion of the junction.

Therefore, while the fragmentation picture is simpler to visualize in the rest frame of

the junction, one may prefer to work in the rest frame of the system or in the lab frame,

as the case may be.

Each of the strings considered above normally would not go straight from the junction

to an endpoint quark, rather it would wind its way via a number of intermediate gluons,

in the neutralino case generated by bremsstrahlung in the decay. It is straightforward to

use the same formalism as for other multiparton systems to extend the description above

to such cases. The one complication is that the motion of the junction may become more

complicated, especially when the emission of reasonably soft gluons is considered. This can

be approximated by a typical mean motion during the hadronization era [Sjo03].

The most general string topology foreseen is one with two junctions, i.e. a >−< topol-

ogy. Here one junction would be associated with a baryon number and the other with

an antibaryon one. There would be two quark ends, two antiquark ones, and five string

pieces (including the one between the two junctions) that each could contain an arbitrary

number of intermediate gluons. Such topologies can arise, for instance, in pp collisions

where a gluon exchange ties together the two beam baryon junctions, or in prompt BNV
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decays of t̃ squarks in e+e− collisions. A further complication here is that it should in

principle be possible for the junction and antijunction to meet and annihilate, producing a

system instead with two separate qq strings and no junctions. This aspect is also modeled

in the implementation, by selecting the topology that minimises the total potential energy,

as defined in [Sjo03]. Omitting details here, the resulting behaviour is that junctions with

little effective relative motion tend to annihilate, whereas junctions at large velocities tend

to remain intact, with corresponding consequences for the presence or absence of ‘junction

baryons’.

12.3 Independent fragmentation

The independent fragmentation (IF) approach dates back to the early seventies [Krz72],

and gained widespread popularity with the Field–Feynman paper [Fie78]. Subsequently,

IF was the basis for two programs widely used in the early PETRA/PEP days, the Hoyer

et al. [Hoy79] and the Ali et al. [Ali80] programs. Pythia has as (non-default) options a

wide selection of independent fragmentation algorithms. The historical application of IF

has been to matrix-element descriptions of jet production in e+e− annihilation, i.e. for 2-,

3- and 4-parton configurations. In principle, the options made available in Pythia could

be used for any event topology, but in practice it is strongly recommended not to use IF

except for the above-mentioned case, and then only as a strawman model.

12.3.1 Fragmentation of a single jet

In the IF approach, it is assumed that the fragmentation of any system of partons can be

described as an incoherent sum of independent fragmentation procedures for each parton

separately. The process is to be carried out in the overall c.m. frame of the jet system, with

each jet fragmentation axis given by the direction of motion of the corresponding parton

in that frame.

Exactly as in string fragmentation, an iterative ansatz can be used to describe the

successive production of one hadron after the next. Assume that a quark is kicked out

by some hard interaction, carrying a well-defined amount of energy and momentum. This

quark jet q is split into a hadron qq1 and a remainder-jet q1, essentially collinear with

each other. New quark and hadron flavours are picked as already described. The sharing

of energy and momentum is given by some probability distribution f(z), where z is the

fraction taken by the hadron, leaving 1 − z for the remainder-jet. The remainder-jet is

assumed to be just a scaled-down version of the original jet, in an average sense. The

process of splitting off a hadron can therefore be iterated, to yield a sequence of hadrons.

In particular, the function f(z) is assumed to be the same at each step, i.e. independent

of remaining energy. If z is interpreted as the fraction of the jet E + pL, i.e. energy plus

longitudinal momentum with respect to the jet axis, this leads to a flat central rapidity

plateau dn/dy for a large initial energy.

Fragmentation functions can be chosen among those listed above for string fragmen-

tation, but also here the default is the Lund symmetric fragmentation function.

The normal z interpretation means that a choice of a z value close to 0 corresponds to a

particle moving backwards, i.e. with pL < 0. It makes sense to allow only the production of
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particles with pL > 0, but to explicitly constrain z accordingly would destroy longitudinal

invariance. The most straightforward way out is to allow all z values but discard hadrons

with pL < 0. Flavour, transverse momentum and E +pL carried by these hadrons are ‘lost’

for the forward jet. The average energy of the final jet comes out roughly right this way,

with a spread of 1–2 GeV around the mean. The jet longitudinal momentum is decreased,

however, since the jet acquires an effective mass during the fragmentation procedure. For

a 2-jet event this is as it should be, at least on average, because also the momentum of the

compensating opposite-side parton is decreased.

Flavour is conserved locally in each qiqi splitting, but not in the jet as a whole. First

of all, there is going to be a last meson qn−1qn generated in the jet, and that will leave

behind an unpaired quark flavour qn. Independent fragmentation does not specify the fate

of this quark. Secondly, also a meson in the middle of the flavour chain may be selected

with such a small z value that it obtains pL < 0 and is rejected. Thus a u quark jet of

charge 2/3 need not only gives jets of charge 0 or 1, but also of −1 or +2, or even higher.

Like with the jet longitudinal momentum above, one could imagine this compensated by

other jets in the event.

It is also assumed that transverse momentum is locally conserved, i.e. the net p⊥ of the

qiqi pair as a whole is assumed to be vanishing. The p⊥ of the qi is taken to be a Gaussian

in the two transverse degrees of freedom separately, with the transverse momentum of a

hadron obtained by the sum of constituent quark transverse momenta. The total p⊥ of a

jet can fluctuate for the same two reasons as discussed above for flavour. Furthermore, in

some scenarios one may wish to have the same p⊥ distribution for the first-rank hadron qq1

as for subsequent ones, in which case also the original q should be assigned an unpaired

p⊥ according to a Gaussian.

Within the IF framework, there is no unique recipe for how gluon jet fragmentation

should be handled. One possibility is to treat it exactly like a quark jet, with the initial

quark flavour chosen at random among u, u, d, d, s and s, including the ordinary s quark

suppression factor. Since the gluon is supposed to fragment more softly than a quark

jet, the fragmentation function may be chosen independently. Another common option

is to split the g jet into a pair of parallel q and q ones, sharing the energy, e.g. as in a

perturbative branching g → qq, i.e. f(z) ∝ z2 +(1−z)2. The fragmentation function could

still be chosen independently, if so desired. Further, in either case the fragmentation p⊥
could be chosen to have a different mean.

12.3.2 Fragmentation of a jet system

In a system of many jets, each jet is fragmented independently. Since each jet by itself

does not conserve the flavour, energy and momentum, as we have seen, then neither does

a system of jets. At the end of the generation, special algorithms are therefore used to

patch this up. The choice of approach has major consequences, e.g. for event shapes and

αs determinations [Sjo84a].

Little attention is usually given to flavour conservation, and we only offer one scheme.

When the fragmentation of all jets has been performed, independently of each other, the

net initial flavour composition, i.e. number of u quarks minus number of u quarks etc., is
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compared with the net final flavour composition. In case of an imbalance, the flavours of

the hadron with lowest three-momentum are removed, and the imbalance is re-evaluated. If

the remaining imbalance could be compensated by a suitable choice of new flavours for this

hadron, flavours are so chosen, a new mass is found and the new energy can be evaluated,

keeping the three-momentum of the original hadron. If the removal of flavours from the

hadron with lowest momentum is not enough, flavours are removed from the one with next-

lowest momentum, and so on until enough freedom is obtained, whereafter the necessary

flavours are recombined at random to form the new hadrons. Occasionally one extra qiqi

pair must be created, which is then done according to the customary probabilities.

Several different schemes for energy and momentum conservation have been devised.

One [Hoy79] is to conserve transverse momentum locally within each jet, so that the final

momentum vector of a jet is always parallel with that of the corresponding parton. Then

longitudinal momenta may be rescaled separately for particles within each jet, such that

the ratio of rescaled jet momentum to initial parton momentum is the same in all jets.

Since the initial partons had net vanishing three-momentum, so do now the hadrons. The

rescaling factors may be chosen such that also energy comes out right. Another common

approach [Ali80] is to boost the event to the frame where the total hadronic momentum

is vanishing. After that, energy conservation can be obtained by rescaling all particle

three-momenta by a common factor.

The number of possible schemes is infinite. Two further options are available in the

program. One is to shift all particle three-momenta by a common amount to give net vanish-

ing momentum, and then rescale as before. Another is to shift all particle three-momenta,

for each particle by an amount proportional to the longitudinal mass with respect to the

imbalance direction, and with overall magnitude selected to give momentum conservation,

and then rescale as before. In addition, there is a choice of whether to treat separate colour

singlets (like qq′ and q′q in a qqq′q′ event) separately or as one single big system.

A serious conceptual weakness of the IF framework is the issue of Lorentz invariance.

The outcome of the fragmentation procedure depends on the coordinate frame chosen,

a problem circumvented by requiring fragmentation always to be carried out in the c.m.

frame. This is a consistent procedure for 2-jet events, but only a technical trick for multijets.

It should be noted, however, that a Lorentz covariant generalization of the independent

fragmentation model exists, in which separate ‘gluon-type’ and ‘quark-type’ strings are

used, the Montvay scheme [Mon79]. The ‘quark string’ is characterized by the ordinary

string constant κ, whereas a ‘gluon string’ is taken to have a string constant κg. If κg > 2κ

it is always energetically favourable to split a gluon string into two quark ones, and the

ordinary Lund string model is recovered. Otherwise, for a 3-jet qqg event the three different

string pieces are joined at a junction. The motion of this junction is given by the vector

sum of string tensions acting on it. In particular, it is always possible to boost an event

to a frame where this junction is at rest. In this frame, much of the standard näıve IF

picture holds for the fragmentation of the three jets; additionally, a correct treatment

would automatically give flavour, momentum and energy conservation. Unfortunately, the

simplicity is lost when studying events with several gluon jets. In general, each event will

contain a number of different junctions, resulting in a polypod shape with a number of
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quark and gluons strings sticking out from a skeleton of gluon strings. With the shift of

emphasis from three-parton to multi-parton configurations, the simple option existing in

Jetset 6.3 therefore is no longer included.

A second conceptual weakness of IF is the issue of collinear divergences. In a parton-

shower picture, where a quark or gluon is expected to branch into several reasonably

collimated partons, the independent fragmentation of one single parton or of a bunch of

collinear ones gives quite different outcomes, e.g. with a much larger hadron multiplicity

in the latter case. It is conceivable that a different set of fragmentation functions could be

constructed in the shower case in order to circumvent this problem (local parton–hadron

duality [Dok89] would correspond to having f(z) = δ(z − 1)).

12.4 Other fragmentation aspects

Here some further aspects are considered.

12.4.1 Small-mass systems

A hadronic event is conventionally subdivided into sets of partons that form separate colour

singlets. These sets are represented by strings, that e.g. stretch from a quark end via a

number of intermediate gluons to an antiquark end. Three string-mass regions may be

distinguished for the hadronization.

1. Normal string fragmentation. In the ideal situation, each string has a large invari-

ant mass. Then the standard iterative fragmentation scheme above works well. In

practice, this approach can be used for all strings above some cut-off mass of a few

GeV.

2. Cluster decay. If a string is produced with a small invariant mass, maybe only two-

body final states are kinematically accessible. The traditional iterative Lund scheme

is then not applicable. We call such a low-mass string a cluster, and consider it

separately from above. The modelling is still intended to give a smooth match on to

the standard string scheme in the high-cluster-mass limit [Nor98].

3. Cluster collapse. This is the extreme case of the above situation, where the string

mass is so small that the cluster cannot decay into two hadrons. It is then assumed to

collapse directly into a single hadron, which inherits the flavour content of the string

endpoints. The original continuum of string/cluster masses is replaced by a discrete

set of hadron masses. Energy and momentum then cannot be conserved inside the

cluster, but must be exchanged with the rest of the event [Nor98].

String systems below a threshold mass are handled by the cluster machinery. In it, an

attempt is first made to produce two hadrons, by having the string break in the middle

by the production of a new qq pair, with flavours and hadron spins selected according to

the normal string rules. If the sum of the hadron masses is larger than the cluster mass,

repeated attempts can be made to find allowed hadrons; the default is two tries. If an

allowed set is found, the angular distribution of the decay products in the cluster rest

frame is picked isotropically near the threshold, but then gradually more elongated along

the string direction, to provide a smooth match to the string description at larger masses.
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This also includes a forward–backward asymmetry, so that each hadron is preferentially in

the same hemisphere as the respective original quark it inherits.

If the attempts to find two hadrons fail, one single hadron is formed from the given

flavour content. The basic strategy thereafter is to exchange some minimal amount of

energy and momentum between the collapsing cluster and other string pieces in the neigh-

bourhood. The momentum transfer can be in either direction, depending on whether the

hadron is lighter or heavier than the cluster it comes from. When lighter, the excess mo-

mentum is split off and put as an extra ‘gluon’ on the nearest string piece, where ‘nearest’

is defined by a space-time history-based distance measure. When the hadron is heavier,

momentum is instead borrowed from the endpoints of the nearest string piece.

The free parameters of the model can be tuned to data, especially to the significant

asymmetries observed between the production of D and D mesons in π−p collisions, with

hadrons that share some of the π− flavour content very much favoured at large xF in

the π− fragmentation region [Ada93]. These spectra and asymmetries are closely related

to the cluster collapse mechanism, and also to other effects of the colour topology of the

event (‘beam drag’) [Nor98]. The most direct parameters are the choice of compensation

scheme (MSTJ(16)), the number of attempts to find a kinematically valid two-body de-

cay (MSTJ(16)) and the border between cluster and string descriptions (PARJ(32)). Also

many other parameters enter the description, however, such as the effective charm mass

(PMAS(4,1)), the quark constituent masses (PARF(101) - PARF(105)), the beam-remnant

structure (MSTP(91) - MSTP(94) and PARP(91) - PARP(100)) and the standard string

fragmentation parameters.

The cluster collapse is supposed to be a part of multiparticle production. It is not

intended for exclusive production channels, and may there give quite misleading results.

For instance, a cc quark pair produced in a γγ collision could well be collapsed to a single

J/ψ if the invariant mass is small enough, even though the process γγ → J/ψ in theory

is forbidden by spin–parity–charge considerations. Furthermore, properties such as strong

isospin are not considered in the string fragmentation picture (only its third component,

i.e. flavour conservation), neither when one nor when many particles are produced. For

multiparticle states this should matter little, since the isospin then will be duly randomized,

but properly it would forbid the production of several one- or two-body states that currently

are generated.

12.4.2 Interconnection effects

The widths of the W, Z and t are all of the order of 2 GeV. A Standard Model Higgs with

a mass above 200 GeV, as well as many supersymmetric and other beyond-the-Standard

Model particles would also have widths in the multi-GeV range. Not far from threshold,

the typical decay times τ = 1/Γ ≈ 0.1 fm ¿ τhad ≈ 1 fm. Thus hadronic decay systems

overlap, between a resonance and the underlying event, or between pairs of resonances, so

that the final state may not contain independent resonance decays.

So far, studies have mainly been performed in the context of W pair production at

LEP2. Pragmatically, one may here distinguish three main eras for such interconnection:
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1. Perturbative: this is suppressed for gluon energies ω > Γ by propagator/timescale

effects; thus only soft gluons may contribute appreciably.

2. Nonperturbative in the hadroformation process: normally modelled by a colour re-

arrangement between the partons produced in the two resonance decays and in the

subsequent parton showers.

3. Nonperturbative in the purely hadronic phase: best exemplified by Bose-Einstein

effects; see next section.

The above topics are deeply related to the unsolved problems of strong interactions: con-

finement dynamics, 1/N2
C effects, quantum mechanical interferences, etc. Thus they offer

an opportunity to study the dynamics of unstable particles, and new ways to probe con-

finement dynamics in space and time [Gus88a, Sjo94], but they also threaten to limit or

even spoil precision measurements.

The reconnection scenarios outlined in [Sjo94a] are now available, plus also an option

along the lines suggested in [Gus94]. (A toy model presented in [San05] and intended

mostly for hadron collisions is also available, as described in section 11.4.) Currently

they can only be invoked in process 25, e+e− → W+W− → q1q2q3q4, which is the most

interesting one for the foreseeable future. (Process 22, e+e− → γ∗/Z0 γ∗/Z0 → q1q1q2q2

can also be used, but the travel distance is calculated based only on the Z0 propagator

part. Thus, the description in scenarios I, II and II′ below would not be sensible e.g. for

a light-mass γ∗γ∗ pair.) If normally the event is considered as consisting of two separate

colour singlets, q1q2 from the W+ and q3q4 from the W−, a colour rearrangement can

give two new colour singlets q1q4 and q3q2. It therefore leads to a different hadronic final

state, although differences usually turn out to be subtle and difficult to isolate [Nor97].

When also gluon emission is considered, the number of potential reconnection topologies

increases.

Since hadronization is not understood from first principles, it is important to remem-

ber that we deal with model building rather than exact calculations. We will use the

standard Lund string fragmentation model [And83] as a starting point, but have to extend

it considerably. The string is here to be viewed as a Lorentz covariant representation of a

linear confinement field.

The string description is entirely probabilistic, i.e. any negative-sign interference effects

are absent. This means that the original colour singlets q1q2 and q3q4 may transmute to

new singlets q1q4 and q3q2, but that any effects e.g. of q1q3 or q2q4 dipoles are absent. In

this respect, the nonperturbative discussion is more limited in outlook than a corresponding

perturbative one. However, note that dipoles such as q1q3 do not correspond to colour

singlets, and can therefore not survive in the long-distance limit of the theory, i.e. they

have to disappear in the hadronization phase.

The imagined time sequence is the following. The W+ and W− fly apart from their

common production vertex and decay at some distance. Around each of these decay ver-

tices, a perturbative parton shower evolves from an original qq pair. The typical distance

that a virtual parton (of mass m ∼ 10 GeV, say, so that it can produce separate jets in

the hadronic final state) travels before branching is comparable with the average W+W−
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separation, but shorter than the fragmentation time. Each W can therefore effectively

be viewed as instantaneously decaying into a string spanned between the partons, from a

quark end via a number of intermediate gluons to the antiquark end. The strings expand,

both transversely and longitudinally, at a speed limited by that of light. They eventu-

ally fragment into hadrons and disappear. Before that time, however, the string from the

W+ and the one from the W− may overlap. If so, there is some probability for a colour

reconnection to occur in the overlap region. The fragmentation process is then modified.

The Lund string model does not constrain the nature of the string fully. At one

extreme, the string may be viewed as an elongated bag, i.e. as a flux tube without any

pronounced internal structure. At the other extreme, the string contains a very thin core,

a vortex line, which carries all the topological information, while the energy is distributed

over a larger surrounding region. The latter alternative is the chromoelectric analogue

to the magnetic flux lines in a type II superconductor, whereas the former one is more

akin to the structure of a type I superconductor. We use them as starting points for two

contrasting approaches, with nomenclature inspired by the superconductor analogy.

In scenario I, the reconnection probability is proportional to the space-time volume

over which the W+ and W− strings overlap, with saturation at unit probability. This

probability is calculated as follows. In the rest frame of a string piece expanding along the

±z direction, the colour field strength is assumed to be given by

Ω(x, t) = exp
{
−(x2 + y2)/2r2

had

}
θ(t − |x|) exp

{
−(t2 − z2)/τ2

frag

}
. (12.26)

The first factor gives a Gaussian fall-off in the transverse directions, with a string width

rhad ≈ 0.5 fm of typical hadronic dimensions. The time retardation factor θ(t−|x|) ensures

that information on the decay of the W spreads outwards with the speed of light. The

last factor gives the probability that the string has not yet fragmented at a given proper

time along the string axis, with τfrag ≈ 1.5 fm. For a string piece e.g. from the W+ decay,

this field strength has to be appropriately rotated, boosted and displaced to the W+ decay

vertex. In addition, since the W+ string can be made up of many pieces, the string field

strength Ω+
max(x, t) is defined as the maximum of all the contributing Ω+’s in the given

point. The probability for a reconnection to occur is now given by

Precon = 1 − exp

(
−kI

∫
d3xdt Ω+

max(x, t)Ω−
max(x, t)

)
, (12.27)

where kI is a free parameter. If a reconnection occurs, the space-time point for this re-

connection is selected according to the differential probability Ω+
max(x, t)Ω−

max(x, t). This

defines the string pieces involved and the new colour singlets.

In scenario II it is assumed that reconnections can only take place when the core

regions of two string pieces cross each other. This means that the transverse extent of

strings can be neglected, which leads to considerable simplifications compared with the

previous scenario. The position of a string piece at time t is described by a one-parameter

set x(t, α), where 0 ≤ α ≤ 1 is used to denote the position along the string. To find whether

two string pieces i and j from the W+ and W− decays cross, it is sufficient to solve the

equation system x+
i (t, α+) = x−

j (t, α−) and to check that this (unique) solution is in the
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physically allowed domain. Further, it is required that neither string piece has had time

to fragment, which gives two extra suppression factors of the form exp{−τ2/τ2
frag}, with τ

the proper lifetime of each string piece at the point of crossing, i.e. as in scenario I. If there

are several string crossings, only the one that occurs first is retained. The II′ scenario is a

variant of scenario II, with the requirement that a reconnection is allowed only if it leads

to a reduction of the string length.

Other models include a simplified implementation of the ‘GH’ model [Gus94], where

the reconnection is selected solely based on the criterion of a reduced string length. The

‘instantaneous’ and ‘intermediate’ scenarios are two toy models. In the former (which is

equivalent to that in [Gus88a]) the two reconnected systems q1q4 and q3q2 are immediately

formed and then subsequently shower and fragment independently of each other. In the

latter, a reconnection occurs between the shower and fragmentation stages. One has to

bear in mind that the last two ‘optimistic’ (from the connectometry point of view) toy

approaches are oversimplified extremes and are not supposed to correspond to the true

nature. These scenarios may be useful for reference purposes, but are already excluded by

data.

While interconnection effects are primarily viewed as hadronization physics, their im-

plementation is tightly coupled to the event generation of a few specific processes, and not

to the generic hadronization machinery. Therefore the relevant main switch MSTP(115)

and parameters PARP(115) - PARP(120) are described in section 9.3.

12.4.3 Bose-Einstein effects

A crude option for the simulation of Bose-Einstein effects is included since long, but is

turned off by default. In view of its shortcomings, alternative descriptions have been

introduced that try to overcome at least some of them [Lon95].

The detailed BE physics is not that well understood, see e.g. [Lor89]. What is offered

is an algorithm, more than just a parameterization (since very specific assumptions and

choices have been made), and yet less than a true model (since the underlying physics

picture is rather fuzzy). In this scheme, the fragmentation is allowed to proceed as usual,

and so is the decay of short-lived particles like ρ. Then pairs of identical particles, π+ say,

are considered one by one. The Qij value of a pair i and j is evaluated,

Qij =
√

(pi + pj)2 − 4m2 , (12.28)

where m is the common particle mass. A shifted (smaller) Q′
ij is then to be found such

that the (infinite statistics) ratio f2(Q) of shifted to unshifted Q distributions is given by

the requested parameterization. The shape may be chosen either exponential or Gaussian,

f2(Q) = 1 + λ exp (−(Q/d)r) , r = 1 or 2 . (12.29)

(In fact, the distribution has to dip slightly below unity at Q values outside the Bose

enhancement region, from conservation of total multiplicity.) If the inclusive distribution

of Qij values is assumed given just by phase space, at least at small relative momentum

– 458 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

then, with d3p/E ∝ Q2 dQ/
√

Q2 + 4m2, Q′
ij is found as the solution to the equation

∫ Qij

0

Q2 dQ√
Q2 + 4m2

=

∫ Q′
ij

0
f2(Q)

Q2 dQ√
Q2 + 4m2

. (12.30)

The change of Qij can be translated into an effective shift of the three-momenta of the

two particles, if one uses as extra constraint that the total three-momentum of each pair

be conserved in the c.m. frame of the event. Only after all pairwise momentum shifts have

been evaluated, with respect to the original momenta, are these momenta actually shifted,

for each particle by the (three-momentum) sum of evaluated shifts. The total energy of

the event is slightly reduced in the process, which is compensated by an overall rescaling of

all c.m.-frame momentum vectors. It can be discussed which are the particles to involve in

this rescaling. Currently the only exceptions to using everything are leptons and neutrinos

coming from resonance decays (such as W’s) and photons radiated by leptons (also in

initial-state radiation). Finally, the decay chain is resumed with more long-lived particles

like π0.

Two comments can be made. The Bose-Einstein effect is here interpreted almost as a

classical force acting on the ‘final state’, rather than as a quantum mechanical phenomenon

on the production amplitude. This is not a credo, but just an ansatz to make things

manageable. Also, since only pairwise interactions are considered, the effects associated

with three or more nearby particles tend to get overestimated. (More exact, but also more

time-consuming methods may be found in [Zaj87].) Thus the input λ may have to be

chosen smaller than what one wants to get out. (On the other hand, many of the pairs of

an event contains at least one particle produced in some secondary vertex, like a D decay.

This reduces the fraction of pairs which may contribute to the Bose-Einstein effects, and

thus reduces the potential signal.) This option should therefore be used with caution, and

only as a first approximation to what Bose-Einstein effects can mean.

Probably the largest weakness of the above approach is the issue how to conserve the

total four-momentum. It preserves three-momentum locally, but at the expense of not

conserving energy. The subsequent rescaling of all momenta by a common factor (in the

rest frame of the event) to restore energy conservation is purely ad hoc. For studies of a

single Z0 decay, it can plausibly be argued that such a rescaling does minimal harm. The

same need not hold for a pair of resonances. Indeed, studies [Lon95] show that this global

rescaling scheme, which we will denote BE0, introduces an artificial negative shift in the

reconstructed W mass, making it difficult (although doable) to study the true BE effects

in this case. This is one reason to consider alternatives.

The global rescaling is also running counter to our philosophy that BE effects should

be local. To be more specific, we assume that the energy density of the string is a fixed

quantity. To the extent that a pair of particles have their four-momenta slightly shifted,

the string should act as a ‘commuting vessel’, providing the difference to other particles

produced in the same local region of the string. What this means in reality is still not

completely specified, so further assumptions are necessary. In the following we discuss

four possible algorithms, whereof the last two are based strictly on the local conservation

aspect above, while the first two are attempting a slightly different twist to the locality
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concept. All are based on calculating an additional shift δrl
k for some pairs of particles,

where particles k and l need not be identical bosons. In the end each particle momentum

will then be shifted to p′
i = pi +

∑
j 6=i δp

j
i + α

∑
k 6=i δr

k
i , with the parameter α adjusted

separately for each event so that the total energy is conserved.

In the first approach we emulate the criticism of the global event weight methods with

weights always above unity, as being intrinsically unstable. It appears more plausible that

weights fluctuate above and below unity. For instance, the simple pair symmetrization

weight is 1+cos(∆x ·∆p), with the 1+λ exp(−Q2R2) form only obtained after integration

over a Gaussian source. Non-Gaussian sources give oscillatory behaviours.

If weights above unity correspond to a shift of pairs towards smaller relative Q values,

the below-unity weights instead give a shift towards larger Q. One therefore is lead to

a picture where very nearby identical particles are shifted closer, those somewhat further

are shifted apart, those even further yet again shifted closer, and so on. Probably the

oscillations dampen out rather quickly, as indicated both by data and by the global model

studies. We therefore simplify by simulating only the first peak and dip. Furthermore, to

include the desired damping and to make contact with our normal generation algorithm

(for simplicity), we retain the Gaussian form, but the standard f2(Q) = 1+ λ exp(−Q2R2)

is multiplied by a further factor 1 + αλ exp(−Q2R2/9). The factor 1/9 in the exponential,

i.e. a factor 3 difference in the Q variable, is consistent with data and also with what one

might expect from a dampened cos form, but should be viewed more as a simple ansatz

than having any deep meaning.

In the algorithm, which we denote BE3, δrj
i is then non-zero only for pairs of identical

bosons, and is calculated in the same way as δpj
i , with the additional factor 1/9 in the

exponential. As explained above, the δrj
i shifts are then scaled by a common factor α

that ensures total energy conservation. It turns out that the average α needed is ≈ −0.2.

The negative sign is exactly what we want to ensure that δrj
i corresponds to shifting a

pair apart, while the order of α is consistent with the expected increase in the number

of affected pairs when a smaller effective radius R/3 is used. One shortcoming of the

method, as implemented here, is that the input f2(0) is not quite 2 for λ = 1 but rather

(1+λ)(1+αλ) ≈ 1.6. This could be solved by starting off with an input λ somewhat above

unity.

The second algorithm, denoted BE32, is a modification of the BE3 form intended to

give f2(0) = 1 + λ. The ansatz is

f2(Q) =
{
1 + λ exp(−Q2R2)

}{
1 + αλ exp(−Q2R2/9)

(
1 − exp(−Q2R2/4)

)}
, (12.31)

applied to identical pairs. The combination exp(−Q2R2/9)
(
1 − exp(−Q2R2/4)

)
can be

viewed as a Gaussian, smeared-out representation of the first dip of the cos function. As

a technical trick, the δrj
i are found as in the BE3 algorithm and thereafter scaled down by

the 1 − exp(−Q2R2/4) factor. (This procedure does not quite reproduce the formalism of

eq. (12.30), but comes sufficiently close for our purpose, given that the ansatz form in itself

is somewhat arbitrary.) One should note that, even with the above improvement relative

to the BE3 scheme, the observable two-particle correlation is lower at small Q than in the

BE0 algorithm, so some further tuning of λ could be required. In this scheme, 〈α〉 ≈ −0.25.
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In the other two schemes, the original form of f2(Q) is retained, and the energy is

instead conserved by picking another pair of particles that are shifted apart appropriately.

That is, for each pair of identical particles i and j, a pair of non-identical particles, k and

l, neither identical to i or j, is found in the neighbourhood of i and j. For each shift δpj
i , a

corresponding δrl
k is found so that the total energy and momentum in the i, j, k, l system

is conserved. However, the actual momentum shift of a particle is formed as the vector

sum of many contributions, so the above pair compensation mechanism is not perfect. The

mismatch is reflected in a non-unit value α used to rescale the δrl
k terms.

The k, l pair should be the particles ‘closest’ to the pair affected by the BE shift, in

the spirit of local energy conservation. One option would here have been to ‘look behind

the scenes’ and use information on the order of production along the string. However, once

decays of short-lived particles are included, such an approach would still need arbitrary

further rules. We therefore stay with the simplifying principle of only using the produced

particles.

Looking at W+W− (or Z0Z0) events and a pair i, j with both particles from the same

W, it is not obvious whether the pair k, l should also be selected only from this W or if all

possible pairs should be considered. Below we have chosen the latter as default behaviour,

but the former alternative is also studied below.

One obvious measure of closeness is small invariant mass. A first choice would then

be to pick the combination that minimizes the invariant mass mijkl of all four particles.

However, such a procedure does not reproduce the input f2(Q) shape very well: both the

peak height and peak width are significantly reduced, compared with what happens in the

BE0 algorithm. The main reason is that either of k or l may have particles identical to

itself in its local neighbourhood. The momentum compensation shift of k is at random,

more or less, and therefore tends to smear the BE signal that could be introduced relative

to k’s identical partner. Note that, if k and its partner are very close in Q to start with, the

relative change δQ required to produce a significant BE effect is very small, approximately

δQ ∝ Q. The momentum compensation shift on k can therefore easily become larger than

the BE shift proper.

It is therefore necessary to disfavour momentum compensation shifts that break up

close identical pairs. One alternative would have been to share the momentum conserva-

tion shifts suitably inside such pairs. We have taken a simpler course, by introducing a

suppression factor 1 − exp(−Q2
kR

2) for particle k, where Qk is the Q value between k and

its nearest identical partner. The form is fixed such that a Qk = 0 is forbidden and then

the rise matches the shape of the BE distribution itself. Specifically, in the third algorithm,

BEm, the pair k, l is chosen so that the measure

Wijkl =
(1 − exp(−Q2

kR
2))(1 − exp(−Q2

l R
2))

m2
ijkl

(12.32)

is maximized. The average α value required to rescale for the effect of multiple shifts is

0.73, i.e. somewhat below unity.

The BEλ algorithm is inspired by the so-called λ measure [And89] (not the be confused

with the λ parameter of f2(Q)). It corresponds to a string length in the Lund string
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fragmentation framework. It can be shown that partons in a string are colour-connected

in a way that tends to minimize this measure. The same is true for the ordering of the

produced hadrons, although with large fluctuations. As above, having identical particles

nearby to k, l gives undesirable side effects. Therefore the selection is made so that

Wijkl =
(1 − exp(−Q2

kR
2))(1 − exp(−Q2

l R
2))

min(12 permutations)(mijmjkmkl,mijmjlmlk, . . .)
(12.33)

is maximized. The denominator is intended to correspond to exp(λ). For cases where

particles i and j comes from the same string, this would favour compensating the energy

using particles that are close by and in the same string. We find 〈α〉 ≈ 0.73, as above.

The main switches and parameters affecting the Bose-Einstein algorithm are MSTJ(51)

- MSTJ(57) and PARJ(91) - PARJ(96).
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13. Particles and their decays

Particles are the building blocks from which events are constructed. We here use the

word ‘particle’ in its broadest sense, i.e. including partons, resonances, hadrons, and so

on, subgroups we will describe in the following. Each particle is characterized by some

quantities, such as charge and mass. In addition, many of the particles are unstable and

subsequently decay. This section contains a survey of the particle content of the programs,

and the particle properties assumed. In particular, the decay treatment is discussed. Some

particle and decay properties form part already of the hard subprocess description, and are

therefore described in sections 6, 7 and 8.

13.1 The particle content

In order to describe both current and potential future physics, a number of different par-

ticles are needed. A list of some particles, along with their codes, is given in section 5.1.

Here we therefore emphasize the generality rather than the details.

Four full generations of quarks and leptons are included in the program, although

indications from LEP strongly suggest that only three exist in Nature. The PDG naming

convention for the fourth generation is to repeat the third one but with a prime: b′, t′ τ ′

and ν ′
τ . Quarks may appear either singly or in pairs; the latter are called diquarks and are

characterized by their flavour content and their spin. A diquark is always assumed to be

in a colour antitriplet state.

The colour neutral hadrons may be build up from the five lighter coloured quarks (and

diquarks). Six full meson multiplets are included and two baryon ones, see section 12.1.

In addition, K0
S and K0

L are considered as separate particles coming from the ‘decay’ of K0

and K
0

(or, occasionally, produced directly).

Other particles from the Standard Model include the gluon g, the photon γ, the in-

termediate gauge bosons Z0 and W±, and the standard Higgs h0. Non-standard particles

include additional gauge bosons, Z′0 and W′±, additional Higgs bosons H0, A0 and H±, a

leptoquark LQ a horizontal gauge boson R0, technicolor and supersymmetric particles, and

more.

From the point of view of usage inside the programs, particles may be subdivided into

three classes, partly overlapping.

1. A parton is generically any object which may be found in the wave function of the

incoming beams, and may participate in initial- or final-state showers. This includes

what is normally meant by partons, i.e. quarks and gluons, but here also leptons and

photons. In a few cases other particles may be classified as partons in this sense.

2. A resonance is an unstable particle produced as part of the hard process, and where

the decay treatment normally is also part of the hard process. Resonance partial

widths are perturbatively calculable, and therefore it is possible to dynamically recal-

culate branching ratios as a function of the mass assigned to a resonance. Resonances

includes particles like the Z0 and other massive gauge bosons and Higgs particles, in

fact everything with a mass above the b quark and additionally also a lighter γ∗.
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3. Hadrons and their decay products, i.e. mesons and baryons produced either in the

fragmentation process, in secondary decays or as part of the beam-remnant treat-

ment, but not directly as part of the hard process (except in a few special cases).

Hadrons may be stable or unstable. Branching ratios are not assumed perturbatively

calculable, and can therefore be set freely. Also leptons and photons produced in

decays belong to this class. In practice, this includes everything up to and including

b quarks in mass (except a light γ∗, see above).

Usually the subdivision above is easy to understand and gives you the control you

would expect. Thus the restriction on the allowed decay modes of a resonance will directly

affect the cross section of a process, while this is not the case for an ordinary hadron,

since in the latter case there is no precise theory knowledge on the set of decay modes and

branching ratios.

13.2 Masses, widths and lifetimes

13.2.1 Masses

Quark masses are not particularly well defined. In the program it is necessary to make

use of three kinds of masses, kinematical, running current algebra ones and constituent

ones. The first ones are relevant for the kinematics in hard processes, e.g. in gg → cc,

and are partly fixed by such considerations [Nor98]. The second define couplings to Higgs

particles, and also other mass-related couplings in models for physics beyond the Standard

Model. Both these kinds directly affect cross sections in processes. Constituent masses,

finally, are used to derive the masses of hadrons, for some not yet found ones, and e.g. to

gauge the remainder-mass below which the final two hadrons are to be produced in string

fragmentation.

The first set of values are the ones stored in the standard mass array PMAS. The

starting values of the running masses are stored in PARF(91) - PARF(96), with the running

calculated in the PYMRUN function. Constituent masses are also stored in the PARF array,

above position 101. We maintain this distinction for the five first flavours, and partly for

top, using the following values by default:
quark kinematical current algebra mass constituent mass

d 0.33 GeV 0.0099 GeV 0.325 GeV

u 0.33 GeV 0.0056 GeV 0.325 GeV

s 0.5 GeV 0.199 GeV 0.5 GeV

c 1.5 GeV 1.23 GeV 1.6 GeV

b 4.8 GeV 4.17 GeV 5.0 GeV

t 175 GeV 165 GeV —
For top no constituent mass is defined, since it does not form hadrons. For hypothetical

fourth generation quarks only one set of mass values is used, namely the one in PMAS.

Constituent masses for diquarks are defined as the sum of the respective quark masses.

The gluon is always assumed massless.

Particle masses, when known, are taken from ref. [PDG96]. Hypothesized particles,

such as fourth generation fermions and Higgs bosons, are assigned some not unreasonable
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set of default values, in the sense of where you want to search for them in the not-too-

distant future. Here it is understood that you will go in and change the default values

according to your own opinions at the beginning of a run.

The total number of hadrons in the program is very large, whereof some are not yet

discovered (like charm and bottom baryons). There the masses are built up, when needed,

from the constituent masses. For this purpose one uses formulae of the type [DeR75]

m = m0 +
∑

i

mi + k m2
d

∑

i<j

〈σi · σj〉
mi mj

, (13.1)

i.e. one constant term, a sum over constituent masses and a spin-spin interaction term for

each quark pair in the hadron. The constants m0 and k are fitted from known masses,

treating mesons and baryons separately. For mesons with orbital angular momentum L = 1

the spin-spin coupling is assumed vanishing, and only m0 is fitted. One may also define

‘constituent diquarks masses’ using the formula above, with a k value 2/3 that of baryons.

The default values are:
multiplet m0 k

pseudoscalars and vectors 0. 0.16 GeV

axial vectors (S = 0) 0.50 GeV 0.

scalars 0.45 GeV 0.

axial vectors (S = 1) 0.55 GeV 0.

tensors 0.60 GeV 0.

baryons 0.11 GeV 0.048 GeV

diquarks 0.077 GeV 0.048 GeV.
Unlike earlier versions of the program, the actual hadron values are hardcoded, i.e. are

unaffected by any change of the charm or bottom quark masses.

13.2.2 Widths

A width is calculated perturbatively for those resonances which appear in the Pythia

hard-process generation machinery. The width is used to select masses in hard processes

according to a relativistic Breit-Wigner shape. In many processes the width is allowed to

be ŝ-dependent, see section 7.3.

Other particle masses, as discussed so far, have been fixed at their nominal value. We

now have to consider the mass broadening for short-lived particles such as ρ, K∗ or ∆.

Compared to the Z0, it is much more difficult to describe the ρ resonance shape, since

nonperturbative and threshold effects act to distort the näıve shape. Thus the ρ mass is

limited from below by its decay ρ → ππ, but also from above, e.g. in the decay φ → ρπ.

Normally thus the allowed mass range is set by the most constraining decay chains. Some

rare decay modes, specifically ρ0 → ηγ and a2 → η′π, are not allowed to have full impact,

however. Instead one accepts an imperfect rendering of the branching ratio, as some low-

mass ρ0/a2 decays of the above kind are rejected in favour of other decay channels. In

some decay chains, several mass choices are coupled, like in a2 → ρπ, where also the a2

has a non-negligible width. Finally, there are some extreme cases, like the f0, which has
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a nominal mass below the KK threshold, but a tail extending beyond that threshold, and

therefore a non-negligible branching ratio to the KK channel.

In view of examples like these, no attempt is made to provide a full description. Instead

a simplified description is used, which should be enough to give the general smearing of

events due to mass broadening, but maybe not sufficient for detailed studies of a specific

resonance. By default, hadrons are therefore given a mass distribution according to a

non-relativistic Breit-Wigner

P(m) dm ∝ 1

(m − m0)2 + Γ2/4
dm . (13.2)

Leptons and resonances not taken care of by the hard process machinery are distributed

according to a relativistic Breit-Wigner

P(m2) dm2 ∝ 1

(m2 − m2
0)

2 + m2
0Γ

2
dm2 . (13.3)

Here m0 and Γ are the nominal mass and width of the particle. The Breit-Wigner shape

is truncated symmetrically, |m − m0| < δ, with δ arbitrarily chosen for each particle so

that no problems are encountered in the decay chains. It is possible to switch off the mass

broadening, or to use either a non-relativistic or a relativistic Breit-Wigners everywhere.

The f0 problem has been ‘solved’ by shifting the f0 mass to be slightly above the KK

threshold and have vanishing width. Then kinematics in decays f0 → KK is reasonably

well modelled. The f0 mass is too large in the f0 → ππ channel, but this does not really

matter, since one anyway is far above threshold here.

13.2.3 Lifetimes

Clearly the lifetime and the width of a particle are inversely related. For practical applica-

tions, however, any particle with a non-negligible width decays too close to its production

vertex for the lifetime to be of any interest. In the program, the two aspects are therefore

considered separately. Particles with a non-vanishing nominal proper lifetime τ0 = 〈τ〉 are

assigned an actual lifetime according to

P(τ) dτ ∝ exp(−τ/τ0) dτ , (13.4)

i.e. a simple exponential decay is assumed. Since the program uses dimensions where the

speed of light c ≡ 1, and space dimensions are in mm, then actually the unit of cτ0 is mm

and of τ0 itself mm/c ≈ 3.33 × 10−12 s.

If a particle is produced at a vertex v = (x, t) with a momentum p = (p, E) and a

lifetime τ , the decay vertex position is assumed to be

v′ = v + τ
p

m
, (13.5)

where m is the mass of the particle. With the primary interaction (normally) in the origin,

it is therefore possible to construct all secondary vertices in parallel with the ordinary decay

treatment.
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The formula above does not take into account any detector effects, such as a magnetic

field. It is therefore possible to stop the decay chains at some suitable point, and leave

any subsequent decay treatment to the detector simulation program. One may select that

particles are only allowed to decay if they have a nominal lifetime τ0 shorter than some

given value or, alternatively, if their decay vertices x′ are inside some spherical or cylindrical

volume around the origin.

13.3 Decays

Several different kinds of decay treatment are used in the program, depending on the nature

of the decay. Not discussed here are the decays of resonances which are handled as part of

the hard process.

13.3.1 Strong and electromagnetic decays

The decays of hadrons containing the ‘ordinary’ u, d and s quarks into two or three particles

are known, and branching ratios may be found in [PDG96]. (At least for the lowest-lying

states; the four L = 1 meson multiplets are considerably less well known.) We normally

assume that the momentum distributions are given by phase space. There are a few

exceptions, where the phase space is weighted by a matrix-element expression, as follows.

In ω and φ decays to π+π−π0, a matrix element of the form

|M|2 ∝ |pπ+ × pπ− |2 (13.6)

is used, with the pπ the pion momenta in the rest frame of the decay. (Actually, what is

coded is the somewhat more lengthy Lorentz invariant form of the expression above.)

Consider the decay chain P0 → P1+V → P1+P2+P3, with P representing pseudoscalar

mesons and V a vector one. Here the decay angular distribution of the V in its rest frame

is

|M|2 ∝ cos2 θ02 , (13.7)

where θ02 is the angle between P0 and P2. The classical example is D → K∗π → Kππ. If

the P1 is replaced by a γ, the angular distribution in the V decay is instead ∝ sin2 θ02.

In Dalitz decays, π0 or η → e+e−γ, the mass m∗ of the e+e− pair is selected according

to

P(m∗2) dm∗2 ∝ dm∗2

m∗2

(
1 +

2m2
e

m∗2

) √
1 − 4m2

e

m∗2

(
1 − m∗2

m2
π,η

)3
1

(m2
ρ − m∗2)2 + m2

ρΓ
2
ρ

.

(13.8)

The last factor, the VMD-inspired ρ0 propagator, is negligible for π0 decay. Once the m∗

has been selected, the angular distribution of the e+e− pair is given by

|M|2 ∝ (m∗2−2m2
e)

{
(pγpe+)2 + (pγpe−)2

}
+4m2

e

{
(pγpe+)(pγpe−) + (pγpe+)2 + (pγpe−)2

}
.

(13.9)

Also a number of simple decays involving resonances of heavier hadrons, e.g. Σ0
c →

Λ+
c π− or B∗− → B−γ are treated in the same way as the other two-particle decays.
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13.3.2 Weak decays of the τ lepton

For the τ lepton, an explicit list of decay channels has been put together, which includes

channels with up to five final-state particles, some of which may be unstable and subse-

quently decay to produce even larger total multiplicities.

The leptonic decays τ− → ντ `
−ν`, where ` is e or µ, are distributed according to the

standard V − A matrix element

|M|2 = (pτpν`
)(p`pντ ) . (13.10)

(The corresponding matrix element is also used in µ decays, but normally the µ is assumed

stable.)

In τ decays to hadrons, the hadrons and the ντ are distributed according to phase space

times the factor xν (3 − xν), where xν = 2Eν/mτ in the rest frame of the τ . The latter

factor is the ντ spectrum predicted by the parton level V −A matrix element, and therefore

represents an attempt to take into account that the ντ should take a larger momentum

fraction than given by phase space alone.

The probably largest shortcoming of the τ decay treatment is that no polarization

effects are included, i.e. the τ is always assumed to decay isotropically. Usually this is

not correct, since a τ is produced polarized in Z0 and W± decays. The PYTAUD routine

provides a generic interface to an external τ decay library, such as Tauola [Jad91], where

such effects could be handled (see also MSTJ(28)).

13.3.3 Weak decays of charm hadrons

The charm hadrons have a mass in an intermediate range, where the effects of the näıve

V −A weak decay matrix element is partly but not fully reflected in the kinematics of final-

state particles. Therefore different decay strategies are combined. We start with hadronic

decays, and subsequently consider semileptonic ones.

For the four ‘main’ charm hadrons, D+, D0, D+
s and Λ+

c , a number of branching ratios

are already known. The known branching ratios have been combined with reasonable

guesses, to construct more or less complete tables of all channels. For hadronic decays of D0

and D+, where rather much is known, all channels have an explicitly listed particle content.

However, only for the two-body decays and some three-body decays is resonance production

properly taken into account. It means that the experimentally measured branching ratio

for a Kππ decay channel, say, is represented by contributions from a direct Kππ channel

as well as from indirect ones, such as K∗π and Kρ. For a channel like Kππππ, on the other

hand, not all possible combinations of resonances (many of which would have to be off

mass shell to have kinematics work out) are included. This is more or less in agreement

with the philosophy adopted in the PDG tables [PDG92]. For D+
s and Λ+

c knowledge is

rather incomplete, and only two-body decay channels are listed. Final states with three or

more hadron are only listed in terms of a flavour content.

The way the program works, it is important to include all the allowed decay channels up

to a given multiplicity. Channels with multiplicity higher than this may then be generated

according to a simple flavour combination scheme. For instance, in a D+
s decay, the normal
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quark content is ssud, where one s is the spectator quark and the others come from the

weak decay of the c quark. The spectator quark may also be annihilated, like in D+
s → ud.

The flavour content to make up one or two hadrons is therefore present from the onset. If

one decides to generate more hadrons, this means new flavour-antiflavour pairs have to be

generated and combined with the existing flavours. This is done using the same flavour

approach as in fragmentation, section 12.1.

In more detail, the following scheme is used.

1. The multiplicity is first selected. The D+
s and Λ+

c multiplicity is selected according

to a distribution described further below. The program can also be asked to generate

decays of a predetermined multiplicity.

2. One of the non-spectator flavours is selected at random. This flavour is allowed to

‘fragment’ into a hadron plus a new remaining flavour, using exactly the same flavour

generation algorithm as in the standard jet fragmentation, section 12.1.

3. Step 2 is iterated until only one or two hadrons remain to be generated, depending

on whether the original number of flavours is two or four. In each step one ‘unpaired’

flavour is replaced by another one as a hadron is ‘peeled off’, so the number of

unpaired flavours is preserved.

4. If there are two flavours, these are combined to form the last hadron. If there are four,

then one of the two possible pairings into two final hadrons is selected at random.

To find the hadron species, the same flavour rules are used as when final flavours are

combined in the joining of two jets.

5. If the sum of decay product masses is larger than the mass of the decaying particle,

the flavour selection is rejected and the process is started over at step 1. Normally a

new multiplicity is picked, but for D0 and D+ the old multiplicity is retained.

6. Once an acceptable set of hadrons has been found, these are distributed according to

phase space.

The picture then is one of a number of partons moving apart, fragmenting almost like jets,

but with momenta so low that phase-space considerations are enough to give the average

behaviour of the momentum distribution. Like in jet fragmentation, endpoint flavours are

not likely to recombine with each other. Instead new flavour pairs are created in between

them. One should also note that, while vector and pseudoscalar mesons are produced at

their ordinary relative rates, events with many vectors are likely to fail in step 5. Effectively,

there is therefore a shift towards lighter particles, especially at large multiplicities.

When a multiplicity is to be picked, this is done according to a Gaussian distribution,

centered at c+nq/4 and with a width
√

c, with the final number rounded off to the nearest

integer. The value for the number of quarks nq is 2 or 4, as described above, and

c = c1 ln

(
m − ∑

mq

c2

)
, (13.11)

where m is the hadron mass and c1 and c2 have been tuned to give a reasonable description

of multiplicities. There is always some lower limit for the allowed multiplicity; if a number

smaller than this is picked the choice is repeated. Since two-body decays are explicitly

enumerated for D+
s and Λ+

c , there the minimum multiplicity is three.
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Semileptonic branching ratios are explicitly given in the program for all the four par-

ticles discussed here, i.e. it is never necessary to generate the flavour content using the

fragmentation description. This does not mean that all branching ratios are known; a fair

amount of guesswork is involved for the channels with higher multiplicities, based on a

knowledge of the inclusive semileptonic branching ratio and the exclusive branching ratios

for low multiplicities.

In semileptonic decays it is not appropriate to distribute the lepton and neutrino

momenta according to phase space. Instead the simple V − A matrix element is used, in

the limit that decay product masses may be neglected and that quark momenta can be

replaced by hadron momenta. Specifically, in the decay H → `+ν`h, where H is a charm

hadron and h and ordinary hadron, the matrix element

|M|2 = (pHp`)(pνph) (13.12)

is used to distribute the products. It is not clear how to generalize this formula when

several hadrons are present in the final state. In the program, the same matrix element

is used as above, with ph replaced by the total four-momentum of all the hadrons. This

tends to favour a low invariant mass for the hadronic system compared with näıve phase

space.

There are a few charm hadrons, such as Ξc and Ωc, which decay weakly but are so

rare that little is known about them. For these a simplified generic charm decay treatment

is used. For hadronic decays only the quark content is given, and then a multiplicity and

a flavour composition is picked at random, as already described. Semileptonic decays are

assumed to produce only one hadron, so that V −A matrix element can be simply applied.

13.3.4 Weak decays of bottom hadrons

Some exclusive branching ratios now are known for B decays. In this version, the B0,

B+, B0
s and Λ0

b therefore appear in a similar vein to the one outlined above for D+
s and

Λ+
c above. That is, all leptonic channels and all hadronic two-body decay channels are

explicitly listed, while hadronic channels with three or more particles are only given in

terms of a quark content. The Bc is exceptional, in that either the bottom or the charm

quark may decay first, and in that annihilation graphs may be non-negligible. Leptonic

and semileptonic channels are here given in full, while hadronic channels are only listed

in terms of a quark content, with a relative composition as given in [Lus91]. No separate

branching ratios are set for any of the other weakly decaying bottom hadrons, but instead

a pure ‘spectator quark’ model is assumed, where the decay of the b quark is the same in

all hadrons and the only difference in final flavour content comes from the spectator quark.

Compared to the charm decays, the weak decay matrix elements are given somewhat larger

importance in the hadronic decay channels.

In semileptonic decays b → c`−ν` the c quark is combined with the spectator antiquark

or diquark to form one single hadron. This hadron may be either a pseudoscalar, a vector

or a higher resonance (tensor etc.). The relative fraction of the higher resonances has been

picked to be about 30%, in order to give a leptonic spectrum in reasonable experiment with
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data. (This only applies to the main particles B0, B+, B0
s and Λ0

b; for the rest the choice

is according to the standard composition in the fragmentation.) The overall process is

therefore H → h`−ν`, where H is a bottom antimeson or a bottom baryon (remember that

B is the one that contains a b quark), and the matrix element used to distribute momenta

is

|M|2 = (pHpν)(p`ph) . (13.13)

Again decay product masses have been neglected in the matrix element, but in the branch-

ing ratios the τ−ντ channel has been reduced in rate, compared with e−νe and µ−νµ

ones, according to the expected mass effects. No CKM-suppressed decays b → u`−ν` are

currently included.

In most multi-body hadronic decays, e.g. b → cdu, the c quark is again combined

with the spectator flavour to form one single hadron, and thereafter the hadron and the

two quark momenta are distributed according to the same matrix element as above, with

`− ↔ d and ν` ↔ u. The invariant mass of the two quarks is calculated next. If this mass is

so low that two hadrons cannot be formed from the system, the two quarks are combined

into one single hadron. Else the same kind of approach as in hadronic charm decays is

adopted, wherein a multiplicity is selected, a number of hadrons are formed and thereafter

momenta are distributed according to phase space. The difference is that here the charm

decay product is distributed according to the V − A matrix element, and only the rest of

the system is assumed isotropic in its rest frame, while in charm decays all hadrons are

distributed isotropically.

Note that the c quark and the spectator are assumed to form one colour singlet and

the du another, separate one. It is thus assumed that the original colour assignments of

the basic hard process are better retained than in charm decays. However, sometimes this

will not be true, and with about 20% probability the colour assignment is flipped around

so that cu forms one singlet. (In the program, this is achieved by changing the order in

which decay products are given.) In particular, the decay b → csc is allowed to give a cc

colour-singlet state part of the time, and this state may collapse to a single J/ψ. Two-body

decays of this type are explicitly listed for B0, B+, B0
s and Λ0

b; while other J/ψ production

channels appear from the flavour content specification.

The B0–B
0

and B0
s–B

0
s systems mix before decay. This is optionally included. With a

probability

Pflip = sin2

(
x τ

2 〈τ〉

)
(13.14)

a B is therefore allowed to decay like a B, and vice versa. The mixing parameters are by

default xd = 0.7 in the B0–B
0

system and xs = 10 in the B0
s–B

0
s one.

In the past, the generic B meson and baryon decay properties were stored for ‘particle’

85, now obsolete but not yet removed. This particle contains a description of the free b

quark decay, with an instruction to find the spectator flavour according to the particle code

of the actual decaying hadron.
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13.3.5 Other decays

For onia spin 1 resonances, decay channels into a pair of leptons are explicitly given.

Hadronic decays of the J/ψ are simulated using the flavour generation model introduced

for charm. For Υ a fraction of the hadronic decays is into qq pairs, while the rest is into

ggg or ggγ, using the matrix elements of eq. (6.25). The ηc and ηb are both allowed to

decay into a gg pair, which then subsequently fragments. In Υ and ηb decays the partons

are allowed to shower before fragmentation, but energies are too low for showering to have

any impact.

Default branching ratios are given for resonances like the Z0, the W±, the t or the

h0. When Pythia is initialized, these numbers are replaced by branching ratios evaluated

from the given masses. For Z0 and W± the branching ratios depend only marginally on

the masses assumed, while effects are large e.g. for the h0. In fact, branching ratios may

vary over the Breit-Wigner resonance shape, something which is also taken into account in

the PYRESD description. Therefore the simpler resonance treatment of PYDECY is normally

not so useful, and should be avoided. When it is used, a channel is selected according to

the given fixed branching ratios. If the decay is into a qq pair, the quarks are allowed to

shower and subsequently the parton system is fragmented.
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14. The fragmentation and decay program elements

In this section we collect information on most of the routines and common-block variables

found in the fragmentation and decay descriptions of Pythia, plus a number of related

low-level tasks.

14.1 Definition of initial configuration or variables

With the use of the conventions described for the event record, it is possible to specify any

initial jet/particle configuration. This task is simplified for a number of often occurring

situations by the existence of the filling routines below. It should be noted that many users

do not come in direct contact with these routines, since that is taken care of by higher-level

routines for specific processes, particularly PYEVNT and PYEEVT.

Several calls to the routines can be combined in the specification. In case one call is

enough, the complete fragmentation/decay chain may be simulated at the same time. At

each call, the value of N is updated to the last line used for information in the call, so if

several calls are used, they should be made with increasing IP number, or else N should be

redefined by hand afterwards.

The routine PYJOIN is very useful to define the colour flow in more complicated parton

configurations; thereby one can bypass the not-so-trivial rules for how to set the K(I,4)

and K(I,5) colour-flow information.

The routine PYGIVE contains a facility to set various common-block variables in a

controlled and documented fashion.

CALL PY1ENT(IP,KF,PE,THE,PHI)

Purpose: to add one entry to the event record, i.e. either a parton or a particle.

IP : normally line number for the parton/particle. There are two exceptions.

If IP = 0, line number 1 is used and PYEXEC is called.

If IP < 0, line -IP is used, with status code K(-IP,2) = 2 rather than 1; thus

a parton system may be built up by filling all but the last parton of the system

with IP < 0.

KF : parton/particle flavour code.

PE : parton/particle energy. If PE is smaller than the mass, the parton/particle is

taken to be at rest.

THE, PHI : polar and azimuthal angle for the momentum vector of the parton/particle.

CALL PY2ENT(IP,KF1,KF2,PECM)

Purpose: to add two entries to the event record, i.e. either a 2-parton system or two

separate particles.

IP : normally line number for the first parton/particle, with the second in line IP +

1. There are two exceptions.

If IP = 0, lines 1 and 2 are used and PYEXEC is called.
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If IP < 0, lines -IP and -IP + 1 are used, with status code K(I,1) = 3, i.e.

with special colour connection information, so that a parton shower can be gen-

erated by a PYSHOW call, followed by a PYEXEC call, if so desired (only relevant for

partons).

KF1, KF2 : flavour codes for the two partons/particles.

PECM : (= Ecm) the total energy of the system.

Remark: the system is given in the c.m. frame, with the first parton/particle going out

in the +z direction.

CALL PY3ENT(IP,KF1,KF2,KF3,PECM,X1,X3)

Purpose: to add three entries to the event record, i.e. either a 3-parton system or three

separate particles.

IP : normally line number for the first parton/particle, with the other two in IP + 1

and IP + 2. There are two exceptions.

If IP = 0, lines 1, 2 and 3 are used and PYEXEC is called.

If IP < 0, lines -IP through -IP + 2 are used, with status code K(I,1) = 3,

i.e. with special colour connection information, so that a parton shower can be

generated by a PYSHOW call, followed by a PYEXEC call, if so desired (only relevant

for partons).

KF1, KF2, KF3: flavour codes for the three partons/particles.

PECM : (Ecm) the total energy of the system.

X1, X3 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th parton. Thus

x2 = 2 − x1 − x3, and need not be given. Note that not all combinations of xi

are inside the physically allowed region.

Remarks : the system is given in the c.m. frame, in the xz-plane, with the first parton

going out in the +z direction and the third one having px > 0. A system must

be given in the order of colour flow, so qgq and qgq are allowed but qqg not.

Thus x1 and x3 come to correspond to what is normally called x1 and x2, i.e. the

scaled q and q energies.

CALL PY4ENT(IP,KF1,KF2,KF3,KF4,PECM,X1,X2,X4,X12,X14)

Purpose: to add four entries to the event record, i.e. either a 4-parton system or four

separate particles (or, for qqq′q′ events, two 2-parton systems).

IP : normally line number for the first parton/particle, with the other three in lines

IP + 1, IP + 2 and IP + 3. There are two exceptions.

If IP = 0, lines 1, 2, 3 and 4 are used and PYEXEC is called.

If IP < 0, lines -IP through -IP + 3 are used, with status code K(I,1) = 3,

i.e. with special colour connection information, so that a parton shower can be

generated by a PYSHOW call, followed by a PYEXEC call, if so desired (only relevant

for partons).
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KF1,KF2,KF3,KF4 : flavour codes for the four partons/particles.

PECM : (= Ecm) the total energy of the system.

X1,X2,X4 : xi = 2Ei/Ecm, i.e. twice the energy fraction taken by the i’th parton. Thus

x3 = 2 − x1 − x2 − x4, and need not be given.

X12,X14 : xij = 2pipj/E
2
cm, i.e. twice the four-vector product of the momenta for partons

i and j, properly normalized. With the masses known, other xij may be con-

structed from the xi and xij given. Note that not all combinations of xi and xij

are inside the physically allowed region.

Remarks: the system is given in the c.m. frame, with the first parton going out in the +z

direction and the fourth parton lying in the xz-plane with px > 0. The second

parton will have py > 0 and py < 0 with equal probability, with the third parton

balancing this py (this corresponds to a random choice between the two possible

stereoisomers). A system must be given in the order of colour flow, e.g. qggq and

qq′q′q.

CALL PYJOIN(NJOIN,IJOIN)

Purpose: to connect a number of previously defined partons into a string configuration.

Initially the partons must be given with status codes K(I,1) = 1, 2 or 3. Af-

terwards the partons all have status code 3, i.e. are given with full colour-flow

information. Compared to the normal way of defining a parton system, the par-

tons need therefore not appear in the same sequence in the event record as they

are assumed to do along the string. It is also possible to call PYSHOW for all or

some of the entries making up the string formed by PYJOIN.

NJOIN: the number of entries that are to be joined by one string.

IJOIN: an one-dimensional array, of size at least NJOIN. The NJOIN first numbers are the

positions of the partons that are to be joined, given in the order the partons are

assumed to appear along the string. If the system consists entirely of gluons, the

string is closed by connecting back the last to the first entry.

Remarks: only one string (i.e. one colour singlet) may be defined per call, but one is at

liberty to use any number of PYJOIN calls for a given event. The program will

check that the parton configuration specified makes sense, and not take any action

unless it does. Note, however, that an initially sensible parton configuration may

become nonsensical, if only some of the partons are reconnected, while the others

are left unchanged.

CALL PYGIVE(CHIN)

Purpose: to set the value of any variable residing in the commmonblocks PYJETS, PYDAT1,

PYDAT2, PYDAT3, PYDAT4, PYDATR, PYSUBS, PYPARS, PYINT1, PYINT2, PYINT3,

PYINT4, PYINT5, PYINT6, PYINT7, PYINT8, PYMSSM, PYMSRV, or PYTCSM. This is

done in a more controlled fashion than by directly including the common blocks
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in your program, in that array bounds are checked and the old and new values

for the variable changed are written to the output for reference. An example how

PYGIVE can be used to parse input from a file is given in section 3.6.

CHIN : character expression of length at most 100 characters, with requests for variables

to be changed, stored in the form

variable1=value1;variable2=value2;variable3=value3. . . .

Note that an arbitrary number of instructions can be stored in one call if separated

by semicolons, and that blanks may be included anyplace. An exclamation mark

is recognized as the beginning of a comment, which is not to be processed. Normal

parsing is resumed at the next semicolon (if any remain). An example would be

CALL PYGIVE(’MSEL=16!Higgs production;PMAS(25,1)=115.!h0 mass’)

The variablei may be any single variable in the Pythia common blocks, and the

valuei must be of the correct integer, real or character (without extra quotes)

type. Array indices and values must be given explicitly, i.e. cannot be variables

in their own right. The exception is that the first index can be preceded by a C,

signifying that the index should be translated from normal KF to compressed KC

code with a PYCOMP call; this is allowed for the KCHG, PMAS, MDCY, CHAF and MWID

arrays.

If a valuei is omitted, i.e. with the construction variable=, the current value is

written to the output, but the variable itself is not changed.

The writing of info can be switched off by MSTU(13) = 0.

Note 1: the checks on array bounds are hardwired into this routine. Therefore, if you

change array dimensions and MSTU(3), MSTU(6) and/or MSTU(7), as allowed by

other considerations, these changes will not be known to PYGIVE. Normally this

should not be a problem, however.

Note 2: in the first PYGIVE call, the Pythia header will be printed, if it was not already,

except if the command is to set MSTU(12) = 12345.

14.2 The physics routines

Once the initial parton/particle configuration has been specified (by the routines in the

previous section or, more commonly, by higher-level routines such as PYEVNT) and default

parameter values changed, if so desired, only a PYEXEC call is necessary to simulate the

whole fragmentation and decay chain. Therefore a normal user will not directly see any of

the other routines in this section. Some of them could be called directly, but the danger

of faulty usage is then non-negligible.

The PYTAUD routine provides an optional interface to an external τ decay library, where

polarization effects could be included. It is up to you to write the appropriate calls, as

explained at the end of this section.

CALL PYEXEC

Purpose: to administrate the fragmentation and decay chain. PYEXEC may be called

several times, but only entries which have not yet been treated (more precisely,
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which have 1 ≤K(I,1)≤ 10) can be affected by further calls. This may apply if

more partons/particles have been added by you, or if particles previously consid-

ered stable are now allowed to decay. The actions that will be taken during a

PYEXEC call can be tailored extensively via the PYDAT1 - PYDAT3 common blocks,

in particular by setting the MSTJ values suitably.

SUBROUTINE PYPREP(IP) : to rearrange parton-shower end products (marked with

K(I,1) = 3) sequentially along strings; also to (optionally) allow small parton

systems to collapse into two particles or one only, in the latter case with energy

and momentum to be shuffled elsewhere in the event; also to perform checks

that e.g. flavours of colour-singlet systems make sense. In the new multiple in-

teractions scenario this procedure may fail frequently, e.g. in the processing of

junctions, and new tries have to be made, up to five times.

SUBROUTINE PYSTRF(IP) : to generate the fragmentation of an arbitrary colour-singlet

parton system according to the Lund string fragmentation model. One of the

absolutely central routines of Pythia.

SUBROUTINE PYINDF(IP) : to handle the fragmentation of a parton system according

to independent fragmentation models, and implement energy, momentum and

flavour conservation, if so desired. Also the fragmentation of a single parton,

not belonging to a parton system, is considered here. (This is of course physical

nonsense, but may sometimes be convenient for specific tasks.)

SUBROUTINE PYDECY(IP) : to perform a particle decay, according to known branching

ratios or different kinds of models, depending on our level of knowledge. Various

matrix elements are included for specific processes.

SUBROUTINE PYKFDI(KFL1,KFL2,KFL3,KF) : to generate a new quark or diquark flavour

and to combine it with an existing flavour to give a hadron.

KFL1: incoming flavour.

KFL2: extra incoming flavour, e.g. for formation of final particle, where the flavours

are completely specified. Is normally 0.

KFL3: newly created flavour; is 0 if KFL2 is non-zero.

KF: produced hadron. Is 0 if something went wrong (e.g. inconsistent combina-

tion of incoming flavours).

SUBROUTINE PYPTDI(KFL,PX,PY) : to give transverse momentum, e.g. for a qq pair cre-

ated in the colour field, according to independent Gaussian distributions in px

and py.

SUBROUTINE PYZDIS(KFL1,KFL3,PR,Z) : to generate the longitudinal scaling variable z

in jet fragmentation, either according to the Lund symmetric fragmentation func-

tion, or according to a choice of other shapes.

SUBROUTINE PYBOEI : to include Bose-Einstein effects according to a simple parameteri-

zation. By default, this routine is not called. If called from PYEXEC, this is done

after the decay of short-lived resonances, but before the decay of long-lived ones.

This means the routine should never be called directly by you, nor would effects

be correctly simulated if decays are switched off. See MSTJ(51) - MSTJ(57) for
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switches of the routine.

FUNCTION PYMASS(KF) : to give the mass for a parton/particle.

SUBROUTINE PYNAME(KF,CHAU) : to give the parton/particle name (as a string of type

CHARACTER CHAU*16). The name is read out from the CHAF array.

FUNCTION PYCHGE(KF) : to give three times the charge for a parton/particle. The value

is read out from the KCHG(KC,1) array.

FUNCTION PYCOMP(KF) : to give the compressed parton/particle code KC for a given KF

code, as required to find entry into mass and decay data tables. Also checks

whether the given KF code is actually an allowed one (i.e. known by the program),

and returns 0 if not. Note that KF may be positive or negative, while the resulting

KC code is never negative.

Internally PYCOMP uses a binary search in a table, with KF codes arranged in

increasing order, based on the KCHG(KC,4) array. This table is constructed the

first time PYCOMP is called, at which time MSTU(20) is set to 1. In case of a user

change of the KCHG(KC,4) array one should reset MSTU(20) = 0 to force a re-

initialization at the next PYCOMP call (this is automatically done in PYUPDA calls).

To speed up execution, the latest (KF,KC) pair is kept in memory and checked

before the standard binary search.

SUBROUTINE PYERRM(MERR,MESSAG) : to keep track of the number of errors and warnings

encountered, write out information on them, and abort the program in case of

too many errors.

FUNCTION PYANGL(X,Y) : to calculate the angle from the x and y coordinates.

SUBROUTINE PYLOGO : to write a title page for the Pythia programs. Called by

PYLIST(0).

SUBROUTINE PYTIME(IDATI) : to give the date and time, for use in PYLOGO and elsewhere.

Since Fortran 77 does not contain a standard way of obtaining this information,

the routine is dummy, to be replaced by you. Some commented-out examples

are given, e.g. for Fortran 90 or the GNU Linux libU77. The output is given

in an integer array ITIME(6), with components year, month, day, hour, minute

and second. If there should be no such information available on a system, it is

acceptable to put all the numbers above to 0.

CALL PYTAUD(ITAU,IORIG,KFORIG,NDECAY)

Purpose: to act as an interface between the standard decay routine PYDECY and a user-

supplied τ lepton decay library such as Tauola [Jad91]. The latter library would

normally know how to handle polarized τ ’s, given the τ helicity as input, so one

task of the interface routine is to construct the τ polarization/helicity from the

information available. Input to the routine (from PYDECY) is provided in the first

three arguments, while the last argument and some event record information have

to be set before return. To use this facility you have to set the switch MSTJ(28),

include your own interface routine PYTAUD and see to it that the dummy routine
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PYTAUD is not linked. The dummy routine is there only to avoid unresolved

external references when no user-supplied interface is linked.

ITAU : line number in the event record where the τ is stored. The four-momentum of

this τ has first been boosted back to the rest frame of the decaying mother and

thereafter rotated to move out along the +z axis. It would have been possible to

also perform a final boost to the rest frame of the τ itself, but this has been avoided

so as not to suppress the kinematics aspect of close-to-threshold production (e.g.

in B decays) vs. high-energy production (e.g. in real W decays). The choice of

frame should help the calculation of the helicity configuration. After the PYTAUD

call, the τ and its decay products will automatically be rotated and boosted

back. However, seemingly, the event record does not conserve momentum at this

intermediate stage.

IORIG : line number where the mother particle to the τ is stored. Is 0 if the mother is

not stored. This does not have to mean the mother is unknown. For instance,

in semileptonic B decays the mother is a W± with known four-momentum pW =

pτ + pντ , but there is no W line in the event record. When several copies of

the mother is stored (e.g. one in the documentation section of the event record

and one in the main section), IORIG points to the last. If a branchings like

τ → τγ occurs, the ‘grandmother’ is given, i.e. the mother of the direct τ before

branching.

KFORIG : flavour code for the mother particle. Is 0 if the mother is unknown. The mother

would typically be a resonance such as γ∗/Z0 (23), W± (±24), h0 (25), or H±

(±37). Often the helicity choice would be clear just by the knowledge of this

mother species, e.g., W± vs. H±. However, sometimes further complications may

exist. For instance, the KF code 23 represents a mixture of γ∗ and Z0; a knowledge

of the mother mass (in P(IORIG,5)) would here be required to make the choice

of helicities. Further, a W± or Z0 may either be (predominantly) transverse or

longitudinal, depending on the production process under study.

NDECAY : the number of decay products of the τ ; to be given by the user routine. You

must also store the KF flavour codes of those decay products in the positions

K(I,2), N + 1 ≤ I ≤ N + NDECAY, of the event record. The corresponding five-

momentum (momentum, energy and mass) should be stored in the associated

P(I,J) positions, 1 ≤ J ≤ 5. The four-momenta are expected to add up to the

four-momentum of the τ in position ITAU. You should not change the N value or

any of the other K or V values (neither for the τ nor for its decay products) since

this is automatically done in PYDECY.

14.3 The general switches and parameters

The common block PYDAT1 contains the main switches and parameters for the fragmenta-

tion and decay treatment, but also for some other aspects. Here one may control in detail

what the program is to do, if the default mode of operation is not satisfactory.
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COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the

performance of the program as a whole. Here MSTU and PARU are related to utility

functions, as well as a few parameters of the Standard Model, while MSTJ and PARJ

affect the underlying physics assumptions. Some of the variables in PYDAT1 are

described elsewhere, and are therefore here only reproduced as references to the

relevant sections. This in particular applies to many coupling constants, which

are found in section 9.4, and switches of the older dedicated e+e− machinery,

section 6.3.

MSTU(1) - MSTU(3) : variables used by the event study routines, section 15.1.

MSTU(4) : (D = 4000) number of lines available in the common block PYJETS. Should

always be changed if the dimensions of the K and P arrays are changed by you,

but should otherwise never be touched. Maximum allowed value is 10000, unless

MSTU(5) is also changed.

MSTU(5) : (D = 10000) is used in building up the special colour-flow information stored

in K(I,4) and K(I,5) for K(I,3) = 3, 13 or 14. The generic form for j = 4 or 5

is

K(I,j)= 2×MSTU(5)2×MCFR+MSTU(5)2×MCTO+MSTU(5)×ICFR+ICTO,

with notation as in section 5.2. One should always have MSTU(5) ≥ MSTU(4). On

a 32 bit machine, values MSTU(5) > 20000 may lead to overflow problems, and

should be avoided.

MSTU(6) : (D = 500) number of KC codes available in the KCHG, PMAS, MDCY, and CHAF

arrays; should be changed if these dimensions are changed.

MSTU(7) : (D = 8000) number of decay channels available in the MDME, BRAT and KFDP

arrays; should be changed if these dimensions are changed.

MSTU(10) : (D = 2) use of parton/particle masses in filling routines (PY1ENT, PY2ENT,

PY3ENT, PY4ENT).

= 0 : assume the mass to be zero.

= 1 : keep the mass value stored in P(I,5), whatever it is. (This may be used e.g.

to describe kinematics with off-mass-shell partons).

= 2 : find masses according to mass tables as usual.

MSTU(11) - MSTU(12) : variables used by the event study routines, section 15.1.

MSTU(13) : (D = 1) writing of information on variable values changed by a PYGIVE

call.

= 0 : no information is provided.

= 1 : information is written to standard output.

MSTU(14) : variable used by the event study routines, section 15.1.

MSTU(15) : (D = 0) decides how PYLIST shows empty lines, which are interspersed among

ordinary particles in the event record.

= 0 : do not print lines with K(I,1) ≤ 0.

= 1 : do not print lines with K(I,1) < 0.
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= 2 : print all lines.

MSTU(16) : (D = 1) choice of mother pointers for the particles produced by a fragmenting

parton system.

= 1 : all primary particles of a system point to a line with KF = 92 or 93, for string

or independent fragmentation, respectively, or to a line with KF = 91 if a

parton system has so small a mass that it is forced to decay into one or two

particles. The two (or more) shower initiators of a showering parton system

point to a line with KF = 94. The entries with KF = 91–94 in their turn point

back to the predecessor partons, so that the KF = 91–94 entries form a part

of the event history proper.

= 2 : although the lines with KF = 91–94 are present, and contain the correct

mother and daughter pointers, they are not part of the event history proper,

in that particles produced in string fragmentation point directly to either of

the two endpoint partons of the string (depending on the side they were gen-

erated from), particles produced in independent fragmentation point to the

respective parton they were generated from, particles in small mass systems

point to either endpoint parton, and shower initiators point to the original

on-mass-shell counterparts. Also the daughter pointers bypass the KF = 91–

94 entries. In independent fragmentation, a parton need not produce any

particles at all, and then have daughter pointers 0.

When junctions are present, the related primary baryon points back to the

junction around which it is produced. More generally, consider a system

stored as q1q2Jq3. In the listing of primary hadrons coming from this system,

the first ones will have K(I,3) pointers back to q1, either they come from the

hadronization of the q1 or q2 string pieces. (In principle the hadrons could

be classified further, but this has not been done.) Then comes the junction

baryon, which may be followed by hadrons again pointing back to q1. This

is because the final string piece, between the junction and q3, is fragmented

from both ends with a joining to conserve overall energy and momentum.

(Typically the two shortest strings are put ahead of the junction.) More

properly these hadrons also could have pointed back to the junction, but

then the special status of the junction baryon would have been lost. The

final hadrons point to q3, and have fragmented off this end of the string piece

in to the junction. The above example generalizes easily to topologies with

two junctions, e.g. q1q2JJq3q4, where now particles in the central JJ string

would point either to q1 or q4 depending on production side.

Note : MSTU(16) should not be changed between the generation of an event and the

translation of this event record with a PYHEPC call, since this may give an

erroneous translation of the event history.

MSTU(17) : (D = 0) storage option for MSTU(90) and associated information on z values

for heavy-flavour production.

= 0 : MSTU(90) is reset to zero at each PYEXEC call. This is the appropriate course

if PYEXEC is only called once per event, as is normally the case when you do
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not yourself call PYEXEC.

= 1 : you have to reset MSTU(90) to zero yourself before each new event. This is

the appropriate course if several PYEXEC calls may appear for one event, i.e.

if you call PYEXEC directly.

MSTU(19) : (D = 0) advisory warning for unphysical flavour setups in PY2ENT, PY3ENT or

PY4ENT calls.

= 0 : yes.

= 1 : no; MSTU(19) is reset to 0 in such a call.

MSTU(20) : (D = 0) flag for the initialization status of the PYCOMP routine. A value 0

indicates that tables should be (re)initialized, after which it is set 1. In case

you change the KCHG(KC,4) array you should reset MSTU(20) = 0 to force a re-

initialization at the next PYCOMP call.

MSTU(21) : (D = 2) check on possible errors during program execution. Obviously no

guarantee is given that all errors will be caught, but some of the most trivial

user-caused errors may be found.

= 0 : errors do not cause any immediate action, rather the program will try to

cope, which may mean e.g. that it runs into an infinite loop.

= 1 : parton/particle configurations are checked for possible errors. In case of

problem, an exit is made from the misbehaving subprogram, but the gener-

ation of the event is continued from there on. For the first MSTU(22) errors

a message is printed; after that no messages appear.

= 2 : parton/particle configurations are checked for possible errors. In case of

problem, an exit is made from the misbehaving subprogram, and subse-

quently from PYEXEC. You may then choose to correct the error, and con-

tinue the execution by another PYEXEC call. For the first MSTU(22) errors

a message is printed, after that the last event is printed and execution is

stopped.

MSTU(22) : (D = 10) maximum number of errors that are printed.

MSTU(23) : (I) count of number of errors experienced to date. Is not updated for errors in

a string system containing junctions. (Since errors occasionally do happen there,

and are difficult to eliminate altogether.)

MSTU(24) : (R) type of latest error experienced; reason that event was not generated in

full. Is reset at each PYEXEC call.

= 0 : no error experienced.

= 1 : program has reached end of or is writing outside PYJETS memory.

= 2 : unknown flavour code or unphysical combination of codes; may also be

caused by erroneous string connection information.

= 3 : energy or mass too small or unphysical kinematical variable setup.

= 4 : program is caught in an infinite loop.

= 5 : momentum, energy or charge was not conserved (even allowing for machine

precision errors, see PARU(11)); is evaluated only after event has been gen-

erated in full, and does not apply when independent fragmentation without

momentum conservation was used.
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= 6 : error call from outside the fragmentation/decay package (e.g. the e+e− rou-

tines).

= 7 : inconsistent particle data input in PYUPDA (MUPDA = 2,3) or other PYUPDA-

related problem.

= 8 : problems in more peripheral service routines.

= 9 : various other problems.

MSTU(25) : (D = 1) printing of warning messages.

= 0 : no warnings are written.

= 1 : first MSTU(26) warnings are printed, thereafter no warnings appear.

MSTU(26) : (D = 10) maximum number of warnings that are printed.

MSTU(27) : (I) count of number of warnings experienced to date.

MSTU(28) : (R) type of latest warning given, with codes parallelling those for MSTU(24),

but of a less serious nature.

MSTU(29) : (I) denotes the presence (1) or not (0) of a junction in the latest system

studied. Used to decide whether to update the MSTU(23) counter in case of

errors.

MSTU(30) : (I) count of number of errors experienced to date, equivalent to MSTU(23)

except that it is also updated for errors in a string system containing junctions.

MSTU(31) : (I) number of PYEXEC calls in present run.

MSTU(32) - MSTU(33) : variables used by the event-study routines, section 15.1.

MSTU(41) - MSTU(63) : switches for event-analysis routines, see section 15.5.

MSTU(70) - MSTU(80) : variables used by the event study routines, section 15.1.

MSTU(90) : number of heavy-flavour hadrons (i.e. hadrons containing charm or bottom)

produced in the fragmentation stage of the current event, for which the positions

in the event record are stored in MSTU(91) - MSTU(98) and the z values in the

fragmentation in PARU(91) - PARU(98). At most eight values will be stored

(normally this is no problem). No z values can be stored for those heavy hadrons

produced when a string has so small mass that it collapses to one or two particles,

nor for those produced as one of the final two particles in the fragmentation of

a string. If MSTU(17) = 1, MSTU(90) should be reset to zero by you before each

new event, else this is done automatically.

MSTU(91) - MSTU(98) : the first MSTU(90) positions will be filled with the line numbers

of the heavy-flavour hadrons produced in the current event. See MSTU(90) for

additional comments. Note that the information is corrupted by calls to PYEDIT

with options 0–5 and 21–23; calls with options 11–15 work, however.

MSTU(101) - MSTU(118) : switches related to couplings, see section 9.4.

MSTU(121) - MSTU(125) : internally used in the advanced popcorn code, see section

14.3.1.

MSTU(131) - MSTU(140) : internally used in the advanced popcorn code, see section

14.3.1.

MSTU(161), MSTU(162) : information used by event-analysis routines, see section 15.5.

PARU(1) : (R) π ≈ 3.141592653589793.
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PARU(2) : (R) 2π ≈ 6.283185307179586.

PARU(3) : (D = 0.197327) conversion factor for GeV−1 → fm or fm−1 → GeV.

PARU(4) : (D = 5.06773) conversion factor for fm → GeV−1 or GeV → fm−1.

PARU(5) : (D = 0.389380) conversion factor for GeV−2 → mb or mb−1 → GeV2.

PARU(6) : (D = 2.56819) conversion factor for mb → GeV−2 or GeV2 → mb−1.

PARU(11) : (D = 0.001) relative error, i.e. non-conservation of momentum and energy

divided by total energy, that may be attributable to machine precision problems

before a physics error is suspected (see MSTU(24) = 5).

PARU(12) : (D = 0.09 GeV2) effective cut-off in squared mass, below which partons may

be recombined to simplify (machine precision limited) kinematics of string frag-

mentation. (Default chosen to be of the order of a light quark mass, or half a

typical light meson mass.)

PARU(13) : (D = 0.01) effective angular cut-off in radians for recombination of partons,

used in conjunction with PARU(12).

PARU(21) : (I) contains the total energy W of all first-generation partons/particles after

a PYEXEC call; to be used by the PYP function for I > 0, J = 20–25.

PARU(41) - PARU(63) : parameters for event-analysis routines, see section 15.5.

PARU(91) - PARU(98) : the first MSTU(90) positions will be filled with the fragmentation

z values used internally in the generation of heavy-flavour hadrons — how these

are translated into the actual energies and momenta of the observed hadrons is a

complicated function of the string configuration. The particle with z value stored

in PARU(i) is to be found in line MSTU(i) of the event record. See MSTU(90) and

MSTU(91) - MSTU(98) for additional comments.

PARU(101) - PARU(195) : various coupling constants and parameters related to cou-

plings, see section 9.4.

MSTJ(1) : (D = 1) choice of fragmentation scheme.

= 0 : no jet fragmentation at all.

= 1 : string fragmentation according to the Lund model.

= 2 : independent fragmentation, according to specification in MSTJ(2) and

MSTJ(3).

MSTJ(2) : (D = 3) gluon jet fragmentation scheme in independent fragmentation.

= 1 : a gluon is assumed to fragment like a random d, u or s quark or antiquark.

= 2 : as = 1, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and trans-

verse (see PARJ(22)) momentum properties of quark or antiquark substitut-

ing for gluon may be separately specified.

= 3 : a gluon is assumed to fragment like a pair of a d, u or s quark and its

antiquark, sharing the gluon energy according to the Altarelli-Parisi splitting

function.

= 4 : as = 3, but longitudinal (see PARJ(43), PARJ(44) and PARJ(59)) and trans-

verse (see PARJ(22)) momentum properties of quark and antiquark substi-

tuting for gluon may be separately specified.

MSTJ(3) : (D = 0) energy, momentum and flavour conservation options in independent
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fragmentation. Whenever momentum conservation is described below, energy

and flavour conservation is also implicitly assumed.

= 0 : no explicit conservation of any kind.

= 1 : particles share momentum imbalance compensation according to their energy

(roughly equivalent to boosting event to c.m. frame). This is similar to the

approach in the Ali et al. program [Ali80].

= 2 : particles share momentum imbalance compensation according to their lon-

gitudinal mass with respect to the imbalance direction.

= 3 : particles share momentum imbalance compensation equally.

= 4 : transverse momenta are compensated separately within each jet, longitudinal

momenta are rescaled so that ratio of final jet to initial parton momentum

is the same for all the jets of the event. This is similar to the approach in

the Hoyer et al. program [Hoy79].

= 5 : only flavour is explicitly conserved.

= 6 - 10 : as = 1 - 5, except that above several colour singlet systems that followed

immediately after each other in the event listing (e.g. qqqq) were treated as

one single system, whereas here they are treated as separate systems.

= -1 : independent fragmentation, where also particles moving backwards with re-

spect to the jet direction are kept, and thus the amount of energy and mo-

mentum mismatch may be large.

MSTJ(11) : (D = 4) choice of longitudinal fragmentation function, i.e. how large a fraction

of the energy available a newly-created hadron takes.

= 1 : the Lund symmetric fragmentation function, see PARJ(41) - PARJ(45).

= 2 : choice of some different forms for each flavour separately, see PARJ(51) -

PARJ(59).

= 3 : hybrid scheme, where light flavours are treated with symmetric Lund (=

1), but charm and heavier can be separately chosen, e.g. according to the

Peterson/SLAC function (= 2).

= 4 : the Lund symmetric fragmentation function (= 1), for heavy endpoint quarks

modified according to the Bowler (Artru–Mennessier, Morris) space-time

picture of string evolution, see PARJ(46).

= 5 : as = 4, but with possibility to interpolate between Bowler and Lund sepa-

rately for c and b; see PARJ(46) and PARJ(47).

MSTJ(12) : (D = 2) choice of baryon production model.

= 0 : no baryon-antibaryon pair production at all; initial diquark treated as a unit.

= 1 : diquark-antidiquark pair production allowed; diquark treated as a unit.

= 2 : diquark-antidiquark pair production allowed, with possibility for diquark to

be split according to the ‘popcorn’ scheme.

= 3 : as = 2, but additionally the production of first rank baryons may be sup-

pressed by a factor PARJ(19).

= 4 : as = 2, but diquark vertices suffer an extra suppression of the form 1 −
exp(ρΓ), where ρ ≈ 0.7GeV−2 is stored in PARF(192).

= 5 : Advanced version of the popcorn model. Independent of PARJ(3 - 7). In-

– 485 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

stead depending on PARJ(8 - 10). When using this option PARJ(1) needs

to enhanced by approx. a factor 2 (i.e. it losses a bit of its normal meaning),

and PARJ(18) is suggested to be set to 0.19. See section 14.3.1 for further

details.

MSTJ(13) : (D = 0) generation of transverse momentum for endpoint quark(s) of single

quark jet or qq jet system (in multijet events no endpoint transverse momentum

is ever allowed for).

= 0 : no transverse momentum for endpoint quarks.

= 1 : endpoint quarks obtain transverse momenta like ordinary qq pairs produced

in the field (see PARJ(21)); for 2-jet systems the endpoints obtain balancing

transverse momenta.

MSTJ(14) : (D = 1) treatment of a colour-singlet parton system with a low invariant

mass.

= 0 : no precautions are taken, meaning that problems may occur in PYSTRF (or

PYINDF) later on. Warning messages are issued when low masses are en-

countered, however, or when the flavour or colour configuration appears to

be unphysical.

= 1 : small parton systems are allowed to collapse into two particles or, failing that,

one single particle. Normally all small systems are treated this way, starting

with the smallest one, but some systems would require more work and are

left untreated; they include diquark-antidiquark pairs below the two-particle

threshold. See further MSTJ(16) and MSTJ(17).

= -1 : special option for PYPREP calls, where no precautions are taken (as for = 0),

but, in addition, no checks are made on the presence of small-mass systems

or unphysical flavour or colour configurations; i.e. PYPREP only rearranges

colour strings.

MSTJ(15) : (D = 0) production probability for new flavours.

= 0 : according to standard Lund parameterization, as given by PARJ(1) -

PARJ(20).

= 1 : according to probabilities stored in PARF(201) - PARF(1960); note that no

default values exist here, i.e. PARF must be set by you. The MSTJ(12) switch

can still be used to set baryon production mode, with the modification that

MSTJ(12) = 2 here allows an arbitrary number of mesons to be produced

between a baryon and an antibaryon (since the probability for diquark →
meson + new diquark is assumed independent of prehistory).

MSTJ(16) : (D = 2) mode of cluster treatment (where a cluster is a low-mass string that

can fragment to two particles at the most).

= 0 : old scheme. Cluster decays (to two hadrons) are isotropic. In cluster col-

lapses (to one hadron), energy-momentum compensation is to/from the par-

ton or hadron furthest away in mass.

= 1 : intermediate scheme. Cluster decays are anisotropic in a way that is intended

to mimic the Gaussian p⊥ suppression and string ‘area law’ of suppressed

rapidity orderings of ordinary string fragmentation. In cluster collapses,
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energy-momentum compensation is to/from the string piece most closely

moving in the same direction as the cluster. Excess energy is put as an extra

gluon on this string piece, while a deficit is taken from both endpoints of

this string piece as a common fraction of their original momentum.

= 2 : new default scheme. Essentially as = 1 above, except that an energy deficit

is preferentially taken from the endpoint of the string piece that is moving

closest in direction to the cluster.

MSTJ(17) : (D = 2) number of attempts made to find two hadrons that have a combined

mass below the cluster mass, and thus allow a cluster to decay to two hadrons

rather than collapse to one. Thus the larger MSTJ(17), the smaller the fraction

of collapses. At least one attempt is always made, and this was the old default

behaviour.

MSTJ(18) : (D = 10) maximum number of times the junction rest frame is evaluated

with improved knowledge of the proper energies. When the boost in an iteration

corresponds to a γ < 1.01 the iteration would be stopped sooner. An iterative

solution is required since the rest frame of the junction is defined by a vector sum

of energies (see PARP(48)) that are assumed already known in this rest frame.

(In practice, this iteration is normally a minor effect, of more conceptual than

practical impact.)

MSTJ(19) : (D = 0) in a string system containing two junctions (or, more properly, a

junction and an antijunction), there is a possibility for these two to disappear, by

an ‘annihilation’ that gives two separate strings [Sjo03]. That is, a configuration

like q1q2JJq3q4 can collapse to q1q3 plus q2q4.

= 0 : the selection between the two alternatives is made dynamically, so as to pick

the string configuration with the smallest length.

= 1 : the two-junction topology always remains.

= 2 : the two-junction topology always collapses to two separate strings.

Note: the above also applies, suitably generalized, when parton-shower activity is

included in the event. If the shower in between the two junctions comes to

contain a g → qq branching, however, the system inevitable is split into two

separate junction systems q1q2Jq plus qJq3q4

MSTJ(21) : (D = 2) form of particle decays.

= 0 : all particle decays are inhibited.

= 1 : a particle declared unstable in the MDCY vector, and with decay channels

defined, may decay within the region given by MSTJ(22). A particle may

decay into partons, which then fragment further according to the MSTJ(1)

value.

= 2 : as = 1, except that a qq parton system produced in a decay (e.g. of a B

meson) is always allowed to fragment according to string fragmentation,

rather than according to the MSTJ(1) value (this means that momentum,

energy and charge are conserved in the decay).

MSTJ(22) : (D = 1) cut-off on decay length for a particle that is allowed to decay according

to MSTJ(21) and the MDCY value.
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= 1 : a particle declared unstable is also forced to decay.

= 2 : a particle is decayed only if its average proper lifetime is smaller than

PARJ(71).

= 3 : a particle is decayed only if the decay vertex is within a distance PARJ(72)

of the origin.

= 4 : a particle is decayed only if the decay vertex is within a cylindrical volume

with radius PARJ(73) in the xy-plane and extent to ±PARJ(74) in the z

direction.

MSTJ(23) : (D = 1) possibility of having a shower evolving from a qq pair created as

decay products. This switch only applies to decays handled by PYDECY rather

than PYRESD, and so is of less relevance today.

= 0 : never.

= 1 : whenever the decay channel matrix-element code is MDME(IDC,2) = 4, 32,

33, 44 or 46, the two first decay products (if they are partons) are allowed

to shower, like a colour-singlet subsystem, with maximum virtuality given

by the invariant mass of the pair.

MSTJ(24) : (D = 2) particle masses.

= 0 : discrete mass values are used.

= 1 : particles registered as having a mass width in the PMAS vector are given a

mass according to a truncated Breit-Wigner shape, linear in m, eq. (13.2).

= 2 : as = 1, but gauge bosons (actually all particles with |KF| ≤ 100) are dis-

tributed according to a Breit-Wigner quadratic in m, as obtained from prop-

agators.

= 3 : as = 1, but Breit-Wigner shape is always quadratic in m, eq. (13.3).

MSTJ(26) : (D = 2) inclusion of B–B mixing in decays.

= 0 : no.

= 1 : yes, with mixing parameters given by PARJ(76) and PARJ(77). Mixing

decays are not specially marked.

= 2 : yes, as = 1, but a B (B) that decays as a B (B) is marked as K(I,1) = 12

rather than the normal K(I,1) = 11.

MSTJ(28) : (D = 0) call to an external τ decay library like Tauola. For this option to

be meaningful, it is up to you to write the appropriate interface and include that

in the routine PYTAUD, as explained in section 14.2.

= 0 : not done, i.e. the internal PYDECY treatment is used.

= 1 : done whenever the τ mother particle species can be identified, else the inter-

nal PYDECY treatment is used. Normally the mother particle should always

be identified, but it is possible for you to remove event history information

or to add extra τ ’s directly to the event record, and then the mother is not

known.

= 2 : always done.

MSTJ(38) - MSTJ(50) : switches for time-like parton showers, see section 10.4.

MSTJ(51) : (D = 0) inclusion of Bose-Einstein effects.

= 0 : no effects included.
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= 1 : effects included according to an exponential parameterization f2(Q) =

1+PARJ(92)× exp(−Q/PARJ(93)), where f2(Q) represents the ratio of par-

ticle production at Q with Bose-Einstein effects to that without, and the rela-

tive momentum Q is defined by Q2(p1, p2) = −(p1−p2)
2 = (p1 +p2)

2−4m2.

Particles with width broader than PARJ(91) are assumed to have time to

decay before Bose-Einstein effects are to be considered.

= 2 : effects included according to a Gaussian parameterization f2(Q) =

1+PARJ(92)× exp(−(Q/PARJ(93))2), with notation and comments as

above.

MSTJ(52) : (D = 3) number of particle species for which Bose-Einstein correlations are

to be included, ranged along the chain π+, π−, π0, K+, K−, K0
L, K0

S, η and η′.

Default corresponds to including all pions (π+, π−, π0), 7 to including all Kaons

as well, and 9 is maximum.

MSTJ(53) : (D = 0) In e+e− → W+W−, e+e− → Z0Z0, or if PARJ(94) > 0 and there are

several strings in the event, apply BE algorithm

= 0 : on all pion pairs.

= 1 : only on pairs were both pions come from the same W/Z/string.

= 2 : only on pairs were the pions come from different W/Z/strings.

= -2 : when calculating balancing shifts for pions from same W/Z/string, only con-

sider pairs from this W/Z/string.

Note: if colour reconnections has occurred in an event, the distinction between

pions coming from different W/Z’s is lost.

MSTJ(54) : (D = 2) Alternative local energy compensation in the BE algorithm. (Nota-

tion in brackets refer to the one used in [Lon95].)

= 0 : global energy compensation (BE0).

= 1 : compensate with identical pairs by negative BE enhancement with a third

of the radius (BE3).

= 2 : ditto, but with the compensation constrained to vanish at Q = 0, by an

additional 1 − exp(−Q2R2/4) factor (BE32).

= -1 : compensate with pair giving the smallest invariant mass (BEm).

= -2 : compensate with pair giving the smallest string length (BEλ).

MSTJ(55) : (D = 0) Calculation of difference vector in the BE algorithm.

= 0 : in the lab frame.

= 1 : in the c.m. of the given pair.

MSTJ(56) : (D = 0) In e+e− → W+W− or e+e− → Z0Z0 include distance between W/Z’s

for BE calculation.

= 0 : radius is the same for all pairs.

= 1 : radius for pairs from different W/Z’s is R + δRWW (R + δRZZ), where δR is

the generated distance between the decay vertices. (When considering W or

Z pairs with an energy well above threshold, this should give more realistic

results.)

MSTJ(57) : (D = 1) Penalty for shifting particles with close-by identical neighbours in

local energy compensation, MSTJ(54) < 0.
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= 0 : no penalty.

= 1 : penalty.

MSTJ(91) : (I) flag when generating gluon jet with options MSTJ(2) = 2 or 4 (then = 1,

else = 0).

MSTJ(92) : (I) flag that a qq or gg pair or a ggg triplet created in PYDECY should be

allowed to shower, is 0 if no pair or triplet, is the entry number of the first parton

if a pair indeed exists, is the entry number of the first parton, with a − sign, if a

triplet indeed exists.

MSTJ(93) : (I) switch for PYMASS action. Is reset to 0 in PYMASS call.

= 0 : ordinary action.

= 1 : light (d, u, s, c, b) quark masses are taken from PARF(101) - PARF(105)

rather than PMAS(1,1) - PMAS(5,1). Diquark masses are given as sum of

quark masses, without spin splitting term.

= 2 : as = 1. Additionally the constant terms PARF(121) and PARF(122) are

subtracted from quark and diquark masses, respectively.

MSTJ(101) - MSTJ(121) : switches for e+e− event generation, see section 6.3.

PARJ(1) : (D = 0.10) is P(qq)/P(q), the suppression of diquark-antidiquark pair produc-

tion in the colour field, compared with quark-antiquark production.

PARJ(2) : (D = 0.30) is P(s)/P(u), the suppression of s quark pair production in the field

compared with u or d pair production.

PARJ(3) : (D = 0.4) is (P(us)/P(ud))/(P(s)/P(d)), the extra suppression of strange di-

quark production compared with the normal suppression of strange quarks.

PARJ(4) : (D = 0.05) is (1/3)P(ud1)/P(ud0), the suppression of spin 1 diquarks compared

with spin 0 ones (excluding the factor 3 coming from spin counting).

PARJ(5) : (D = 0.5) parameter determining relative occurrence of baryon production by

BMB and by BB configurations in the simple popcorn baryon production model,

roughly P(BMB)/(P(BB) + P(BMB)) = PARJ(5)/(0.5+PARJ(5)). This and

subsequent baryon parameters are modified in the advanced popcorn scenario,

see section 14.3.1.

PARJ(6) : (D = 0.5) extra suppression for having a ss pair shared by the B and B of a

BMB situation.

PARJ(7) : (D = 0.5) extra suppression for having a strange meson M in a BMB config-

uration.

PARJ(8) - PARJ(10) : used in the advanced popcorn scenario, see section 14.3.1.

PARJ(11) - PARJ(17) : parameters that determine the spin of mesons when formed in

fragmentation or decays.

PARJ(11) : (D = 0.5) is the probability that a light meson (containing u and d quarks

only) has spin 1 (with 1. - PARJ(11) the probability for spin 0).

PARJ(12) : (D = 0.6) is the probability that a strange meson has spin 1.

PARJ(13) : (D = 0.75) is the probability that a charm or heavier meson has spin 1.

PARJ(14) : (D = 0.) is the probability that a spin = 0 meson is produced with an

orbital angular momentum 1, for a total spin = 1.
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PARJ(15) : (D = 0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 0.

PARJ(16) : (D = 0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 1.

PARJ(17) : (D = 0.) is the probability that a spin = 1 meson is produced with an

orbital angular momentum 1, for a total spin = 2.

Note : the end result of the numbers above is that, with i = 11, 12 or 13, depending

on flavour content,

P(S = 0, L = 0, J = 0) = (1 − PARJ(i)) × (1 − PARJ(14)),

P(S = 0, L = 1, J = 1) = (1 − PARJ(i)) × PARJ(14),

P(S = 1, L = 0, J = 1) = PARJ(i)× (1 − PARJ(15)− PARJ(16) − PARJ(17)),

P(S = 1, L = 1, J = 0) = PARJ(i)× PARJ(15),

P(S = 1, L = 1, J = 1) = PARJ(i)× PARJ(16),

P(S = 1, L = 1, J = 2) = PARJ(i)× PARJ(17),

where S is the quark ‘true’ spin and J is the total spin, usually called the

spin s of the meson.

PARJ(18) : (D = 1.) is an extra suppression factor multiplying the ordinary SU(6)

weight for spin 3/2 baryons, and hence a means to break SU(6) in addition

to the dynamic breaking implied by PARJ(2), PARJ(3), PARJ(4), PARJ(6) and

PARJ(7).

PARJ(19) : (D = 1.) extra baryon suppression factor, which multiplies the ordinary

diquark-antidiquark production probability for the breakup closest to the end-

point of a string, but leaves other breaks unaffected. Is only used for MSTJ(12)

= 3.

PARJ(21) : (D = 0.36 GeV) corresponds to the width σ in the Gaussian px and py

transverse momentum distributions for primary hadrons. See also PARJ(22) -

PARJ(24).

PARJ(22) : (D = 1.) relative increase in transverse momentum in a gluon jet generated

with MSTJ(2) = 2 or 4.

PARJ(23), PARJ(24) : (D = 0.01, 2.) a fraction PARJ(23) of the Gaussian transverse

momentum distribution is taken to be a factor PARJ(24) larger than input in

PARJ(21). This gives a simple parameterization of non-Gaussian tails to the

Gaussian shape assumed above.

PARJ(25) : (D = 1.) extra suppression factor for η production in fragmentation; if an η

is rejected a new flavour pair is generated and a new hadron formed.

PARJ(26) : (D = 0.4) extra suppression factor for η′ production in fragmentation; if an

η′ is rejected a new flavour pair is generated and a new hadron formed.

PARJ(31) : (D = 0.1 GeV) gives the remaining W+ below which the generation of a single

jet is stopped. (It is chosen smaller than a pion mass, so that no hadrons moving

in the forward direction are missed.)

PARJ(32) : (D = 1. GeV) is, with quark masses added, used to define the minimum

allowable energy of a colour-singlet parton system.

PARJ(33) - PARJ(34) : (D = 0.8 GeV, 1.5 GeV) are, together with quark masses, used
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to define the remaining energy below which the fragmentation of a parton system

is stopped and two final hadrons formed. PARJ(33) is normally used, except for

MSTJ(11) = 2, when PARJ(34) is used.

PARJ(36) : (D = 2.) represents the dependence on the mass of the final quark pair for

defining the stopping point of the fragmentation. Is strongly correlated to the

choice of PARJ(33) - PARJ(35).

PARJ(37) : (D = 0.2) relative width of the smearing of the stopping point energy.

PARJ(39) : (D = 0.08 GeV−2) refers to the probability for reverse rapidity ordering of the

final two hadrons, according to eq. (12.21), for MSTJ(11) = 2 (for other MSTJ(11)

values PARJ(42) is used).

PARJ(40): (D = 1.) possibility to modify the probability for reverse rapidity ordering of

the final two hadrons in the fragmentation of a string with PYSTRF, or from the

only two hadrons of a low-mass string considered in PYPREP. Modifies eq. (12.21)

to Preverse = 1/(1 + exp(PARJ(40)b∆)).

PARJ(41), PARJ(42) : (D = 0.3, 0.58 GeV−2) give the a and b parameters of the sym-

metric Lund fragmentation function for MSTJ(11) = 1, 4 and 5 (and MSTJ(11) =

3 for ordinary hadrons).

PARJ(43), PARJ(44) : (D = 0.5, 0.9 GeV−2) give the a and b parameters as above for

the special case of a gluon jet generated with IF and MSTJ(2) = 2 or 4.

PARJ(45) : (D = 0.5) the amount by which the effective a parameter in the Lund flavour-

dependent symmetric fragmentation function is assumed to be larger than the

normal a when diquarks are produced. More specifically, referring to eq. (12.8),

aα =PARJ(41) when considering the fragmentation of a quark and = PARJ(41)

+ PARJ(45) for the fragmentation of a diquark, with corresponding expression

for aβ depending on whether the newly created object is a quark or diquark (for

an independent gluon jet generated with MSTJ(2) = 2 or 4, replace PARJ(41) by

PARJ(43)). In the popcorn model, a meson created in between the baryon and

antibaryon has aα = aβ =PARJ(41) + PARJ(45).

PARJ(46), PARJ(47) : (D = 2*1.) modification of the Lund symmetric fragmentation

for heavy endpoint quarks according to the recipe by Bowler, available when

MSTJ(11) = 4 or 5 is selected. The shape is given by eq. (12.11). If MSTJ(11) =

4 then rQ =PARJ(46) for both c and b, while if MSTJ(11) = 5 then rc =PARJ(46)

and rb =PARJ(47). PARJ(46) and PARJ(47) thus provide a possibility to inter-

polate between the ‘pure’ Bowler shape, r = 1, and the normal Lund one, r = 0.

The additional modifications made in PARJ(43) - PARJ(45) are automatically

taken into account, if necessary.

PARJ(48) : (D = 1.5 GeV) in defining the junction rest frame, the effective pull direction

of a chain of partons is defined by the vector sum of their momenta, multiplied

by a factor exp(−∑
E/PARJ(48)), where the energy sum runs over all partons

on the string between (but excluding) the given one and the junction itself. The

energies should be defined in the junction rest frame, which requires an iterative

approximation, see MSTJ(18).

PARJ(49) : (D = 1. GeV) retry (up to 10 times) when both strings, to be joined in a
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junction to form a new string endpoint, have a remaining energy above PARJ(49)

(evaluated in the junction rest frame) after having been fragmented.

PARJ(50) : (D = 10. GeV) retry as above when either of the strings have a remaining en-

ergy above a random energy evenly distributed between PARJ(49) and PARJ(49)

+ PARJ(50) (drawn anew for each test).

PARJ(51) - PARJ(55) : (D = 3*0.77, −0.05, −0.005) give a choice of four possible ways

to parameterize the fragmentation function for MSTJ(11) = 2 (and MSTJ(11) =

3 for charm and heavier). The fragmentation of each flavour KF may be cho-

sen separately; for a diquark the flavour of the heaviest quark is used. With

c =PARJ(50+KF), the parameterizations are:

0 ≤ c ≤ 1 : Field–Feynman, f(z) = 1 − c + 3c(1 − z)2;

−1 ≤ c < 0 : Peterson/SLAC, f(z) = 1/(z(1 − 1/z − (−c)/(1 − z))2);

c > 1 : power peaked at z = 0, f(z) = (1 − z)c−1;

c < −1 : power peaked at z = 1, f(z) = z−c−1.

PARJ(59) : (D = 1.) replaces PARJ(51) - PARJ(53) for gluon jet generated with MSTJ(2)

= 2 or 4.

PARJ(61) - PARJ(63) : (D = 4.5, 0.7, 0.) parameterizes the energy dependence of the

primary multiplicity distribution in phase-space decays. The former two corre-

spond to c1 and c2 of eq. (13.11), while the latter allows a further additive term

in the multiplicity specifically for onium decays.

PARJ(64) : (0.003 GeV) minimum kinetic energy in decays (safety margin for numerical

precision errors). When violated, typically new masses would be selected if par-

ticles have a Breit-Wigner width, or a new decay channel where that is relevant.

PARJ(65) : (D = 0.5 GeV) mass which, in addition to the spectator quark or diquark

mass, is not assumed to partake in the weak decay of a heavy quark in a hadron.

This parameter was mainly intended for top decay and is currently not in use.

PARJ(66) : (D = 0.5) relative probability that colour is rearranged when two singlets are

to be formed from decay products. Only applies for MDME(IDC,2) = 11–30, i.e.

low-mass phase-space decays.

PARJ(71) : (D = 10 mm) maximum average proper lifetime cτ for particles allowed to

decay in the MSTJ(22) = 2 option. With the default value, K0
S, Λ, Σ−, Σ+, Ξ−,

Ξ0 and Ω− are stable (in addition to those normally taken to be stable), but

charm and bottom do still decay.

PARJ(72) : (D = 1000 mm) maximum distance from the origin at which a decay is allowed

to take place in the MSTJ(22) = 3 option.

PARJ(73) : (D = 100 mm) maximum cylindrical distance ρ =
√

x2 + y2 from the origin

at which a decay is allowed to take place in the MSTJ(22) = 4 option.

PARJ(74) : (D = 1000 mm) maximum z distance from the origin at which a decay is

allowed to take place in the MSTJ(22) = 4 option.

PARJ(76) : (D = 0.7) mixing parameter xd = ∆M/Γ in B0–B
0

system.

PARJ(77) : (D = 10.) mixing parameter xs = ∆M/Γ in B0
s–B

0
s system.

PARJ(80) - PARJ(90) : parameters for time-like parton showers, see section 10.4.

PARJ(91) : (D = 0.020 GeV) minimum particle width in PMAS(KC,2), above which parti-
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cle decays are assumed to take place before the stage where Bose-Einstein effects

are introduced.

PARJ(92) : (D = 1.) nominal strength of Bose-Einstein effects for Q = 0, see MSTJ(51).

This parameter, often denoted λ, expresses the amount of incoherence in particle

production. Due to the simplified picture used for the Bose-Einstein effects, in

particular for effects from three nearby identical particles, the actual λ of the

simulated events may be larger than the input value.

PARJ(93) : (D = 0.20 GeV) size of the Bose-Einstein effect region in terms of the

Q variable, see MSTJ(51). The more conventional measure, in terms of the

radius R of the production volume, is given by R = ~/PARJ(93)≈ 0.2

fm×GeV/PARJ(93)=PARU(3)/PARJ(93).

PARJ(94) : (D = 0.0 GeV) Increase radius for pairs from different W/Z/strings.

< 0 : if MSTJ(56) = 1, the radius for pairs from different W/Z’s is increased to

R + δRWW + PARU(3)/abs(PARJ(94)).

> 0 : the radius for pairs from different strings is increased to

R + PARU(3)/PARJ(94).

PARJ(95) : (R) Set to the energy imbalance after the BE algorithm, before rescaling of

momenta.

PARJ(96) : (R) Set to the α needed to retain energy-momentum conservation in each

event for relevant models.

PARJ(121) - PARJ(171) : parameters for e+e− event generation, see section 6.3.

PARJ(180) - PARJ(195) : various coupling constants and parameters related to cou-

plings, see section 9.4.

14.3.1 The advanced popcorn code for baryon production

In section 12.1.3 a new advanced popcorn code for baryon production model was presented,

based on [Ede97]. It partly overwrites and redefines the meaning of some of the parameters

above. Therefore the full description of these new options are given separately in this

section, together with a listing of the new routines involved.

In order to use the new options, a few possibilities are open.

• Use of the old diquark and popcorn models, MSTJ(12) = 1 and = 2, is essentially

unchanged. Note, however, that PARJ(19) is available for an ad-hoc suppression of

first-rank baryon production.

• Use of the old popcorn model with new SU(6) weighting:

• Set MSTJ(12) = 3.

• Increase PARJ(1) by approximately a factor 1.2 to retain about the same effective

baryon production rate as in MSTJ(12) = 2.

• Note: the new SU(6) weighting e.g. implies that the total production rate of

charm and bottom baryons is reduced.

• Use of the old flavour model with new SU(6) treatment and modified fragmentation

function for diquark vertices (which softens baryon spectra):

• Set MSTJ(12) = 4.
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• Increase PARJ(1) by about a factor 1.7 and PARJ(5) by about a factor 1.2 to

restore the baryon and popcorn rates of the MSTJ(12) = 2 default.

• Use of the new flavour model (automatically with modified diquark fragmentation

function.)

• Set MSTJ(12) = 5.

• Increase PARJ(1) by approximately a factor 2.

• Change PARJ(18) from 1 to approx. 0.19.

• Instead of PARJ(3) - PARJ(7), tune PARJ(8), PARJ(9), PARJ(10) and

PARJ(18). (Here PARJ(10) is used only in collisions having remnants of baryon

beam particles.)

• Note: the proposed parameter values are based on a global fit to all baryon

production rates. This e.g. means that the proton rate is lower than in the

MSTJ(12) = 2 option, with current data somewhere in between. The PARJ(1)

value would have to be about 3 times higher in MSTJ(12) = 5 than in = 2 to

have the same total baryon production rate (=proton+neutron), but then other

baryon rates would not match at all.

• The new options MSTJ(12) = 4 and = 5 (and, to some extent, = 3) soften baryon

spectra in such a way that PARJ(45) (the change of a for diquarks in the Lund

symmetric fragmentation function) is available for a retune. It affects i.e. baryon-

antibaryon rapidity correlations and the baryon excess over antibaryons in quark

jets.

The changes in and additions to the common blocks are as follows.

MSTU(121) - MSTU(125) : Internal flags and counters; only MSTU(123) may be touched

by you.

MSTU(121) : Popcorn meson counter.

MSTU(122) : Points at the proper diquark production weights, to distinguish between

ordinary popcorn and rank 0 diquark systems. Only needed if MSTJ(12) =

5.

MSTU(123) : Initialization flag. If MSTU(123) is 0 in a PYKFDI call, PYKFIN is called

and MSTU(123) set to 1. Would need to be reset by you if flavour parameters

are changed in the middle of a run.

MSTU(124) : First parton flavour in decay call, stored to easily find random flavour

partner in a popcorn system.

MSTU(125) : Maximum number of popcorn mesons allowed in decay flavour genera-

tion. If a larger popcorn system passes the fake string suppressions, the error

KF = 0 is returned and the flavour generation for the decay is restarted.

MSTU(131) - MSTU(140) : Store of popcorn meson flavour codes in decay algorithm.

Purely internal.

MSTJ(12) : (D = 2) Main switch for choice of baryon production model. Suppression of

rank 1 baryons by a parameter PARJ(19) is no longer governed by the MSTJ(12)

switch, but instead turned on by setting PARJ(19) < 1. Three new options are
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available:

= 3 : as = 2, but additionally the production of first rank baryons may be sup-

pressed by a factor PARJ(19).

= 4 : as = 2, but diquark vertices suffers an extra suppression of the form 1 −
exp(ρΓ), where ρ ≈ 0.7 GeV−2 is stored in PARF(192).

= 5 : Advanced version of the popcorn model. Independent of PARJ(3 - 7). In-

stead depending on PARJ(8 - 10). When using this option PARJ(1) needs

to enhanced by approx. a factor 2 (i.e. it losses a bit of its normal meaning),

and PARJ(18) is suggested to be set to 0.19.

PARJ(8), PARJ(9) : (D = 0.6, 1.2 GeV−1) The new popcorn parameters βu and δβ =

βs − βu. Used to suppress popcorn mesons of total invariant mass M⊥ by

exp(−βq ∗ M⊥). Larger PARJ(9) leads to a stronger suppression of popcorn sys-

tems surrounded by an ss pair, and also a little stronger suppression of strangeness

in diquarks.

PARJ(10) : (D = 0.6 GeV−1) Corresponding parameter for suppression of leading rank

mesons of transverse mass M⊥ in the fragmentation of diquark jets, used if

MSTJ(12) = 5. The treatment of original diquarks is flavour independent, i.e.

PARJ(10) is used even if the diquark contains s or heavier quarks.

PARF(131) - PARF(190) : Different diquark and popcorn weights, calculated in PYKFIN,

which is automatically called from PYKFDI.

PARF(131) : Popcorn ratio BMB/BB in the old model.

PARF(132-134) : Leading rank meson ratio MB/B in the old model, for original

diquark with 0, 1 and 2 s-quarks, respectively.

PARF(135-137) : Colour fluctuation quark ratio, i.e. the relative probability that the

heavier quark in a diquark fits into the baryon at the opposite side of the

popcorn meson. For sq, original sq and original cq diquarks, respectively.

PARF(138) : The extra suppression of strange colour fluctuation quarks, due to the

requirement of surrounding a popcorn meson. (In the old model, it is simply

PARJ(6).)

PARF(139) : Preliminary suppression of a popcorn meson in the new model. A

system of N popcorn mesons is started with weight proportional to

PARF(139)N . It is then tested against the correct weight, derived from the

mass of the system. For strange colour fluctuation quarks, the weight is

PARF(138)*PARF(139).

PARF(140) : Preliminary suppression of leading rank mesons in diquark strings, ir-

respective of flavour. Corresponds to PARF(139).

PARF(141-145) : Maximal SU(6) factors for different types of diquarks.

PARF(146) : Σ/Λ suppression if MSTJ(12) = 5, derived from PARJ(18).

PARF(151-190) : Production ratios for different diquarks. Stored in four groups,

handling q → BB, q → BM...B, qq → MB and finally qq → MB in the

case of original diquarks. In each group is stored:

1 : s/u colour fluctuation ratio.
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2,3 : s/u ratio for the vertex quark if the colour fluctuation quark is

light or strange, respectively.

4 : q/q′ vertex quark ratio if the colour fluctuation quark is light and

= q.

5-7 : (spin 1)/(spin 0) ratio for su, us and ud, where the first flavour is

the colour fluctuation quark.

8-10 : Unused.

PARF(191) : (D = 0.2) Non-constituent mass in GeV of a ud0 diquark. Used in combina-

tion with diquark constituent mass differences to derive relative production rates

for different diquark flavours in the MSTJ(12) = 5 option.

PARF(192) : (D = 0.5) Parameter for the low-Γ suppression of diquark vertices in the

MSTJ(12)≥ 4 options. PARF(192) represents e−ρ, i.e. the suppression is of the

form 1. - PARF(192)Γ, Γ in GeV2.

PARF(193,194) : (I) Store of some popcorn weights used by the present popcorn system.

PARF(201-1400) : (I) Weights for every possible popcorn meson construction in the

MSTJ(12) = 5 option. Calculated from input parameters and meson masses in

PYKFIN. When q1q2 → M +q1q3, the weights for M and the new diquark depends

not only on q1 and q2: it is also important if this is a ‘true’ popcorn system, or

a system which started with a diquark at the string end, and if M is the final

meson of the popcorn system, i.e. if the q1q3 diquark will go into a baryon or

not. With five possible flavours for q1 and q2 this gives 80 different situations

when selecting M and q3. However, quarks heavier than s only exist in the string

endpoints, and if more popcorn mesons are to be produced, the q1q3 diquark

does not influence the weights and the q1 dependence reduces to what β factor

(PARJ(8 - 10)) that is used. Then 40 distinct situations remains, i.e.:

‘true popcorn’ final meson q1 q2

YES YES d,u,s d,u,s

NO <s,s d,u,s

NO YES d,u,s,>s d,u,s,c,b

NO 1 case d,u,s,c,b
This table also shows the order in which the situations are stored. E.g. situation

no. 1 is ‘YES,YES,d,d’, situation no.11 is ‘YES,NO,< s,u’.

In every situation q3 can be d, u or s. if q3 = q2 there are in the program three

possible flavour mixing states available for the meson. This gives five possible

meson flavours, and for each one of them there are six possible L,S spin states.

Thus 30 PARF positions are reserved for each situation, and these are used as

follows:

For each spin multiplet (in the same order as in PARF(1 - 60)) five positions

are reserved. First are stored the weights for the the q3 6= q2 mesons, with q3

in increasing order. If q2 > s, this occupies three spots, and the final two are

unused. If q2 ≤ s, the final three spots are used for the diagonal states when

q3 = q2.
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In summary, all common-block variables are completely internal, except MSTU(123),

MSTJ(12), PARJ(8) - PARJ(10) and PARF(191), PARF(192). Among these, PARF(191)

and PARF(192) should not need to be changed. MSTU(123) should be 0 when starting,

and reset to 0 whenever changing a switch or parameter which influences flavour weight

With MSTJ(12) = 4, PARJ(5) may need to increase. With MSTJ(12) = 5, a preliminary

tune suggests PARJ(8) = 0.6, PARJ(9) = 1.2, PARJ(10) = 0.6, PARJ(1) = 0.20 and

PARJ(18) = 0.19.

Three new subroutines are added, but are only needed for internal use.

SUBROUTINE PYKFIN : to calculate a large set of diquark and popcorn weights from input

parameters. Is called from PYKFDI if MSTU(123) = 0. Sets MSTU(123) to 1.

SUBROUTINE PYNMES(KFDIQ) : to calculate number of popcorn mesons to be generated

in a popcorn system, or the number of leading rank mesons when fragmenting a

diquark string. Stores the number in MSTU(121). Always returns 0 if MSTJ(12)

< 2. Returns 0 or 1 if MSTJ(12) < 5.

KFDIQ : Flavour of the diquark in a diquark string. If starting a popcorn system

inside a string, KFDIQ is 0.

SUBROUTINE PYDCYK(KFL1,KFL2,KFL3,KF) : to generate flavours in the phase space

model of hadron decays, and in cluster decays. Is essentially the same as a

PYKFDI call, but also takes into account the effects of string dynamics in flavour

production in the MSTJ(12)≥ 4 options. This is done in order to get a reason-

able interpretation of the input parameters also for hadron decays with these

options.

KFL1,KFL2,KFL3,KF : See SUBROUTINE PYKFDI.

Internally the diquark codes have been extended to store the necessary further popcorn

information. As before, an initially existing diquark has a code of the type 1000qa +100qb+

2s + 1, where qa > qb. Diquarks created in the fragmentation process now have the longer

code 10000qc + 1000qa + 100qb + 2s + 1, i.e. one further digit is set. Here qc is the curtain

quark, i.e. the flavour of the quark-antiquark pair that is shared between the baryon and

the antibaryon, either qa or qb. The non-curtain quark, the other of qa and qb, may

have its antiquark partner in a popcorn meson. In case there are no popcorn mesons this

information is not needed, but is still set at random to be either of qa and qb. The extended

code is used internally in PYSTRF and PYDECY and in some routines called by them, but is

not visible in any event listings.

14.4 Further parameters and particle data

The PYUPDA routine is the main tool for updating particle data tables. However, for decay

tables in the SUSY Les Houches Accord (SLHA) format, the PYSLHA routine should be

used instead. The following common blocks are maybe of a more peripheral interest, with

the exception of the MDCY array, which allows a selective inhibiting of particle decays, and

setting masses of not yet discovered particles, such as PMAS(25,1), the (Standard Model)

Higgs mass.
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CALL PYUPDA(MUPDA,LFN)

Purpose: to give you the ability to update particle data, or to keep several versions of

modified particle data for special purposes (e.g. bottom studies).

MUPDA : gives the type of action to be taken.

= 1 : write a table of particle data, that you then can edit at leisure. For ordinary

listing of decay data, PYLIST(12) should be used, but that listing could not

be read back in by the program.

For each compressed flavour code KC = 1–500, one line is written containing

the corresponding uncompressed KF flavour code (1X,I9) in KCHG(KC,4), the

particle and antiparticle names (2X,A16,2X,A16) in CHAF, the electric (I3),

colour charge (I3) and particle/antiparticle distinction (I3) codes in KCHG,

the mass (F12.5), the mass width (F12.5), maximum broadening (F12.5)

and average proper lifetime (1P,E13.5) in PMAS, the resonance width treat-

ment (I3) in MWID and the on/off decay switch (I3) in MDCY(KC,1).

After a KC line follows one line for each possible decay channel, containing

the MDME codes (10X,2I5), the branching ratio (F12.6) in BRAT, and the

KFDP codes for the decay products (5I10), with trailing 0’s if the number of

decay products is smaller than 5.

= 2 : read in particle data, as written with = 1 and thereafter edited by you, and

use this data subsequently in the current run. This also means e.g. the

mapping between the full KF and compressed KC flavour codes. Reading is

done with fixed format, which means that you have to preserve the format

codes described for = 1 during the editing. A number of checks will be made

to see if input looks reasonable, with warnings if not. If some decay channel

is said not to conserve charge, it should be taken seriously. Warnings that

decay is kinematically disallowed need not be as serious, since that particular

decay mode may not be switched on unless the particle mass is increased.

= 3 : read in particle data, like option 2, but use it as a complement to rather than

a replacement of existing data. The input file should therefore only contain

new particles and particles with changed data. New particles are added to

the bottom of the KC and decay channel tables. Changed particles retain

their KC codes and hence the position of particle data, but their old decay

channels are removed, this space is recuperated, and new decay channels

are added at the end. Thus also the decay channel numbers of unchanged

particles are affected.

= 4 : write current particle data as data lines, which can be edited into BLOCK

DATA PYDATA for a permanent replacement of the particle data. This option

is intended for the program author only, not for you.

LFN : the file number which the data should be written to or read from. You must see

to it that this file is properly opened for read or write (since the definition of file

names is platform dependent).
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CALL PYSLHA(MUPDA,KF,IFAIL)

Purpose: to read and write SUSY spectra and/or decay tables conforming to the SLHA

format [Ska03]. This normally happens automatically during initialization, when

the appropriate switches have been set, see the examples in section 8.7, but

PYSLHA may also be used stand-alone, to update the decay table for any particle.

To do this, the user should call PYSLHA manually before the call to PYINIT, with

MUPDA = 2 (see below) and KF the flavour code of the particle whose decay table

is to be updated. In case several decay tables are to be updated, separate calls

must be made for each particle.

MUPDA : gives the type of action to be taken.

= 1 : read in spectrum from Logical Unit Number IMSS(21). This call happens

automatically during initialization when IMSS(1) = 11. It is not intended

for manual use.

= 2 : read in decay table for particle code KF from Logical Unit Number IMSS(22).

Is performed automatically when IMSS(1) = 11 and IMSS(22) 6=0, but only

for sparticles and higgs bosons. Any decay lines associated with a zero width

mother are ignored, giving a fast way of switching off decays without having

to comment out all the decay lines. This call may also be used stand-alone

to update the decay table of a particle.

= 3 : write out spectrum on Logical Unit Number IMSS(23). This call happens

automatically during initialization when IMSS(1) 6=0 and IMSS(23) 6=0. It is

not intended for manual use.

= 4 : write out decay table for particle code KF on Logical Unit Number IMSS(24).

This option is not supported yet.

KF : the flavour code of the particle for which decay table read-in or write-out is

desired, only relevant for MUPDA = 2, 4.

IFAIL : return code specifying whether the desired operation succeeded.

= 0 : Operation succeeded.

= 1 : Operation failed, e.g. if no decay table in the SLHA format matching the

desired KF code was found on the file.

COMMON/PYDAT2/KCHG(500,4),PMAS(500,4),PARF(2000),VCKM(4,4)

Purpose: to give access to a number of flavour-treatment constants or parameters and

particle/parton data. Particle data is stored by compressed code KC rather than

by the full KF code. You are reminded that the way to know the KC value is to

use the PYCOMP function, i.e. KC = PYCOMP(KF).

KCHG(KC,1) : three times particle/parton charge for compressed code KC.

KCHG(KC,2) : colour information for compressed code KC.

= 0 : colour-singlet particle.

= 1 : quark or antidiquark.
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= -1 : antiquark or diquark.

= 2 : gluon.

KCHG(KC,3) : particle/antiparticle distinction for compressed code KC.

= 0 : the particle is its own antiparticle.

= 1 : a nonidentical antiparticle exists.

KCHG(KC,4) : equals the uncompressed particle code KF (always with a positive sign).

This gives the inverse mapping of what is provided by the PYCOMP routine.

PMAS(KC,1) : particle/parton mass m (in GeV) for compressed code KC.

PMAS(KC,2) : the total width Γ (in GeV) of an assumed symmetric Breit-Wigner mass

shape for compressed particle code KC.

PMAS(KC,3) : the maximum deviation (in GeV) from the PMAS(KC,1) value at which the

Breit-Wigner shape above is truncated. Is used in ordinary particle decays, but

not in the resonance treatment; cf. the CKIN variables.

PMAS(KC,4) : the average lifetime τ for compressed particle code KC, with cτ in mm, i.e.

τ in units of about 3.33 × 10−12 s.

PARF(1) - PARF(60) : give a parameterization of the dd–uu–ss flavour mixing in produc-

tion of flavour-diagonal mesons. Numbers are stored in groups of 10, for the six

multiplets pseudoscalar, vector, axial vector (S = 0), scalar, axial vector (S = 1)

and tensor, in this order; see section 12.1.2. Within each group, the first two

numbers determine the fate of a dd flavour state, the second two that of a uu

one, the next two that of an ss one, while the last four are unused. Call the

numbers of a pair p1 and p2. Then the probability to produce the state with

smallest KF code is 1 − p1, the probability for the middle one is p1 − p2 and the

probability for the one with largest code is p2, i.e. p1 is the probability to produce

either of the two ‘heavier’ ones.

PARF(61) - PARF(80) : give flavour SU(6) weights for the production of a spin 1/2 or

spin 3/2 baryon from a given diquark–quark combination. Should not be changed.

PARF(91) - PARF(96) : (D = 0.0099, 0.0056, 0.199, 1.23, 4.17, 165 GeV) default nominal

quark masses, used to give the starting value for running masses calculated in

PYMRUN.

PARF(101) - PARF(105) : contain d, u, s, c and b constituent masses, in the past used

in mass formulae for undiscovered hadrons, and should not be changed.

PARF(111), PARF(112) : (D = 0.0, 0.11 GeV) constant terms in the mass formulae for

heavy mesons and baryons, respectively (with diquark getting 2/3 of baryon).

PARF(113), PARF(114) : (D = 0.16, 0.048 GeV) factors which, together with Clebsch-

Gordan coefficients and quark constituent masses, determine the mass splitting

due to spin-spin interactions for heavy mesons and baryons, respectively. The

latter factor is also used for the splitting between spin 0 and spin 1 diquarks.

PARF(115) - PARF(118) : (D = 0.50, 0.45, 0.55, 0.60 GeV), constant mass terms, added

to the constituent masses, to get the mass of heavy mesons with orbital angular

momentum L = 1. The four numbers are for pseudovector mesons with quark spin

0, and for scalar, pseudovector and tensor mesons with quark spin 1, respectively.
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PARF(121), PARF(122) : (D = 0.1, 0.2 GeV) constant terms, which are subtracted for

quark and diquark masses, respectively, in defining the allowed phase space in

particle decays into partons (e.g. B0 → cdud).

PARF(201) - PARF(1960) : (D = 1760*0) relative probabilities for flavour production in

the MSTJ(15) = 1 option; to be defined by you before any Pythia calls. (The

standard meaning is changed in the advanced baryon popcorn code, described in

section 14.3.1, where many of the PARF numbers are used for other purposes.)

The index in PARF is of the compressed form

120 + 80×KTAB1+25×KTABS+KTAB3.

Here KTAB1 is the old flavour, fixed by preceding fragmentation history, while

KTAB3 is the new flavour, to be selected according to the relevant relative prob-

abilities (except for the very last particle, produced when joining two jets, where

both KTAB1 and KTAB3 are known). Only the most frequently appearing

quarks/diquarks are defined, according to the code 1 = d, 2 = u, 3 = s, 4 = c,

5 = b, 6 = t (obsolete!), 7 = dd1, 8 = ud0, 9 = ud1, 10 = uu1, 11 = sd0, 12 = sd1,

13 = su0, 14 = su1, 15 = ss1, 16 = cd0, 17 = cd1, 18 = cu0, 19 = cu1, 20 = cs0,

21 = cs1, 22 = cc1. These are thus the only possibilities for the new flavour to

be produced; for an occasional old flavour not on this list, the ordinary relative

flavour production probabilities will be used.

Given the initial and final flavour, the intermediate hadron that is produced is

almost fixed. (Initial and final diquark here corresponds to ‘popcorn’ production

of mesons intermediate between a baryon and an antibaryon). The additional

index KTABS gives the spin type of this hadron, with

0 = pseudoscalar meson or Λ-like spin 1/2 baryon,

1 = vector meson or Σ-like spin 1/2 baryon,

2 = tensor meson or spin 3/2 baryon.

(Some meson multiplets, not frequently produced, are not accessible by this pa-

rameterization.)

Note that some combinations of KTAB1, KTAB3 and KTABS do not correspond

to a physical particle (a Λ-like baryon must contain three different quark flavours,

a Σ-like one at least two), and that you must see to it that the corresponding

PARF entries are vanishing. One additional complication exists when KTAB3 and

KTAB1 denote the same flavour content (normally KTAB3=KTAB1, but for di-

quarks the spin freedom may give KTAB3=KTAB1±1): then a flavour neutral

meson is to be produced, and here dd, uu and ss states mix (heavier flavour states

do not, and these are therefore no problem). For these cases the ordinary KTAB3

value gives the total probability to produce either of the mesons possible, while

KTAB3=23 gives the relative probability to produce the lightest meson state

(π0, ρ0, a0
2), KTAB3=24 relative probability for the middle meson (η, ω, f02 ), and

KTAB3 = 25 relative probability for the heaviest one (η′, φ, f ′0
2 ). Note that,

for simplicity, these relative probabilities are assumed the same whether initial

and final diquark have the same spin or not; the total probability may well be

assumed different, however.
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As a general comment, the sum of PARF values for a given KTAB1 need not be

normalized to unity, but rather the program will find the sum of relevant weights

and normalize to that. The same goes for the KTAB3=23–25 weights. This

makes it straightforward to use one common setup of PARF values and still switch

between different MSTJ(12) baryon production modes, with the exception of the

advanced popcorn scenarios.

VCKM(I,J) : squared matrix elements of the Cabibbo-Kobayashi-Maskawa flavour mixing

matrix.

I : up type generation index, i.e. 1 = u, 2 = c, 3 = t and 4 = t′.

J : down type generation index, i.e. 1 = d, 2 = s, 3 = b and 4 = b′.

COMMON/PYDAT3/MDCY(500,3),MDME(8000,2),BRAT(8000),KFDP(8000,5)

Purpose: to give access to particle decay data and parameters. In particular, the

MDCY(KC,1) variables may be used to switch on or off the decay of a given particle

species, and the MDME(IDC,1) ones to switch on or off an individual decay channel

of a particle. For quarks, leptons and gauge bosons, a number of decay channels

are included that are not allowed for on-mass-shell particles, see MDME(IDC,2)

= 102. These channels are not directly used to perform decays, but rather to

denote allowed couplings in a more general sense, and to switch on or off such

couplings, as described elsewhere. Particle data is stored by compressed code KC

rather than by the full KF code. You are reminded that the way to know the KC

value is to use the PYCOMP function, i.e. KC = PYCOMP(KF).

MDCY(KC,1) : switch to tell whether a particle with compressed code KC may be allowed

to decay or not.

= 0 : the particle is not allowed to decay.

= 1 : the particle is allowed to decay (if decay information is defined below for the

particle).

Warning: these values may be overwritten for resonances in a PYINIT call, based

on the MSTP(41) option you have selected. If you want to allow resonance

decays in general but switch off the decay of one particular resonance, this

is therefore better done after the PYINIT call.

MDCY(KC,2) : gives the entry point into the decay channel table for compressed particle

code KC. Is 0 if no decay channels have been defined.

MDCY(KC,3) : gives the total number of decay channels defined for compressed parti-

cle code KC, independently of whether they have been assigned a non-vanishing

branching ratio or not. Thus the decay channels are found in positions

MDCY(KC,2) to MDCY(KC,2) + MDCY(KC,3) - 1.

MDME(IDC,1) : on/off switch for individual decay channel IDC. In addition, a channel may

be left selectively open; this has some special applications in the event generation

machinery. Effective branching ratios are automatically recalculated for the decay
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channels left open. Also process cross sections are affected; see section 7.6.2. If a

particle is allowed to decay by the MDCY(KC,1) value, at least one channel must

be left open by you. A list of decay channels with current IDC numbers may be

obtained with PYLIST(12).

= -1 : this is a non-Standard Model decay mode, which by default is assumed not

to exist. Normally, this option is used for decays involving fourth generation

or H± particles.

= 0 : channel is switched off.

= 1 : channel is switched on.

= 2 : channel is switched on for a particle but off for an antiparticle. It is also on

for a particle which is its own antiparticle, i.e. here it means the same as =

1.

= 3 : channel is switched on for an antiparticle but off for a particle. It is off for

a particle which is its own antiparticle.

= 4 : in the production of a pair of equal or charge conjugate resonances in

Pythia, say h0 → W+W−, either one of the resonances is allowed to decay

according to this group of channels, but not both. If the two particles of the

pair are different, the channel is on. For ordinary particles, not resonances,

this option only means that the channel is switched off.

= 5 : as = 4, but an independent group of channels, such that in a pair of equal or

charge conjugate resonances the decay of either resonance may be specified

independently. If the two particles in the pair are different, the channel is

off. For ordinary particles, not resonances, this option only means that the

channel is switched off.

Warning: the two values −1 and 0 may look similar, but in fact are quite different.

In neither case the channel so set is generated, but in the latter case the

channel still contributes to the total width of a resonance, and thus affects

both simulated line shape and the generated cross section when Pythia is

run. The value 0 is appropriate to a channel we assume exists, even if we

are not currently simulating it, while −1 should be used for channels we

believe do not exist. In particular, you are warned unwittingly to set fourth

generation channels 0 (rather than −1), since by now the support for a fourth

generation is small.

Remark: all the options above may be freely mixed. The difference, for those

cases where both make sense, between using values 2 and 3 and using 4

and 5 is that the latter automatically include charge conjugate states, e.g.

h0 → W+W− → e+νedu or due−νe, but the former only one of them. In

calculations of the joint branching ratio, this makes a factor 2 difference.

Example: to illustrate the above options, consider the case of a W+W− pair. One

might then set the following combination of switches for the W:
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channel value comment

ud 1 allowed for W+ and W− in any combination,

us 0 never produced but contributes to W width,

cd 2 allowed for W+ only,

cs 3 allowed for W− only, i.e. properly W− → cs,

tb 0 never produced but contributes to W width

if the channel is kinematically allowed,

νee
+ 4 allowed for one of W+ or W−, but not both,

νµµ+ 4 allowed for one of W+ or W−, but not both,

and not in combination with νee
+,

νττ
+ 5 allowed for the other W, but not both,

νχχ− −1 not produced and does not contribute to W width.

A W+W− final state ud+cs is allowed, but not its charge conjugate ud+cs,

since the latter decay mode is not allowed for a W+. The combination

νee
+ + ν̄ττ

− is allowed, since the two channels belong to different groups,

but not νee
+ + ν̄µµ−, where both belong to the same. Both ud + ν̄ττ

− and

ud + νττ
+ are allowed, since there is no clash. The full rulebook, for this

case, is given by eq. (7.67). A term r2
i means channel i is allowed for W+

and W− simultaneously, a term rirj that channels i and j may be combined,

and a term 2rirj that channels i and j may be combined two ways, i.e. that

also a charge conjugate combination is allowed.

MDME(IDC,2) : information on special matrix-element treatment for decay channel IDC.

Is mainly intended for the normal-particle machinery in PYDECY, so many of the

codes are superfluous in the more sophisticated resonance decay treatment by

PYRESD, see section 2.1.2. In addition to the outline below, special rules apply for

the order in which decay products should be given, so that matrix elements and

colour flow is properly treated. One such example is the weak matrix elements,

which only will be correct if decay products are given in the right order. The

program does not police this, so if you introduce channels of your own and use

these codes, you should be guided by the existing particle data.

= 0 : no special matrix-element treatment; partons and particles are copied di-

rectly to the event record, with momentum distributed according to phase

space.

= 1 : ω and φ decays into three pions, eq. (13.6).

= 2 : π0 or η Dalitz decay to γe+e−, eq. (13.8).

= 3 : used for vector meson decays into two pseudoscalars, to signal non-isotropic

decay angle according to eq. (13.7), where relevant.

= 4 : decay of a spin 1 onium resonance to three gluons or to a photon and two glu-

ons, eq. (6.25). The gluons may subsequently develop a shower if MSTJ(23)

= 1.

= 11 : phase-space production of hadrons from the quarks available.

= 12 : as = 11, but for onia resonances, with the option of modifying the multiplic-

ity distribution separately.
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= 13 : as = 11, but at least three hadrons to be produced (useful when the two-body

decays are given explicitly).

= 14 : as = 11, but at least four hadrons to be produced.

= 15 : as = 11, but at least five hadrons to be produced.

= 22 - 30 : phase-space production of hadrons from the quarks available, with the

multiplicity fixed to be MDME(IDC,2) - 20, i.e. 2–10.

= 31 : two or more quarks and particles are distributed according to phase space.

If three or more products, the last product is a spectator quark, i.e. sitting

at rest with respect to the decaying hadron.

= 32 : a qq or gg pair, distributed according to phase space (in angle), and allowed

to develop a shower if MSTJ(23) = 1.

= 33 : a triplet qXq, where X is either a gluon or a colour-singlet particle; the final

particle (q) is assumed to sit at rest with respect to the decaying hadron, and

the two first particles (q and X) are allowed to develop a shower if MSTJ(23)

= 1. Nowadays superfluous.

= 41 : weak decay, where particles are distributed according to phase space, mul-

tiplied by a factor from the expected shape of the momentum spectrum of

the direct product of the weak decay (the ντ in τ decay).

= 42 : weak decay matrix element for quarks and leptons. Products may be given

either in terms of quarks or hadrons, or leptons for some channels. If the

spectator system is given in terms of quarks, it is assumed to collapse into

one particle from the onset. If the virtual W decays into quarks, these quarks

are converted to particles, according to phase space in the W rest frame, as

in = 11. Is intended for τ , charm and bottom.

= 43 : as = 42, but if the W decays into quarks, these will either appear as jets

or, for small masses, collapse into a one- or two-body system. Nowadays

superfluous.

= 44 : weak decay matrix element for quarks and leptons, where the spectator sys-

tem may collapse into one particle for a small invariant mass. If the first two

decay products are a qq′ pair, they may develop a parton shower if MSTJ(23)

= 1. Was intended for top and beyond, but is nowadays superfluous.

= 48 : as = 42, but require at least three decay products.

= 50 : (default behaviour, also obtained for any other code value apart from the

ones listed below) do not include any special threshold factors. That is,

a decay channel is left open even if the sum of daughter nominal masses

is above the mother actual mass, which is possible if at least one of the

daughters can be pushed off the mass shell. Is intended for decay treatment

in PYRESD with PYWIDT calls, and has no special meaning for ordinary PYDECY

calls.

= 51 : a step threshold, i.e. a channel is switched off when the sum of daughter nom-

inal masses is above the mother actual mass. Is intended for decay treatment

in PYRESD with PYWIDT calls, and has no special meaning for ordinary PYDECY

calls.
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= 52 : a β-factor threshold, i.e.
√

(1 − m2
1/m

2 − m2
2/m

2)2 − 4m2
1m

2
2/m

4, assuming

that the values stored in PMAS(KC,2) and BRAT(IDC) did not include any

threshold effects at all. Is intended for decay treatment in PYRESD with

PYWIDT calls, and has no special meaning for ordinary PYDECY calls.

= 53 : as = 52, but assuming that PMAS(KC,2) and BRAT(IDC) did include the

threshold effects, so that the weight should be the ratio of the β value at the

actual mass to that at the nominal one. Is intended for decay treatment in

PYRESD with PYWIDT calls, and has no special meaning for ordinary PYDECY

calls.

= 101 : this is not a proper decay channel, but only to be considered as a continuation

line for the decay product listing of the immediately preceding channel. Since

the KFDP array can contain five decay products per channel, with this code

it is possible to define channels with up to ten decay products. It is not

allowed to have several continuation lines after each other.

= 102 : this is not a proper decay channel for a decaying particle on the mass shell

(or nearly so), and is therefore assigned branching ratio 0. For a particle

off the mass shell, this decay mode is allowed, however. By including this

channel among the others, the switches MDME(IDC,1)may be used to allow or

forbid these channels in hard processes, with cross sections to be calculated

separately. As an example, γ → uu is not possible for a massless photon,

but is an allowed channel in e+e− annihilation.

BRAT(IDC) : give branching ratios for the different decay channels. In principle, the sum

of branching ratios for a given particle should be unity. Since the program anyway

has to calculate the sum of branching ratios left open by the MDME(IDC,1) values

and normalize to that, you need not explicitly ensure this normalization, however.

(Warnings are printed in PYUPDA(2) or PYUPDA(3) calls if the sum is not unity,

but this is entirely intended as a help for finding user mistypings.) For decay

channels with MDME(IDC,2) > 80 the BRAT values are dummy.

KFDP(IDC,J) : contain the decay products in the different channels, with five positions J

= 1 - 5 reserved for each channel IDC. The decay products are given following

the standard KF code for partons and particles, with 0 for trailing empty positions.

Note that the MDME(IDC+1,2) = 101 option allows you to double the maximum

number of decay product in a given channel from 5 to 10, with the five latter

products stored in KFDP(IDC+1,J).

COMMON/PYDAT4/CHAF(500,2)

CHARACTER CHAF*16

Purpose: to give access to character type variables.

CHAF(KC,1) : particle name according to KC code.
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CHAF(KC,2) : antiparticle name according to KC code when an antiparticle exists, else

blank.

14.5 Miscellaneous comments

The previous sections have dealt with the subroutine options and variables one at a time.

This is certainly important, but for a full use of the capabilities of the program, it is also

necessary to understand how to make different pieces work together. This is something

that cannot be explained fully in a manual, but must also be learnt by trial and error.

This section contains some examples of relationships between subroutines, common blocks

and parameters. It also contains comments on issues that did not fit in naturally anywhere

else, but still might be useful to have on record.

14.5.1 Interfacing to detector simulation

Very often, the output of the program is to be fed into a subsequent detector simulation

program. It therefore becomes necessary to set up an interface between the PYJETS common

block and the detector model. Preferably this should be done via the HEPEVT standard

common block, see section 5.4, but sometimes this may not be convenient. If a PYEDIT(2)

call is made, the remaining entries exactly correspond to those an ideal detector could see:

all non-decayed particles, with the exception of neutrinos. The translation of momenta

should be trivial (if need be, a PYROBO call can be made to rotate the ‘preferred’ z direction

to whatever is the longitudinal direction of the detector), and so should the translation

of particle codes. In particular, if the detector simulation program also uses the standard

Particle Data Group codes, no conversion at all is needed. The problem then is to select

which particles are allowed to decay, and how decay vertex information should be used.

Several switches regulate which particles are allowed to decay. First, the master switch

MSTJ(21) can be used to switch on/off all decays (and it also contains a choice of how

fragmentation should be interfaced). Second, a particle must have decay modes defined

for it, i.e. the corresponding MDCY(KC,2) and MDCY(KC,3) entries must be non-zero for

compressed code KC = PYCOMP(KF). This is true for all colour neutral particles except

the neutrinos, the photon, the proton and the neutron. (This statement is actually not

fully correct, since irrelevant ‘decay modes’ with MDME(IDC,2) = 102 exist in some cases.)

Third, the individual switch in MDCY(KC,1) must be on. Of all the particles with decay

modes defined, only µ±, π±, K± and K0
L are by default considered stable.

Finally, if MSTJ(22) does not have its default value 1, checks are also made on the

lifetime of a particle before it is allowed to decay. In the simplest alternative, MSTJ(22) =

2, the comparison is based on the average lifetime, or rather cτ , measured in mm. Thus

if the limit PARJ(71) is (the default) 10 mm, then decays of K0
S, Λ, Σ−, Σ+, Ξ−, Ξ0 and

Ω− are all switched off, but charm and bottom still decay. No cτ values below 1 µm are

defined. With the two options MSTJ(22) = 3 or 4, a spherical or cylindrical volume is

defined around the origin, and all decays taking place inside this volume are ignored.

Whenever a particle is in principle allowed to decay, i.e. MSTJ(21) and MDCY on, an

proper lifetime is selected once and for all and stored in V(I,5). The K(I,1) is then also

changed to 4. For MSTJ(22) = 1, such a particle will also decay, but else it could remain
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in the event record. It is then possible, at a later stage, to expand the volume inside which

decays are allowed, and do a new PYEXEC call to have particles fulfilling the new conditions

(but not the old) decay. As a further option, the K(I,1) code may be put to 5, signalling

that the particle will definitely decay in the next PYEXEC call, at the vertex position given

(by you) in the V vector.

This then allows the Pythia decay routines to be used inside a detector simulation

program, as follows. For a particle which did not decay before entering the detector, its

point of decay is still well defined (in the absence of deflections by electric or magnetic

fields), eq. (13.5). If it interacts before that point, the detector simulation program is left

to handle things. If not, the V vector is updated according to the formula above, K(I,1) is

set to 5, and PYEXEC is called, to give a set of decay products, that can again be tracked.

A further possibility is to force particles to decay into specific decay channels; this

may be particularly interesting for charm or bottom physics. The choice of channels left

open is determined by the values of the switches MDME(IDC,1) for decay channel IDC (use

PYLIST(12) to obtain the full listing). One or several channels may be left open; in the

latter case effective branching ratios are automatically recalculated without the need for

your intervention. It is also possible to differentiate between which channels are left open

for particles and which for antiparticles. Lifetimes are not affected by the exclusion of some

decay channels. Note that, whereas forced decays can enhance the efficiency for several

kinds of studies, it can also introduce unexpected biases, in particular when events may

contain several particles with forced decays, cf. section 7.6.2.

14.5.2 Parameter values

A non-trivial question is to know which parameter values to use. The default values stored

in the program are based on comparisons with LEP e+e− → Z0 data at around 91 GeV

[LEP90], using a parton-shower picture followed by string fragmentation. Some examples

of more recent parameter sets are found in [Kno96]. If fragmentation is indeed a universal

phenomenon, as we would like to think, then the same parameters should also apply at

other energies and in other processes. The former aspect, at least, seems to be borne

out by comparisons with lower-energy PETRA/PEP data and higher-energy LEP2 data.

Note, however, that the choice of parameters is intertwined with the choice of perturbative

QCD description. If instead matrix elements are used, a best fit to 30 GeV data would

require the values PARJ(21) = 0.40, PARJ(41) = 1.0 and PARJ(42) = 0.7. With matrix

elements one does not expect an energy independence of the parameters, since the effective

minimum invariant mass cut-off is then energy dependent, i.e. so is the amount of soft

gluon emission effects lumped together with the fragmentation parameters. This is indeed

confirmed by the LEP data. A mismatch in the perturbative QCD treatment could also

lead to small differences between different processes.

It is often said that the string fragmentation model contains a wealth of parameters.

This is certainly true, but it must be remembered that most of these deal with flavour

properties, and to a large extent factorize from the treatment of the general event shape.

In a fit to the latter it is therefore usually enough to consider the parameters of the

perturbative QCD treatment, like Λ in αs and a shower cut-off Q0 (or αs itself and ymin,
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if matrix elements are used), the a and b parameter of the Lund symmetric fragmentation

function (PARJ(41) and PARJ(42)) and the width of the transverse momentum distribution

(σ =PARJ(21)). In addition, the a and b parameters are very strongly correlated by the

requirement of having the correct average multiplicity, such that in a typical χ2 plot, the

allowed region corresponds to a very narrow but very long valley, stretched diagonally

from small (a,b) pairs to large ones. As to the flavour parameters, these are certainly many

more, but most of them are understood qualitatively within one single framework, that of

tunnelling pair production of flavours.

Since the use of independent fragmentation has fallen in disrespect, it should be pointed

out that the default parameters here are not particularly well tuned to the data. This es-

pecially applies if one, in addition to asking for independent fragmentation, also asks for

another setup of fragmentation functions, i.e. other than the standard Lund symmetric one.

In particular, note that most fits to the popular Peterson/SLAC heavy-flavour fragmen-

tation function are based on the actual observed spectrum. In a Monte Carlo simulation,

one must then start out with something harder, to compensate for the energy lost by

initial-state photon radiation and gluon bremsstrahlung. Since independent fragmentation

is not collinear safe (i.e, the emission of a collinear gluon changes the properties of the final

event), the tuning is strongly dependent on the perturbative QCD treatment chosen. All

the parameters needed for a tuning of independent fragmentation are available, however.

14.6 Examples

A 10 GeV u quark jet going out along the +z axis is generated with

CALL PY1ENT(0,2,10D0,0D0,0D0)

Note that such a single jet is not required to conserve energy, momentum or flavour. In

the generation scheme, particles with negative pz are produced as well, but these are

automatically rejected unless MSTJ(3) = -1. While frequently used in former days, the

one-jet generation option is not of much current interest.

In e.g. a leptoproduction event a typical situation could be a u quark going out in

the +z direction and a ud0 target remnant essentially at rest. (Such a process can be

simulated by Pythia, but here we illustrate how to do part of it yourself.) The simplest

procedure is probably to treat the process in the c.m. frame and boost it to the lab frame

afterwards. Hence, if the c.m. energy is 20 GeV and the boost βz = 0.996 (corresponding

to xB = 0.045), then

CALL PY2ENT(0,2,2101,20D0)

CALL PYROBO(0,0,0D0,0D0,0D0,0D0,0.996D0)

The jets could of course also be defined and allowed to fragment in the lab frame with

CALL PY1ENT(-1,2,223.15D0,0D0,0D0)

CALL PY1ENT(2,12,0.6837D0,3.1416D0,0D0)

CALL PYEXEC
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Note here that the target diquark is required to move in the backwards direction with

E−pz = mp(1−xB) to obtain the correct invariant mass for the system. This is, however,

only an artifact of using a fixed diquark mass to represent a varying target remnant mass,

and is of no importance for the fragmentation. If one wants a nicer-looking event record,

it is possible to use the following

CALL PY1ENT(-1,2,223.15D0,0D0,0D0)

MSTU(10)=1

P(2,5)=0.938D0*(1D0-0.045D0)

CALL PY1ENT(2,2101,0D0,0D0,0D0)

MSTU(10)=2

CALL PYEXEC

A 30 GeV uug event with Eu = 8 GeV and Eu = 14 GeV is simulated with

CALL PY3ENT(0,2,21,-2,30D0,2D0*8D0/30D0,2D0*14D0/30D0)

The event will be given in a standard orientation with the u quark along the +z axis and

the u in the ±z,+x half plane. Note that the flavours of the three partons have to be given

in the order they are found along a string, if string fragmentation options are to work.

Also note that, for 3-jet events, and particularly 4-jet ones, not all setups of kinematical

variables x lie within the kinematically allowed regions of phase space.

All common-block variables can obviously be changed by including the corresponding

common block in the user-written main program. Alternatively, the routine PYGIVE can

be used to feed in values, with some additional checks on array bounds then performed. A

call

CALL PYGIVE(’MSTJ(21)=3;PMAS(C663,1)=210.;CHAF(401,1)=funnyino;’//

&’PMAS(21,4)=’)

will thus change the value of MSTJ(21) to 3, the value of PMAS(PYCOMP(663),1) =

PMAS(136,1) to 210., the value of CHAF(401,1) to ’funnyino’, and print the current value

of PMAS(21,4). Since old and new values of parameters changed are written to output,

this may offer a convenient way of documenting non-default values used in a given run.

On the other hand, if a variable is changed back and forth frequently, the resulting volu-

minous output may be undesirable, and a direct usage of the common blocks is then to be

recommended (the output can also be switched off, see MSTU(13)).

A general rule of thumb is that none of the physics routines (PYSTRF, PYINDF, PYDECY,

etc.) should ever be called directly, but only via PYEXEC. This routine may be called

repeatedly for one single event. At each call only those entries that are allowed to fragment

or decay, and have not yet done so, are treated. Thus

CALL PY2ENT(1,1,-1,20D0) ! fill 2 partons without fragmenting

MSTJ(1)=0 ! inhibit jet fragmentation

MSTJ(21)=0 ! inhibit particle decay

MDCY(PYCOMP(111),1)=0 ! inhibit pi0 decay
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CALL PYEXEC ! will not do anything

MSTJ(1)=1 !

CALL PYEXEC ! partons will fragment, no decays

MSTJ(21)=2 !

CALL PYEXEC ! particles decay, except pi0

CALL PYEXEC ! nothing new can happen

MDCY(PYCOMP(111),1)=1 !

CALL PYEXEC ! pi0’s decay

A partial exception to the rule above is PYSHOW. Its main application is for internal

use by PYEEVT, PYDECY, and PYEVNT, but it can also be directly called by you. Note that

a special format for storing colour-flow information in K(I,4) and K(I,5) must then be

used. For simple cases, the PY2ENT can be made to take care of that automatically, by

calling with the first argument negative.

CALL PY2ENT(-1,1,-2,80D0) ! store d ubar with colour flow

CALL PYSHOW(1,2,80D0) ! shower partons

CALL PYEXEC ! subsequent fragmentation/decay

For more complicated configurations, PYJOIN should be used.

It is always good practice to list one or a few events during a run to check that the

program is working as intended. With

CALL PYLIST(1)

all particles will be listed and in addition total charge, momentum and energy of stable

entries will be given. For string fragmentation these quantities should be conserved exactly

(up to machine precision errors), and the same goes when running independent fragmen-

tation with one of the momentum conservation options. PYLIST(1) gives a format that

comfortably fits in an 80 column window, at the price of not giving the complete story.

With PYLIST(2) a more extensive listing is obtained, and PYLIST(3) also gives vertex

information. Further options are available, like PYLIST(12), which gives a list of particle

data.

An event, as stored in the PYJETS common block, will contain the original partons and

the whole decay chain, i.e. also particles which subsequently decayed. If parton showers

are used, the amount of parton information is also considerable: first the on-shell partons

before showers have been considered, then a K(I,1) = 22 line with total energy of the

showering subsystem, after that the complete shower history tree-like structure, starting

off with the same initial partons (now off-shell), and finally the end products of the shower

rearranged along the string directions. This detailed record is useful in many connections,

but if one only wants to retain the final particles, superfluous information may be removed

with PYEDIT. Thus e.g.

CALL PYEDIT(2)
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will leave you with the final charged and neutral particles, except for neutrinos (and some

other weakly interacting, neutral particles).

The information in PYJETS may be used directly to study an event. Some useful

additional quantities derived from these, such as charge and rapidity, may easily be found

via the PYK and PYP functions. Thus electric charge = PYP(I,6) (as integer, three times

charge = PYK(I,6)) and true rapidity y with respect to the z axis = PYP(I,17).

A number of utility (MSTU, PARU) and physics (MSTJ, PARJ) switches and parameters

are available in common block PYDAT1. All of these have sensible default values. Particle

data is stored in common blocks PYDAT2, PYDAT3 and PYDAT4. Note that the data in the

arrays KCHG, PMAS, MDCY CHAF and MWID is not stored by KF code, but by the compressed

code KC. This code is not to be learnt by heart, but instead accessed via the conversion

function PYCOMP, KC = PYCOMP(KF).

In the particle tables, the following particles are considered stable: the photon, e±,

µ±, π±, K±, K0
L, p, p, n, n and all the neutrinos. It is, however, always possible to inhibit

the decay of any given particle by putting the corresponding MDCY value zero or negative,

e.g. MDCY(PYCOMP(310),1) = 0 makes K0
S and MDCY(PYCOMP(3122),1) = 0 Λ stable. It

is also possible to select stability based on the average lifetime (see MSTJ(22)), or based

on whether the decay takes place within a given spherical or cylindrical volume around the

origin.

The Field–Feynman jet model [Fie78] is available in the program by changing the

following values: MSTJ(1) = 2 (independent fragmentation), MSTJ(3) = -1 (retain par-

ticles with pz < 0; is not mandatory), MSTJ(11) = 2 (choice of longitudinal fragmenta-

tion function, with the a parameter stored in PARJ(51) - PARJ(53)), MSTJ(12) = 0 (no

baryon production), MSTJ(13) = 1 (give endpoint quarks p⊥ as quarks created in the field),

MSTJ(24) = 0 (no mass broadening of resonances), PARJ(2) = 0.5 (s/u ratio for the pro-

duction of new qq pairs), PARJ(11) = PARJ(12) = 0.5 (probability for mesons to have

spin 1) and PARJ(21) = 0.35 (width of Gaussian transverse momentum distribution). In

addition only d, u and s single quark jets may be generated following the FF recipe. Today

the FF ‘standard jet’ concept is probably dead and buried, so the numbers above should

more be taken as an example of the flexibility of the program, than as something to apply

in practice.

A wide range of independent fragmentation options are implemented, to be accessed

with the master switch MSTJ(1) = 2. In particular, with MSTJ(2) = 1 a gluon jet is

assumed to fragment like a random d, d, u, u, s or s jet, while with MSTJ(2) = 3 the gluon

is split into a dd, uu or ss pair of jets sharing the energy according to the Altarelli-Parisi

splitting function. Whereas energy, momentum and flavour is not explicitly conserved in

independent fragmentation, a number of options are available in MSTJ(3) to ensure this

‘post facto’, e.g. MSTJ(3) = 1 will boost the event to ensure momentum conservation and

then (in the c.m. frame) rescale momenta by a common factor to obtain energy conservation,

whereas MSTJ(3) = 4 rather uses a method of stretching the jets in longitudinal momentum

along the respective jet axis to keep angles between jets fixed.
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15. Event study and analysis routines

After an event has been generated, one may wish to list it, or process it further in various

ways. The first section below describes some simple study routines of this kind, while the

subsequent ones describe more sophisticated analysis routines.

To describe the complicated geometries encountered in multihadronic events, a number

of event measures have been introduced. These measures are intended to provide a global

view of the properties of a given event, wherein the full information content of the event

is condensed into one or a few numbers. A steady stream of such measures are proposed

for different purposes. Many are rather specialized or never catch on, but a few become

standards, and are useful to have easy access to. Pythia therefore contains a number of

routines that can be called for any event, and that will directly access the event record to

extract the required information.

In the presentation below, measures have been grouped in three kinds. The first con-

tains simple event shape quantities, such as sphericity and thrust. The second is jet finding

algorithms. The third is a mixed bag of particle multiplicities and compositions, factorial

moments and energy–energy correlations, put together in a small statistics package.

None of the measures presented here are Lorentz invariant. The analysis will be per-

formed in whatever frame the event happens to be given in. It is therefore up to you to

decide whether the frame in which events were generated is the right one, or whether events

beforehand should be boosted, e.g. to the c.m. frame. You can also decide which particles

you want to have affected by the analysis.

15.1 Event study routines

After a PYEVNT call, or another similar physics routine call, the event generated is stored in

the PYJETS common block, and whatever physical variable is desired may be constructed

from this record. An event may be rotated, boosted or listed, and particle data may be

listed or modified. Via the functions PYK and PYP the values of some frequently appearing

variables may be obtained more easily. As described in subsequent sections, also more

detailed event shape analyses may be performed simply.

CALL PYROBO(IMI,IMA,THE,PHI,BEX,BEY,BEZ)

Purpose: to perform rotations and Lorentz boosts (in that order, if both in the same call)

of jet/particle momenta and vertex position variables.

IMI, IMA : range of entries affected by transformation, IMI ≤ I ≤ IMA. If 0 or below, IMI

defaults to 1 and IMA to N. Lower and upper bounds given by positive MSTU(1)

and MSTU(2) override the IMI and IMA values, and also the 1 to N constraint.

THE, PHI : standard polar coordinates θ, ϕ, giving the rotated direction of a momentum

vector initially along the +z axis.

BEX, BEY, BEZ : gives the direction and size β of a Lorentz boost, such that a particle

initially at rest will have p/E =β afterwards.
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Remark: all entries in the range IMI - IMA (or modified as described above) are affected,

unless the status code of an entry is K(I,1)≤ 0.

CALL PYEDIT(MEDIT)

Purpose: to exclude unstable or undetectable jets/particles from the event record. One

may also use PYEDIT to store spare copies of events (specifically initial parton

configuration) that can be recalled to allow e.g. different fragmentation schemes

to be run through with one and the same parton configuration. Finally, an event

which has been analysed with PYSPHE, PYTHRU or PYCLUS (see section 15.5) may

be rotated to align the event axis with the z direction.

MEDIT : tells which action is to be taken.

= 0 : empty (K(I,1) = 0) and documentation (K(I,1) > 20) lines are removed.

The jets/particles remaining are compressed in the beginning of the PYJETS

common block and the N value is updated accordingly. The event history is

lost, so that information stored in K(I,3), K(I,4) and K(I,5) is no longer

relevant.

= 1 : as = 0, but in addition all jets/particles that have fragmented/decayed

(K(I,1) > 10) are removed.

= 2 : as = 1, but also all neutrinos and unknown particles (i.e. compressed code

KC= 0) are removed. Also the lowest-lying neutralino χ0
1(code 1000022), the

graviton (39) and the gravitino (1000039) are treated on an equal footing

with neutrinos. Other similar but not foreseen particles would not be re-

moved automatically, but would have to be put to K(I,1) > 10 by hand

before PYEDIT is called.

= 3 : as = 2, but also all uncharged, colour neutral particles are removed, leaving

only charged, stable particles (and unfragmented partons, if fragmentation

has not been performed).

= 5 : as = 0, but also all partons which have branched or been rearranged in a

parton shower and all particles which have decayed are removed, leaving only

the fragmenting parton configuration and the final-state particles.

= 11 : remove lines with K(I,1) < 0. Update event history information (in K(I,3)

- K(I,5)) to refer to remaining entries.

= 12 : remove lines with K(I,1) = 0. Update event history information (in K(I,3)

- K(I,5)) to refer to remaining entries.

= 13 : remove lines with K(I,1) = 11, 12 or 15, except for any line with K(I,2)

= 94. Update event history information (in K(I,3) - K(I,5)) to refer to

remaining entries. In particular, try to trace origin of daughters, for which

the mother is decayed, back to entries not deleted.

= 14 : remove lines with K(I,1) = 13 or 14, and also any line with K(I,2) = 94.

Update event history information (in K(I,3) - K(I,5)) to refer to remain-

ing entries. In particular, try to trace origin of rearranged jets back through
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the parton-shower history to the shower initiator.

= 15 : remove lines with K(I,1) > 20. Update event history information (in

K(I,3) - K(I,5)) to refer to remaining entries.

= 16 : try to reconstruct missing daughter pointers of decayed particles from the

mother pointers of decay products. These missing pointers typically come

from the need to use K(I,4) and K(I,5) also for colour flow information.

= 21 : all partons/particles in current event record are stored (as a spare copy) in

bottom of common block PYJETS (can e.g. be done to save original partons

before calling PYEXEC).

= 22 : partons/particles stored in bottom of event record with = 21 are placed in

beginning of record again, overwriting previous information there (so that

e.g. a different fragmentation scheme can be used on the same partons).

Since the copy at bottom is unaffected, repeated calls with = 22 can be

made.

= 23 : primary partons/particles in the beginning of event record are marked as not

fragmented or decayed, and number of entries N is updated accordingly. Is a

simple substitute for = 21 plus = 22 when no fragmentation/decay products

precede any of the original partons/particles.

= 31 : rotate largest axis, determined by PYSPHE, PYTHRU or PYCLUS, to sit along

the z direction, and the second largest axis into the xz plane. For PYCLUS

it can be further specified to +z axis and xz plane with x > 0, respectively.

Requires that one of these routines has been called before.

= 32 : mainly intended for PYSPHE and PYTHRU, this gives a further alignment of

the event, in addition to the one implied by = 31. The ‘slim’ jet, defined

as the side (z > 0 or z < 0) with the smallest summed p⊥ over square root

of number of particles, is rotated into the +z hemisphere. In the opposite

hemisphere (now z < 0), the side of x > 0 and x < 0 which has the largest

summed |pz| is rotated into the z < 0, x > 0 quadrant. Requires that PYSPHE

or PYTHRU has been called before.

Remark: all entries 1 through N are affected by the editing. For options 0–5 lower and

upper bounds can be explicitly given by MSTU(1) and MSTU(2).

CALL PYLIST(MLIST)

Purpose: to list an event, jet or particle data, or current parameter values.

MLIST : determines what is to be listed.

= 0 : writes a title page with program version number and last date of change; is

mostly for internal use.

= 1 : gives a simple list of current event record, in an 80 column format suitable

for viewing directly in a standard terminal window. For each entry, the

following information is given: the entry number I, the parton/particle name

(see below), the status code (K(I,1)), the flavour code KF (K(I,2)), the line
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number of the mother (K(I,3)), and the three-momentum, energy and mass

(P(I,1) - P(I,5)). If MSTU(3) is non-zero, lines immediately after the

event record proper are also listed. A final line contains information on total

charge, momentum, energy and invariant mass.

The particle name is given by a call to the routine PYNAME. For an entry

which has decayed/fragmented (K(I,1) = 11 - 20), this particle name is

given within parentheses. Similarly, a documentation line (K(I,1) = 21

-30) has the name enclosed in expression signs (!. . . !) and an event/jet

axis information line the name within inequality signs (<. . . >). If the last

character of the name is a ‘?’, it is a signal that the complete name has

been truncated to fit in, and can therefore not be trusted; this is very rare.

For partons which have been arranged along strings (K(I,1) = 1, 2, 11 or

12), the end of the parton name column contains information about the

colour string arrangement: an A for the first entry of a string, an I for all

intermediate ones, and a V for the final one (a poor man’s rendering of a

vertical doublesided arrow, l).
It is possible to insert lines just consisting of sequences of ====== to separate

different sections of the event record, see MSTU(70) - MSTU(80).

= 2 : gives a more extensive list of the current event record, in a 132 column

format, suitable for wide terminal windows. For each entry, the following

information is given: the entry number I, the parton/particle name (with

padding as described for = 1), the status code (K(I,1)), the flavour code KF

(K(I,2)), the line number of the mother (K(I,3)), the decay product/colour-

flow pointers (K(I,4), K(I,5)), and the three-momentum, energy and mass

(P(I,1) - P(I,5)). If MSTU(3) is non-zero, lines immediately after the

event record proper are also listed. A final line contains information on total

charge, momentum, energy and invariant mass. Lines with only ====== may

be inserted as for = 1.

= 3 : gives the same basic listing as = 2, but with an additional line for each entry

containing information on production vertex position and time (V(I,1) -

V(I,4)) and, for unstable particles, proper lifetime (V(I,5)).

= 4 : is a simpler version of the listing obtained with = 2,but excluding the mo-

mentum information, and instead providing the alternative Les Houches style

colour tags used for final-state colour reconnection in the new multiple in-

teractions scenario. It thus allows colour flow to be studied and debugged

in a ”leaner” format.

= 5 : gives a simple listing of the event record stored in the HEPEVT common block.

This is mainly intended as a tool to check how conversion with the PYHEPC

routine works. The listing does not contain vertex information, and the

flavour code is not displayed as a name.

= 7 : gives a simple listing of the parton-level event record for an external process,

as stored in the HEPEUP common block. This is mainly intended as a tool to

check how reading from HEPEUP input works. The listing does not contain
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lifetime or spin information, and the flavour code is not displayed as a name.

It also does not show other HEPEUP numbers, such as the event weight.

= 11 : provides a simple list of all parton/particle codes defined in the program,

with KF code and corresponding particle name. The list is grouped by particle

kind, and only within each group in ascending order.

= 12 : provides a list of all parton/particle and decay data used in the program.

Each parton/particle code is represented by one line containing KF flavour

code, KC compressed code, particle name, antiparticle name (where appro-

priate), electrical and colour charge and presence or not of an antiparticle

(stored in KCHG), mass, resonance width and maximum broadening, average

proper lifetime (in PMAS) and whether the particle is considered stable or

not (in MDCY). Immediately after a particle, each decay channel gets one line,

containing decay channel number (IDC read from MDCY), on/off switch for

the channel, matrix element type (MDME), branching ratio (BRAT), and decay

products (KFDP). The MSTU(1) and MSTU(2) flags can be used to set the

range of KF codes for which particles are listed.

= 13 : gives a list of current parameter values for MSTU, PARU, MSTJ and PARJ, and

the first 200 entries of PARF. This is useful to keep check of which default

values were changed in a given run.

Remark: for options 1–3 and 12 lower and upper bounds of the listing can be explicitly

given by MSTU(1) and MSTU(2).

KK = PYK(I,J)

Purpose: to provide various integer-valued event data. Note that many of the options

available (in particular I > 0, J ≥ 14) which refer to event history will not work

after a PYEDIT call. Further, the options 14–18 depend on the way the event

history has been set up, so with the explosion of different allowed formats these

options are no longer as safe as they may have been. For instance, option 16 can

only work if MSTU(16) = 2.

I = 0, J = : properties referring to the complete event.

= 1 : N, total number of lines in event record.

= 2 : total number of partons/particles remaining after fragmentation and decay.

= 6 : three times the total charge of remaining (stable) partons and particles.

I > 0, J = : properties referring to the entry in line no. I of the event record.

= 1 - 5 : K(I,1) - K(I,5), i.e. parton/particle status KS, flavour code KF and

origin/decay product/colour-flow information.

= 6 : three times parton/particle charge.

= 7 : 1 for a remaining entry, 0 for a decayed, fragmented or documentation entry.

= 8 : KF code (K(I,2)) for a remaining entry, 0 for a decayed, fragmented or

documentation entry.

= 9 : KF code (K(I,2)) for a parton (i.e. not colour neutral entry), 0 for a particle.
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= 10 : KF code (K(I,2)) for a particle (i.e. colour neutral entry), 0 for a parton.

= 11 : compressed flavour code KC.

= 12 : colour information code, i.e. 0 for colour neutral, 1 for colour triplet, −1 for

antitriplet and 2 for octet.

= 13 : flavour of ‘heaviest’ quark or antiquark (i.e. with largest code) in hadron or

diquark (including sign for antiquark), 0 else.

= 14 : generation number. Beam particles or virtual exchange particles are genera-

tion 0, original jets/particles generation 1 and then 1 is added for each step

in the fragmentation/decay chain.

= 15 : line number of ancestor, i.e. predecessor in first generation (generation 0

entries are disregarded).

= 16 : rank of a hadron in the jet it belongs to. Rank denotes the ordering in flavour

space, with hadrons containing the original flavour of the jet having rank 1,

increasing by 1 for each step away in flavour ordering. All decay products

inherit the rank of their parent. Whereas the meaning of a first-rank hadron

in a quark jet is always well-defined, the definition of higher ranks is only

meaningful for independently fragmenting quark jets. In other cases, rank

refers to the ordering in the actual simulation, which may be of little interest.

= 17 : generation number after a collapse of a parton system into one particle, with

0 for an entry not coming from a collapse, and −1 for entry with unknown

history. A particle formed in a collapse is generation 1, and then one is

added in each decay step.

= 18 : number of decay/fragmentation products (only defined in a collective sense

for fragmentation).

= 19 : origin of colour for showering parton, 0 else.

= 20 : origin of anticolour for showering parton, 0 else.

= 21 : position of colour daughter for showering parton, 0 else.

= 22 : position of anticolour daughter for showering parton, 0 else.

PP = PYP(I,J)

Purpose: to provide various real-valued event data. Note that some of the options avail-

able (I > 0, J = 20 - 25), which are primarily intended for studies of systems in

their respective c.m. frame, requires that a PYEXEC call (directly or indirectly, e.g.

by PYEVNT) has been made for the current initial parton/particle configuration,

but that the latest PYEXEC call has not been followed by a PYROBO one.

I = 0, J = : properties referring to the complete event.

= 1 - 4 : sum of px, py, pz and E, respectively, for the stable remaining entries.

= 5 : invariant mass of the stable remaining entries.

= 6 : sum of electric charge of the stable remaining entries.

I > 0, J = : properties referring to the entry in line no. I of the event record.

= 1 - 5 : P(I,1) - P(I,5), i.e. normally px, py, pz, E and m for jet/particle.
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= 6 : electric charge e.

= 7 : squared momentum |p|2 = p2
x + p2

y + p2
z.

= 8 : absolute momentum |p|.
= 9 : squared transverse momentum p2

⊥ = p2
x + p2

y.

= 10 : transverse momentum p⊥.

= 11 : squared transverse mass m2
⊥ = m2 + p2

x + p2
y.

= 12 : transverse mass m⊥.

= 13 - 14 : polar angle θ in radians (between 0 and π) or degrees, respectively.

= 15 - 16 : azimuthal angle ϕ in radians (between −π and π) or degrees, respec-

tively.

= 17 : true rapidity y = (1/2) ln((E + pz)/(E − pz)).

= 18 : rapidity yπ obtained by assuming that the particle is a pion when calculating

the energy E, to be used in the formula above, from the (assumed known)

momentum p.

= 19 : pseudorapidity η = (1/2) ln((p + pz)/(p − pz)).

= 20 : momentum fraction xp = 2|p|/W , where W is the total energy of the event,

i.e. of the initial jet/particle configuration.

= 21 : xF = 2pz/W (Feynman-x if system is studied in the c.m. frame).

= 22 : x⊥ = 2p⊥/W .

= 23 : xE = 2E/W .

= 24 : z+ = (E + pz)/W .

= 25 : z− = (E − pz)/W .

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes that regulate the behaviour of the

event study routines. The main reference for PYDAT1 is in section 14.3.

MSTU(1),MSTU(2) : (D = 0, 0) can be used to replace the ordinary lower and upper limits

(normally 1 and N) for the action of PYROBO, and most PYEDIT and PYLIST calls.

Are reset to 0 in a PYEXEC call.

MSTU(3) : (D = 0) number of lines with extra information added after line N. Is reset to

0 in a PYEXEC call, or in an PYEDIT call when particles are removed.

MSTU(11) : (D = 6) file number to which all program output is directed. It is your

responsibility to see to it that the corresponding file is also opened for output.

MSTU(12) : (D = 0) writing of title page (version number and last date of change for

Pythia) on output file.

= 0 : (or anything else except 12345) title page is written at first occasion, at

which time one sets MSTU(12) = 12345.

= 12345 : no title page is written.

Note: since the PYLOGO routine that writes the title page also checks that BLOCK

DATA PYDATA is loaded, the value 12345 has been chosen sufficiently exotic

that it will not have been set by mistake.
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MSTU(32) : (I) number of entries stored with PYEDIT(21) call.

MSTU(33) : (I) if set 1 before a PYROBO call, the V vectors (in the particle range to be

rotated/boosted) are set 0 before the rotation/boost. MSTU(33) is set back to 0

in the PYROBO call.

MSTU(70) : (D = 0) the number of lines consisting only of equal signs (======) that are

inserted in the event listing obtained with PYLIST(1), PYLIST(2) or PYLIST(3),

so as to distinguish different sections of the event record on output. At most 10

such lines can be inserted; see MSTU(71) - MSTU(80). Is reset at PYEDIT calls

with arguments 0–5.

MSTU(71) - MSTU(80) : line numbers below which lines consisting only of equal signs

(======) are inserted in event listings. Only the first MSTU(70) of the 10 allowed

positions are enabled.

15.2 Event shapes

In this section we study general event shape variables: sphericity, thrust, Fox-Wolfram

moments, and jet masses. These measures are implemented in the routines PYSPHE, PYTHRU,

PYFOWO and PYJMAS, respectively. While possible to calculate for any event, their largest

use is in e+e− → γ∗/Z0 → qq annihilation events, where the (unknown) qq axis largely

regulates the particle flow.

Each event is assumed characterized by the particle four-momentum vectors pi =

(pi, Ei), with i = 1, 2, · · · , n an index running over the particles of the event.

15.2.1 Sphericity

The sphericity tensor is defined as [Bjo70]

Sαβ =

∑
i p

α
i pβ

i∑
i |pi|2

, (15.1)

where α, β = 1, 2, 3 corresponds to the x, y and z components. By standard diagonalization

of Sαβ one may find three eigenvalues λ1 ≥ λ2 ≥ λ3, with λ1 + λ2 + λ3 = 1. The sphericity

of the event is then defined as

S =
3

2
(λ2 + λ3) , (15.2)

so that 0 ≤ S ≤ 1. Sphericity is essentially a measure of the summed p2
⊥ with respect to

the event axis; a 2-jet event corresponds to S ≈ 0 and an isotropic event to S ≈ 1.

The aplanarity A, with definition A = 3
2λ3, is constrained to the range 0 ≤ A ≤ 1

2 . It

measures the transverse momentum component out of the event plane: a planar event has

A ≈ 0 and an isotropic one A ≈ 1
2 .

Eigenvectors vj can be found that correspond to the three eigenvalues λj of the spheric-

ity tensor. The v1 one is called the sphericity axis (or event axis, if it is clear from the

context that sphericity has been used), while the sphericity event plane is spanned by v1

and v2.

The sphericity tensor is quadratic in particle momenta. This means that the sphericity

value is changed if one particle is split up into two collinear ones which share the original
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momentum. Thus sphericity is not an infrared safe quantity in QCD perturbation theory.

A useful generalization of the sphericity tensor is

S(r)αβ =

∑
i |pi|r−2 pα

i pβ
i∑

i |pi|r
, (15.3)

where r is the power of the momentum dependence. While r = 2 thus corresponds to

sphericity, r = 1 corresponds to linear measures calculable in perturbation theory [Par78]:

S(1)αβ =

∑
i

pα
i pβ

i

|pi|∑
i |pi|

. (15.4)

Eigenvalues and eigenvectors may be defined exactly as before, and therefore also

equivalents of S and A. These have no standard names; we may call them linearized

sphericity Slin and linearized aplanarity Alin. Quantities derived from the linear matrix

that are standard in the literature are instead the combinations [Ell81]

C = 3(λ1λ2 + λ1λ3 + λ2λ3) , (15.5)

D = 27λ1λ2λ3 . (15.6)

Each of these is constrained to be in the range between 0 and 1. Typically, C is used to

measure the 3-jet structure and D the 4-jet one, since C is vanishing for a perfect 2-jet

event and D is vanishing for a planar event. The C measure is related to the second

Fox-Wolfram moment (see below), C = 1 − H2.

Noninteger r values may also be used, and corresponding generalized sphericity and

aplanarity measures calculated. While perturbative arguments favour r = 1, we know that

the fragmentation ‘noise’, e.g. from transverse momentum fluctuations, is proportionately

larger for low-momentum particles, and so r > 1 should be better for experimental event

axis determinations. The use of too large an r value, on the other hand, puts all the

emphasis on a few high-momentum particles, and therefore involves a loss of information.

It should then come as no surprise that intermediate r values, of around 1.5, gives the best

performance for event axis determinations in 2-jet events, where the theoretical meaning of

the event axis is well-defined. The gain in accuracy compared with the more conventional

choices r = 2 or r = 1 is rather modest, however.

15.2.2 Thrust

The quantity thrust T is defined by [Bra64]

T = max
|n|=1

∑
i |n · pi|∑

i |pi|
, (15.7)

and the thrust axis v1 is given by the n vector for which maximum is attained. The allowed

range is 1/2 ≤ T ≤ 1, with a 2-jet event corresponding to T ≈ 1 and an isotropic event to

T ≈ 1/2.
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In passing, we note that this is not the only definition found in the literature. The

definitions agree for events studied in the c.m. frame and where all particles are detected.

However, a definition like

T = 2 max
|n|=1

|∑i θ(n · pi)pi|∑
i |pi|

= 2 max
θi=0,1

|∑i θi pi|∑
i |pi|

(15.8)

(where θ(x) is the step function, θ(x) = 1 if x > 0, else θ(x) = 0) gives different results

than the one above if e.g. only charged particles are detected. It would even be possible

to have T > 1; to avoid such problems, often an extra fictitious particle is introduced to

balance the total momentum [Bra79].

Eq. (15.7) may be rewritten as

T = max
εi=±1

|∑i εi pi|∑
i |pi|

. (15.9)

(This may also be viewed as applying eq. (15.8) to an event with 2n particles, n carrying

the momenta pi and n the momenta −pi, thus automatically balancing the momentum.)

To find the thrust value and axis this way, 2n−1 different possibilities would have to be

tested. The reduction by a factor of 2 comes from T being unchanged when all εi → −εi.

Therefore this approach rapidly becomes prohibitive. Other exact methods exist, which

‘only’ require about 4n2 combinations to be tried.

In the implementation in Pythia, a faster alternative method is used, in which the

thrust axis is iterated from a starting direction n(0) according to

n(j+1) =

∑
i ε(n

(j) · pi)pi∣∣∑
i ε(n

(j) · pi)pi

∣∣ (15.10)

(where ε(x) = 1 for x > 0 and ε(x) = −1 for x < 0). It is easy to show that the related

thrust value will never decrease, T (j+1) ≥ T (j). In fact, the method normally converges in

2–4 iterations. Unfortunately, this convergence need not be towards the correct thrust axis

but is occasionally only towards a local maximum of the thrust function [Bra79]. We know

of no foolproof way around this complication, but the danger of an error may be lowered

if several different starting axes n(0) are tried and found to agree. These n(0) are suitably

constructed from the n′ (by default 4) particles with the largest momenta in the event, and

the 2n′−1 starting directions
∑

i εi pi constructed from these are tried in falling order of the

corresponding absolute momentum values. When a predetermined number of the starting

axes have given convergence towards the same (best) thrust axis this one is accepted.

In the plane perpendicular to the thrust axis, a major [MAR79] axis and value may

be defined in just the same fashion as thrust, i.e.

Ma = max
|n|=1,n·v1=0

∑
i |n · pi|∑

i |pi|
. (15.11)

In a plane more efficient methods can be used to find an axis than in three dimensions

[Wu79], but for simplicity we use the same method as above. Finally, a third axis, the

minor axis, is defined perpendicular to the thrust and major ones, and a minor value Mi
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is calculated just as thrust and major. The difference between major and minor is called

oblateness, O = Ma − Mi. The upper limit on oblateness depends on the thrust value in

a not-so-simple way. In general O ≈ 0 corresponds to an event symmetrical around the

thrust axis and high O to a planar event.

As in the case of sphericity, a generalization to arbitrary momentum dependence may

easily be obtained, here by replacing the pi in the formulae above by |pi|r−1 pi. This

possibility is included, although so far it has not found any experimental use.

15.2.3 Fox-Wolfram moments

The Fox-Wolfram moments Hl, l = 0, 1, 2, . . ., are defined by [Fox79]

Hl =
∑

i,j

|pi| |pj |
E2

vis

Pl(cos θij) , (15.12)

where θij is the opening angle between hadrons i and j and Evis the total visible energy of

the event. Note that also autocorrelations, i = j, are included. The Pl(x) are the Legendre

polynomials,

P0(x) = 1 ,

P1(x) = x ,

P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x3 − 3x) ,

P4(x) =
1

8
(35x4 − 30x2 + 3) . (15.13)

To the extent that particle masses may be neglected, H0 ≡ 1. It is customary to normalize

the results to H0, i.e. to give Hl0 = Hl/H0. If momentum is balanced then H1 ≡ 0. 2-jet

events tend to give Hl ≈ 1 for l even and ≈ 0 for l odd.

15.2.4 Jet masses

The particles of an event may be divided into two classes. For each class a squared invariant

mass may be calculated, M2
1 and M2

2 . If the assignment of particles is adjusted such that

the sum M2
1 +M2

2 is minimized, the two masses thus obtained are called heavy and light jet

mass, MH and ML. It has been shown that these quantities are well behaved in perturbation

theory [Cla79]. In e+e− annihilation, the heavy jet mass obtains a contribution from qqg 3-

jet events, whereas the light mass is non-vanishing only when 4-jet events also are included.

In the c.m. frame of an event one has the limits 0 ≤ M2
H ≤ E2

cm/3.

In general, the subdivision of particles tends to be into two hemispheres, separated by

a plane perpendicular to an event axis. As with thrust, it is time-consuming to find the

exact solution. Different approximate strategies may therefore be used. In the program,

the sphericity axis is used to perform a fast subdivision into two hemispheres, and thus

into two preliminary jets. Thereafter one particle at a time is tested to determine whether

the sum M2
1 + M2

2 would be decreased if that particle were to be assigned to the other
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jet. The procedure is stopped when no further significant change is obtained. Often the

original assignment is retained as it is, i.e. the sphericity axis gives a good separation. This

is not a full guarantee, since the program might get stuck in a local minimum which is not

the global one.

15.3 Cluster finding

Global event measures, like sphericity or thrust, can only be used to determine the jet axes

for back-to-back 2-jet events. To determine the individual jet axes in events with three

or more jets, or with two (main) jets which are not back-to-back, cluster algorithms are

customarily used. In these, nearby particles are grouped together into a variable number

of clusters. Each cluster has a well-defined direction, given by a suitably weighted average

of the constituent particle directions.

The cluster algorithms traditionally used in e+e− and in pp physics differ in several

respects. The former tend to be spherically symmetric, i.e. have no preferred axis in space,

and normally all particles have to be assigned to some jet. The latter pick the beam axis

as preferred direction, and make use of variables related to this choice, such as rapidity

and transverse momentum; additionally only a fraction of all particles are assigned to jets.

This reflects a difference in the underlying physics: in pp collisions, the beam remnants

found at low transverse momenta are not related to any hard processes, and therefore only

provide an unwanted noise to many studies. (Of course, also hard processes may produce

particles at low transverse momenta, but at a rate much less than that from soft or semi-

hard processes.) Further, the kinematics of hard processes is, to a good approximation,

factorized into the hard subprocess itself, which is boost invariant in rapidity, and parton-

distribution effects, which determine the overall position of a hard scattering in rapidity.

Hence rapidity, azimuthal angle and transverse momentum is a suitable coordinate frame

to describe hard processes in.

In standard e+e− annihilation events, on the other hand, the hard process c.m. frame

tends to be almost at rest, and the event axis is just about randomly distributed in space,

i.e. with no preferred rôle for the axis defined by the incoming e±. All particle production

is initiated by and related to the hard subprocess. Some of the particles may be less easy

to associate with a specific jet, but there is no compelling reason to remove any of them

from consideration.

This does not mean that the separation above is always required. 2γ events in e+e−

may have a structure with ‘beam jets’ and ‘hard scattering’ jets, for which the pp type

algorithms might be well suited. Conversely, a heavy particle produced in pp collisions

could profitably be studied, in its own rest frame, with e+e− techniques.

In the following, particles are only characterized by their three-momenta or, alterna-

tively, their energy and direction of motion. No knowledge is therefore assumed of particle

types, or even of mass and charge. Clearly, the more is known, the more sophisticated clus-

tering algorithms can be used. The procedure then also becomes more detector-dependent,

and therefore less suitable for general usage.

Pythia contains two cluster finding routines. PYCLUS is of the e+e− type and PYCELL

of the pp one. Each of them allows some variations of the basic scheme.
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15.3.1 Cluster finding in an e+e− type of environment

The usage of cluster algorithms for e+e− applications started in the late 1970’s. A number

of different approaches were proposed [Bab80], see review in [Mor98]. Of these, we will here

only discuss those based on binary joining. In this kind of approach, initially each final-

state particle is considered to be a cluster. Using some distance measure, the two nearest

clusters are found. If their distance is smaller than some cut-off value, the two clusters are

joined into one. In this new configuration, the two clusters that are now nearest are found

and joined, and so on until all clusters are separated by a distance larger than the cut-off.

The clusters remaining at the end are often also called jets. Note that, in this approach,

each single particle belongs to exactly one cluster. Also note that the resulting jet picture

explicitly depends on the cut-off value used. Normally the number of clusters is allowed to

vary from event to event, but occasionally it is more useful to have the cluster algorithm

find a predetermined number of jets (like 3).

The obvious choice for a distance measure is to use squared invariant mass, i.e. for two

clusters i and j to define the distance to be

m2
ij = (Ei + Ej)

2 − (pi + pj)
2 . (15.14)

(Equivalently, one could have used the invariant mass as measure rather than its square; this

is just a matter of convenience.) In fact, a number of people (including one of the authors)

tried this measure long ago and gave up on it, since it turns out to have severe instability

problems. The reason is well understood: in general, particles tend to cluster closer in

invariant mass in the region of small momenta. The clustering process therefore tends to

start in the center of the event, and only subsequently spread outwards to encompass also

the fast particles. Rather than clustering slow particles around the fast ones (where the

latter näıvely should best represent the jet directions), the invariant mass measure will

tend to cluster fast particles around the slow ones.

Another instability may be seen by considering the clustering in a simple 2-jet event.

By the time that clustering has reached the level of three clusters, the ‘best’ the clustering

algorithm can possibly have achieved, in terms of finding three low-mass clusters, is to have

one fast cluster around each jet, plus a third slow cluster in the middle. In the last step this

third cluster would be joined with one of the fast ones, to produce two final asymmetric

clusters: one cluster would contain all the slow particles, also those that visually look

like belonging to the opposite jet. A simple binary joining process, with no possibility to

reassign particles between clusters, is therefore not likely to be optimal.

The solution adopted [Sjo83] is to reject invariant mass as distance measure. Instead

a jet is defined as a collection of particles which have a limited transverse momentum with

respect to a common jet axis, and hence also with respect to each other. This picture

is clearly inspired by the standard fragmentation picture, e.g. in string fragmentation. A

distance measure dij between two particles (or clusters) with momenta pi and pj should

thus not depend critically on the longitudinal momenta but only on the relative transverse
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momentum. A number of such measures were tried, and the one eventually selected was

d2
ij =

1

2
(|pi| |pj | − pi · pj)

4 |pi| |pj |
(|pi| + |pj |)2

=
4 |pi|2 |pj |2 sin2(θij/2)

(|pi| + |pj |)2
. (15.15)

For small relative angle θij, where 2 sin(θij/2) ≈ sin θij and cos θij ≈ 1, this measure

reduces to

dij ≈
|pi × pj |
|pi + pj |

, (15.16)

where ‘×’ represents the cross product. We therefore see that dij in this limit has the

simple physical interpretation as the transverse momentum of either particle with respect

to the direction given by the sum of the two particle momenta. Unlike the approximate

expression, however, dij does not vanish for two back-to-back particles, but is here more

related to the invariant mass between them.

The basic scheme is of the binary joining type, i.e. initially each particle is assumed to

be a cluster by itself. Then the two clusters with smallest relative distance dij are found

and, if dij < djoin, with djoin some predetermined distance, the two clusters are joined to

one, i.e. their four-momenta are added vectorially to give the energy and momentum of the

new cluster. This is repeated until the distance between any two clusters is > djoin. The

number and momenta of these final clusters then represent our reconstruction of the initial

jet configuration, and each particle is assigned to one of the clusters.

To make this scheme workable, two further ingredients are introduced, however.

Firstly, after two clusters have been joined, some particles belonging to the new clus-

ter may actually be closer to another cluster. Hence, after each joining, all particles in

the event are reassigned to the closest of the clusters. For particle i, this means that the

distance dij to all clusters j in the event has to be evaluated and compared. After all

particles have been considered, and only then, are cluster momenta recalculated to take

into account any reassignments. To save time, the assignment procedure is not iterated

until a stable configuration is reached, but, since all particles are reassigned at each step,

such an iteration is effectively taking place in parallel with the cluster joining. Only at the

very end, when all dij > djoin, is the reassignment procedure iterated to convergence —

still with the possibility to continue the cluster joining if some dij should drop below djoin

due to the reassignment.

Occasionally, it may occur that the reassignment step leads to an empty cluster, i.e.

one to which no particles are assigned. Since such a cluster has a distance dij = 0 to any

other cluster, it is automatically removed in the next cluster joining. However, it is possible

to run the program in a mode where a minimum number of jets is to be reconstructed. If

this minimum is reached with one cluster empty, the particle is found which has largest

distance to the cluster it belongs to. That cluster is then split into two, namely the large-

distance particle and a remainder. Thereafter the reassignment procedure is continued as

before.

Secondly, the large multiplicities normally encountered means that, if each particle

initially is to be treated as a separate cluster, the program will become very slow. Therefore

a smaller number of clusters, for a normal e+e− event typically 8–12, is constructed as a
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starting point for the iteration above, as follows. The particle with the highest momentum

is found, and thereafter all particles within a distance dij < dinit from it, where dinit ¿ djoin.

Together these are allowed to form a single cluster. For the remaining particles, not assigned

to this cluster, the procedure is iterated, until all particles have been used up. Particles

in the central momentum region, |p| < 2dinit are treated separately; if their vectorial

momentum sum is above 2dinit they are allowed to form one cluster, otherwise they are left

unassigned in the initial configuration. The value of dinit, as long as reasonably small, has

no physical importance, in that the same final cluster configuration will be found as if each

particle initially is assumed to be a cluster by itself: the particles clustered at this step

are so nearby anyway that they almost inevitably must enter the same jet; additionally

the reassignment procedure allows any possible ‘mistake’ to be corrected in later steps of

the iteration. However, if computer time is not a problem, one may well let dinit → 0 and

circumvent this preclustering.

Thus the jet reconstruction depends on one single parameter, djoin, with a clearcut

physical meaning of a transverse momentum ‘jet-resolution power’. Neglecting smearing

from fragmentation, dij between two clusters of equal energy corresponds to half the in-

variant mass of the two original partons. If one only wishes to reconstruct well separated

jets, a large djoin should be chosen, while a small djoin would allow the separation of close

jets, at the cost of sometimes artificially dividing a single jet into two. In particular, b

quark jets may here be a nuisance. The value of djoin to use for a fixed jet-resolution power

in principle should be independent of the c.m. energy of events, although fragmentation

effects may give a contamination of spurious extra jets that increases slowly with Ecm for

fixed djoin. Therefore values as low as a djoin = 2.5 GeV was acceptable at PETRA/PEP,

while 3–4 GeV may be better for applications at LEP and beyond.

This completes the description of the main option of the PYCLUS routine. Variations

are possible. One such is to skip the reassignment step, i.e. to make use only of the simple

binary joining procedure, without any possibility to reassign particles between jets. (This

option is included mainly as a reference, to check how important reassignment really is.)

The other main alternative is to replace the distance measure used above with the ones

used in the JADE or Durham algorithms.

The JADE cluster algorithm [JAD86] is an attempt to save the invariant mass measure.

The distance measure is defined to be

yij =
2EiEj(1 − cos θij)

E2
vis

. (15.17)

Here Evis is the total visible energy of the event. The usage of E2
vis in the denominator rather

than E2
cm tends to make the measure less sensitive to detector acceptance corrections; in

addition the dimensionless nature of yij makes it well suited for a comparison of results at

different c.m. energies. For the subsequent discussions, this normalization will be irrelevant,

however.

The yij measure is very closely related to the squared mass distance measure: the two

coincide (up to the difference in normalization) if mi = mj = 0. However, consider a pair

of particles or clusters with non-vanishing individual masses and a fixed pair mass. Then,
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the larger the net momentum of the pair, the smaller the yij measure. This somewhat

tends to favour clustering of fast particles, and makes the algorithm less unstable than the

one based on true invariant mass.

The successes of the JADE algorithm are well known: one obtains a good agreement

between the number of partons generated on the matrix-element (or parton-shower) level

and the number of clusters reconstructed from the hadrons, such that QCD aspects like the

running of αs can be studied with a small dependence on fragmentation effects. Of course,

the insensitivity to fragmentation effects depends on the choice of fragmentation model.

Fragmentation effects are small in the string model, but not necessarily in independent

fragmentation scenarios. Although independent fragmentation in itself is not credible, this

may be seen as a signal for caution.

One should note that the JADE measure still suffers from some of the diseases of the

simple mass measure (without reassignments), namely that particles which go in opposite

directions may well be joined into the same cluster. Therefore, while the JADE algorithm

is a good way to find the number of jets, it is inferior to the standard dij measure for a

determination of jet directions and energies [Bet92]. The dij measure also gives narrower

jets, which agree better with the visual impression of jet structure.

Later, the Durham algorithm was introduced [Cat91], which works as the JADE one

but with a distance measure

ỹij =
2min(E2

i , E2
j )(1 − cos θij)

E2
cm

. (15.18)

Like the dij measure, this is a transverse momentum, but ỹij has the geometrical interpre-

tation as the transverse momentum of the softer particle with respect to the direction of

the harder one, while dij is the transverse momentum of either particle with respect to the

common direction given by the momentum vector sum. The two definitions agree when

one cluster is much softer than the other, so the soft gluon exponentiation proven for the

Durham measure also holds for the dij one.

The main difference therefore is that the standard PYCLUS option allows reassignments,

while the Durham algorithm does not. The latter is therefore more easily calculable on

the perturbative parton level. This point is sometimes overstressed, and one could give

counterexamples why reassignments in fact may bring better agreement with the underlying

perturbative level. In particular, without reassignments, one will make the recombination

that seems the ‘best’ in the current step, even when that forces you to make ‘worse’ choices

in subsequent steps. With reassignments, it is possible to correct for mistakes due to the

too local sensitivity of a simple binary joining scheme.

15.3.2 Cluster finding in a pp type of environment

The PYCELL cluster finding routines is of the kind pioneered by UA1 [UA183], and com-

monly used in pp physics. It is based on a choice of pseudorapidity η, azimuthal angle

ϕ and transverse momentum p⊥ as the fundamental coordinates. This choice is discussed

in the introduction to cluster finding above, with the proviso that the theoretically pre-

ferred true rapidity has to be replaced by pseudorapidity, to make contact with the real-life

detector coordinate system.
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A fix detector grid is assumed, with the pseudorapidity range |η| < ηmax and the full

azimuthal range each divided into a number of equally large bins, giving a rectangular grid.

The particles of an event impinge on this detector grid. For each cell in (η,ϕ) space, the

transverse energy (normally ≈ p⊥) which enters that cell is summed up to give a total cell

E⊥ flow.

Clearly the model remains very primitive in a number of respects, compared with a

real detector. There is no magnetic field allowed for, i.e. also charged particles move in

straight tracks. The dimensions of the detector are not specified; hence the positions of

the primary vertex and any secondary vertices are neglected when determining which cell

a particle belongs to. The rest mass of particles is not taken into account, i.e. what is used

is really p⊥ =
√

p2
x + p2

y, while in a real detector some particles would decay or annihilate,

and then deposit additional amounts of energy.

To take into account the energy resolution of the detector, it is possible to smear the

E⊥ contents, bin by bin. This is done according to a Gaussian, with a width assumed

proportional to the
√

E⊥ of the bin. The Gaussian is cut off at zero and at some prede-

termined multiple of the unsmeared E⊥, by default twice it. Alternatively, the smearing

may be performed in E rather than in E⊥. To find the E, it is assumed that the full

energy of a cell is situated at its center, so that one can translate back and forth with

E = E⊥ cosh ηcenter.

The cell with largest E⊥ is taken as a jet initiator if its E⊥ is above some threshold. A

candidate jet is defined to consist of all cells which are within some given radius R in the

(η,ϕ) plane, i.e. which have (η− ηinitiator)
2 + (ϕ−ϕinitiator)

2 < R2. Coordinates are always

given with respect to the center of the cell. If the summed E⊥ of the jet is above the required

minimum jet energy, the candidate jet is accepted, and all its cells are removed from further

consideration. If not, the candidate is rejected. The sequence is now repeated with the

remaining cell of highest E⊥, and so on until no single cell fulfils the jet initiator condition.

The number of jets reconstructed can thus vary from none to a maximum given by

purely geometrical considerations, i.e. how many circles of radius R are needed to cover

the allowed (η,ϕ) plane. Normally only a fraction of the particles are assigned to jets.

One could consider to iterate the jet assignment process, using the E⊥-weighted center

of a jet to draw a new circle of radius R. In the current algorithm there is no such iteration

step. For an ideal jet assignment it would also be necessary to improve the treatment when

two jet circles partially overlap.

A final technical note. A natural implementation of a cell finding algorithm is based

on having a two-dimensional array of E⊥ values, with dimensions to match the detector

grid. Very often most of the cells would then be empty, in particular for low-multiplicity

events in fine-grained calorimeters. Our implementation is somewhat atypical, since cells

are only reserved space (contents and position) when they are shown to be non-empty.

This means that all non-empty cells have to be looped over to find which are within the

required distance R of a potential jet initiator. The algorithm is therefore faster than the

ordinary kind if the average cell occupancy is low, but slower if it is high.

Simple cone algorithms like the one above are robust, but may be less easy to un-

derstand in the context of a pure parton-level calculation. Therefore a Snowmass accord
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[Hut92] jet definition was introduced that would allow a clean parton-level definition of the

jet topology. Unfortunately that accord was not specific enough to be useful for hadron-

level studies, and each collaboration supplemented the Snowmass concepts with their own

additional specifications. With time various limitations have been found [Bla00, Ell01],

such as problems with infrared safety and the splitting/merging of jets, that have marred

comparisons between theory and experiment. This appears to be a never-ending story,

with the optimal jet algorithm not yet in sight.

15.4 Event statistics

All the event-analysis routines above are defined on an event-by-event basis. Once found,

the quantities are about equally often used to define inclusive distributions as to select

specific classes of events for continued study. For instance, the thrust routine might be

used either to find the inclusive T distribution or to select events with T < 0.9. Other

measures, although still defined for the individual event, only make sense to discuss in

terms of averages over many events. A small set of such measures is found in PYTABU. This

routine has to be called once after each event to accumulate statistics, and once in the end

to print the final tables. Of course, among the wealth of possibilities imaginable, the ones

collected here are only a small sample, selected because the authors at some point have

found a use for them.

15.4.1 Multiplicities

Three options are available to collect information on multiplicities in events. One gives the

flavour content of the final state in hard interaction processes, e.g. the relative composition

of dd/uu/ss/cc/bb in e+e− annihilation events. Additionally it gives the total parton

multiplicity distribution at the end of parton showering. Another gives the inclusive rate

of all the different particles produced in events, either as intermediate resonances or as

final-state particles. The number is subdivided into particles produced from fragmentation

(primary particles) and those produced in decays (secondary particles).

The third option tabulates the rate of exclusive final states, after all allowed decays have

occurred. Since only events with up to 8 final-state particles are analysed, this is clearly

not intended for the study of complete high-energy events. Rather the main application is

for an analysis of the decay modes of a single particle. For instance, the decay data for D

mesons is given in terms of channels that also contain unstable particles, such as ρ and η,

which decay further. Therefore a given final state may receive contributions from several

tabulated decay channels; e.g. Kππ from K∗π and Kρ, and so on.

15.4.2 Energy-energy correlation

The Energy-Energy Correlation is defined by [Bas78]

EEC(θ) =
∑

i<j

2EiEj

E2
vis

δ(θ − θij) , (15.19)

and its Asymmetry by

EECA(θ) = EEC(π − θ) − EEC(θ) . (15.20)
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Here θij is the opening angle between the two particles i and j, with energies Ei and

Ej . In principle, normalization should be to Ecm, but if not all particles are detected

it is convenient to normalize to the total visible energy Evis. Taking into account the

autocorrelation term i = j, the total EEC in an event then is unity. The δ function peak is

smeared out by the finite bin width ∆θ in the histogram, i.e., it is replaced by a contribution

1/∆θ to the bin which contains θij.

The formulae above refer to an individual event, and are to be averaged over all events

to suppress statistical fluctuations, and obtain smooth functions of θ.

15.4.3 Factorial moments

Factorial moments may be used to search for intermittency in events [Bia86]. The whole

field was much studied in the late eighties and early nineties, and a host of different

measures have been proposed. We only implement one of the original prescriptions.

To calculate the factorial moments, the full rapidity (or pseudorapidity) and azimuthal

ranges are subdivided into bins of successively smaller size, and the multiplicity distribu-

tions in bins is studied. The program calculates pseudorapidity with respect to the z

axis; if desired, one could first find an event axis, e.g. the sphericity or thrust axis, and

subsequently rotate the event to align this axis with the z direction.

The full rapidity range |y| < ymax (or pseudorapidity range |η| < ηmax) and azimuthal

range 0 < ϕ < 2π are subdivided into my and mϕ equally large bins. In fact, the whole

analysis is performed thrice: once with mϕ = 1 and the y (or η) range gradually divided into

1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 bins, once with my = 1 and the ϕ range subdivided

as above, and finally once with my = mϕ according to the same binary sequence. Given

the multiplicity nj in bin j, the i:th factorial moment is defined by

Fi = (mymϕ)i−1
∑

j

nj(nj − 1) · · · (nj − i + 1)

n(n − 1) · · · (n − i + 1)
. (15.21)

Here n =
∑

j nj is the total multiplicity of the event within the allowed y (or η) limits.

The calculation is performed for the second through the fifth moments, i.e. F2 through F5.

The Fi as given here are defined for the individual event, and have to be averaged

over many events to give a reasonably smooth behaviour. If particle production is uniform

and uncorrelated according to Poisson statistics, one expects 〈Fi〉 ≡ 1 for all moments

and all bin sizes. If, on the other hand, particles are locally clustered, factorial moments

should increase when bins are made smaller, down to the characteristic dimensions of the

clustering.

15.5 Routines and common-block variables

The six routines PYSPHE, PYTHRU, PYCLUS, PYCELL, PYJMAS and PYFOWO give you the possi-

bility to find some global event shape properties. The routine PYTABU performs a statistical

analysis of a number of different quantities like particle content, factorial moments and the

energy–energy correlation.

Note that, by default, all remaining partons/particles except neutrinos (and some

other weakly interacting particles) are used in the analysis. Neutrinos may be included
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with MSTU(41) = 1. Also note that axes determined are stored in PYJETS, but are not

proper four-vectors and, as a general rule (with some exceptions), should therefore not be

rotated or boosted.

CALL PYSPHE(SPH,APL)

Purpose: to diagonalize the momentum tensor, i.e. find the eigenvalues λ1 > λ2 > λ3,

with sum unity, and the corresponding eigenvectors.

Momentum power dependence is given by PARU(41); default corresponds to

sphericity, while PARU(41) = 1. gives measures linear in momenta. Which par-

ticles (or partons) are used in the analysis is determined by the MSTU(41) value.

SPH : 3
2 (λ2 + λ3), i.e. sphericity (for PARU(41) = 2.).

= -1. : analysis not performed because event contained less than two particles (or

two exactly back-to-back particles, in which case the two transverse direc-

tions would be undefined).

APL : 3
2λ3, i.e. aplanarity (for PARU(41) = 2.).

= -1. : as SPH = -1.

Remark: the lines N + 1 through N + 3 (N - 2 through N for MSTU(43) = 2) in PYJETS

will, after a call, contain the following information:

K(N+i,1) = 31;

K(N+i,2) = 95;

K(N+i,3) : i, the axis number, i = 1, 2, 3;

K(N+i,4), K(N+i,5) = 0;

P(N+i,1) - P(N+i,3) : the i’th eigenvector, x, y and z components;

P(N+i,4) : λi, the i’th eigenvalue;

P(N+i,5) = 0;

V(N+i,1) - V(N+i,5) = 0.

Also, the number of particles used in the analysis is given in MSTU(62).

CALL PYTHRU(THR,OBL)

Purpose: to find the thrust, major and minor axes and corresponding projected mo-

mentum quantities, in particular thrust and oblateness. The performance of the

program is affected by MSTU(44), MSTU(45), PARU(42) and PARU(48). In par-

ticular, PARU(42) gives the momentum dependence, with the default value = 1

corresponding to linear dependence. Which particles (or partons) are used in the

analysis is determined by the MSTU(41) value.

THR : thrust (for PARU(42) = 1.).

= -1. : analysis not performed because event contained less than two particles.

= -2. : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.

OBL : oblateness (for PARU(42) = 1.).
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= -1., -2. : as for THR.

Remark: the lines N + 1 through N + 3 (N - 2 through N for MSTU(43) = 2) in PYJETS

will, after a call, contain the following information:

K(N+i,1) = 31;

K(N+i,2) = 96;

K(N+i,3) : i, the axis number, i = 1, 2, 3;

K(N+i,4), K(N+i,5) = 0;

P(N+i,1) - P(N+i,3) : the thrust, major and minor axis, respectively, for i =

1, 2 and 3;

P(N+i,4) : corresponding thrust, major and minor value;

P(N+i,5) = 0;

V(N+i,1) - V(N+i,5) = 0.

Also, the number of particles used in the analysis is given in MSTU(62).

CALL PYCLUS(NJET)

Purpose: to reconstruct an arbitrary number of jets using a cluster analysis method based

on particle momenta.

Three different distance measures are available, see section 15.3. The choice is

controlled by MSTU(46). The distance scale djoin, above which two clusters may

not be joined, is normally given by PARU(44). In general, djoin may be varied

to describe different ‘jet-resolution powers’; the default value, 2.5 GeV, is fairly

well suited for e+e− physics at 30–40 GeV. With the alternative mass distance

measure, PARU(44) can be used to set the absolute maximum cluster mass, or

PARU(45) to set the scaled one, i.e. in y = m2/E2
cm, where Ecm is the total in-

variant mass of the particles being considered.

It is possible to continue the cluster search from the configuration already found,

with a new higher djoin scale, by selecting MSTU(48) properly. In MSTU(47) one

can also require a minimum number of jets to be reconstructed; combined with

an artificially large djoin this can be used to reconstruct a predetermined number

of jets.

Which particles (or partons) are used in the analysis is determined by the

MSTU(41) value, whereas assumptions about particle masses is given by MSTU(42).

The parameters PARU(43) and PARU(48) regulate more technical details (for

events at high energies and large multiplicities, however, the choice of a larger

PARU(43) may be necessary to obtain reasonable reconstruction times).

NJET : the number of clusters reconstructed.

= -1 : analysis not performed because event contained less than MSTU(47) (nor-

mally 1) particles, or analysis failed to reconstruct the requested number of

jets.

= -2 : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.
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Remark: if the analysis does not fail, further information is found in MSTU(61) -

MSTU(63) and PARU(61) - PARU(63). In particular, PARU(61) contains the in-

variant mass for the system analysed, i.e. the number used in determining the

denominator of y = m2/E2
cm. PARU(62) gives the generalized thrust, i.e. the sum

of (absolute values of) cluster momenta divided by the sum of particle momenta

(roughly the same as multicity [Bra79]). PARU(63) gives the minimum distance

d (in p⊥ or m) between two clusters in the final cluster configuration, 0 in case

of only one cluster.

Further, the lines N + 1 through N + NJET (N - NJET + 1 through N for

MSTU(43) = 2) in PYJETS will, after a call, contain the following information:

K(N+i,1) = 31;

K(N+i,2) = 97;

K(N+i,3) : i, the jet number, with the jets arranged in falling order of absolute

momentum;

K(N+i,4) : the number of particles assigned to jet i;

K(N+i,5) = 0;

P(N+i,1) - P(N+i,5) : momentum, energy and invariant mass of jet i;

V(N+i,1) - V(N+i,5) = 0.

Also, for a particle which was used in the analysis, K(I,4)= i, where I is the

particle number and i the number of the jet it has been assigned to. Undecayed

particles not used then have K(I,4) = 0. An exception is made for lines with

K(I,1) = 3 (which anyhow are not normally interesting for cluster search), where

the colour-flow information stored in K(I,4) is left intact.

MSTU(3) is only set equal to the number of jets for positive NJET and MSTU(43)

= 1.

CALL PYCELL(NJET)

Purpose: to provide a simpler cluster routine more in line with what is currently used in

the study of high-p⊥ collider events.

A detector is assumed to stretch in pseudorapidity between -PARU(51) and

+PARU(51) and be segmented in MSTU(51) equally large η (pseudorapidity) bins

and MSTU(52) ϕ (azimuthal) bins. Transverse energy E⊥ for undecayed entries are

summed up in each bin. For MSTU(53) non-zero, the energy is smeared by calori-

metric resolution effects, cell by cell. This is done according to a Gaussian distri-

bution; if MSTU(53) = 1 the standard deviation for the E⊥ is PARU(55)×√
E⊥,

if MSTU(53) = 2 the standard deviation for the E is PARU(55)×
√

E, E⊥ and E

expressed in GeV. The Gaussian is cut off at 0 and at a factor PARU(56) times

the correct E⊥ or E. Cells with an E⊥ below a given threshold PARU(58) are

removed from further consideration; by default PARU(58) = 0. and thus all cells

are kept.

All bins with E⊥ >PARU(52) are taken to be possible initiators of jets, and are

tried in falling E⊥ sequence to check whether the total E⊥ summed over cells no
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more distant than PARU(54) in
√

(∆η)2 + (∆ϕ)2 exceeds PARU(53). If so, these

cells define one jet, and are removed from further consideration. Contrary to

PYCLUS, not all particles need be assigned to jets. Which particles (or partons)

are used in the analysis is determined by the MSTU(41) value.

NJET : the number of jets reconstructed (may be 0).

= -2 : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.

Remark: the lines N + 1 through N + NJET (N - NJET + 1 through N for MSTU(43) =

2) in PYJETS will, after a call, contain the following information:

K(N+i,1) = 31;

K(N+i,2) = 98;

K(N+i,3) : i, the jet number, with the jets arranged in falling order in E⊥;

K(N+i,4) : the number of particles assigned to jet i;

K(N+i,5) = 0;

V(N+i,1) - V(N+i,5) = 0.

Further, for MSTU(54) = 1

P(N+i,1), P(N+i,2) = position in η and ϕ of the center of the jet initiator cell,

i.e. geometrical center of jet;

P(N+i,3), P(N+i,4) = position in η and ϕ of the E⊥-weighted center of the jet,

i.e. the center of gravity of the jet;

P(N+i,5) = sum E⊥ of the jet;

while for MSTU(54) = 2

P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed from the

summed E⊥ and the η and ϕ of the E⊥-weighted center of the jet as

(px, py, pz, E,m) = E⊥(cos ϕ, sin ϕ, sinh η, cosh η, 0);

and for MSTU(54) = 3

P(N+i,1) - P(N+i,5) : the jet momentum vector, constructed by adding vec-

torially the momentum of each cell assigned to the jet, assuming that all the

E⊥ was deposited at the center of the cell, and with the jet mass in P(N+i,5)

calculated from the summed E and p as m2 = E2 − p2
x − p2

y − p2
z.

Also, the number of particles used in the analysis is given in MSTU(62), and the

number of cells hit in MSTU(63).

MSTU(3) is only set equal to the number of jets for positive NJET and MSTU(43)

= 1.

CALL PYJMAS(PMH,PML)

Purpose: to reconstruct high and low jet mass of an event. A simplified algorithm is

used, wherein a preliminary division of the event into two hemispheres is done

transversely to the sphericity axis. Then one particle at a time is reassigned to

the other hemisphere if that reduces the sum of squares of the two jet masses,

m2
H + m2

L. The procedure is stopped when no further significant change (see
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PARU(48)) is obtained. Often, the original assignment is retained as it is. Which

particles (or partons) are used in the analysis is determined by the MSTU(41)

value, whereas assumptions about particle masses is given by MSTU(42).

PMH : heavy jet mass (in GeV).

= -2. : remaining space in PYJETS (partly used as working area) not large enough

to allow analysis.

PML : light jet mass (in GeV).

= -2. : as for PMH = -2.

Remark: After a successful call, MSTU(62) contains the number of particles used in the

analysis, and PARU(61) the invariant mass of the system analysed. The latter

number is helpful in constructing scaled jet masses.

CALL PYFOWO(H10,H20,H30,H40)

Purpose: to do an event analysis in terms of the Fox-Wolfram moments. The moments

Hi are normalized to the lowest one, H0. Which particles (or partons) are used

in the analysis is determined by the MSTU(41) value.

H10 : H1/H0. Is = 0 if momentum is balanced.

H20 : H2/H0.

H30 : H3/H0.

H40 : H4/H0.

Remark: the number of particles used in the analysis is given in MSTU(62).

CALL PYTABU(MTABU)

Purpose: to provide a number of event-analysis options which can be be used on each new

event, with accumulated statistics to be written out on request. When errors are

quoted, these refer to the uncertainty in the average value for the event sample

as a whole, rather than to the spread of the individual events, i.e. errors decrease

like one over the square root of the number of events analysed. For a correct use

of PYTABU, it is not permissible to freely mix generation and analysis of different

classes of events, since only one set of statistics counters exists. A single run may

still contain sequential ‘subruns’, between which statistics is reset. Whenever an

event is analysed, the number of particles/partons used is given in MSTU(62).

MTABU : determines which action is to be taken. Generally, a last digit equal to 0 indicates

that the statistics counters for this option is to be reset; since the counters are

reset (by DATA statements) at the beginning of a run, this is not used normally.

Last digit 1 leads to an analysis of current event with respect to the desired

properties. Note that the resulting action may depend on how the event generated

has been rotated, boosted or edited before this call. The statistics accumulated

is output in tabular form with last digit 2, while it is dumped in the PYJETS

common block for last digit 3. The latter option may be useful for interfacing to
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graphics output.

Warning: this routine cannot be used on weighted events, i.e. in the statistics calculation

all events are assumed to come with the same weight.

= 10 : statistics on parton multiplicity is reset.

= 11 : the parton content of the current event is analysed, classified according to

the flavour content of the hard interaction and the total number of partons.

The flavour content is assumed given in MSTU(161) and MSTU(162); these

are automatically set e.g. in PYEEVT and PYEVNT calls. Main application is

for e+e− annihilation events.

= 12 : gives a table on parton multiplicity distribution.

= 13 : stores the parton multiplicity distribution of events in PYJETS, using the

following format:

N = total number of different channels found;

K(I,1) = 32;

K(I,2) = 99;

K(I,3), K(I,4) = the two flavours of the flavour content;

K(I,5) = total number of events found with flavour content of K(I,3) and

K(I,4);

P(I,1) - P(I,5) = relative probability to find given flavour content and a

total of 1, 2, 3, 4 or 5 partons, respectively;

V(I,1) - V(I,5) = relative probability to find given flavour content and a

total of 6–7, 8–10, 11–15, 16–25 or above 25 partons, respectively.

In addition, MSTU(3) = 1 and

K(N+1,1) = 32;

K(N+1,2) = 99;

K(N+1,5) = number of events analysed.

= 20 : statistics on particle content is reset.

= 21 : the particle/parton content of the current event is analysed, also for particles

which have subsequently decayed and partons which have fragmented (unless

this has been made impossible by a preceding PYEDIT call). Particles are

subdivided into primary and secondary ones, the main principle being that

primary particles are those produced in the fragmentation of a string, while

secondary come from decay of other particles.

= 22 : gives a table of particle content in events.

= 23 : stores particle content in events in PYJETS, using the following format:

N = number of different particle species found;

K(I,1) = 32;

K(I,2) = 99;

K(I,3) = particle KF code;

K(I,5) = total number of particles and antiparticles of this species;

P(I,1) = average number of primary particles per event;

P(I,2) = average number of secondary particles per event;

P(I,3) = average number of primary antiparticles per event;
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P(I,4) = average number of secondary antiparticles per event;

P(I,5) = average total number of particles or antiparticles per event.

In addition, MSTU(3) = 1 and

K(N+1,1) = 32;

K(N+1,2) = 99;

K(N+1,5) = number of events analysed;

P(N+1,1) = average primary multiplicity per event;

P(N+1,2) = average final multiplicity per event;

P(N+1,3) = average charged multiplicity per event.

= 30 : statistics on factorial moments is reset.

= 31 : analyses the factorial moments of the multiplicity distribution in different

bins of rapidity and azimuth. Which particles (or partons) are used in the

analysis is determined by the MSTU(41) value. The selection between usage of

true rapidity, pion rapidity or pseudorapidity is regulated by MSTU(42). The

z axis is assumed to be event axis; if this is not desirable find an event axis

e.g. with PYSPHE or PYTHRU and use PYEDIT(31). Maximum (pion-, pseudo-)

rapidity, which sets the limit for the rapidity plateau or the experimental

acceptance, is given by PARU(57).

= 32 : prints a table of the first four factorial moments for various bins of pseudo-

rapidity and azimuth. The moments are properly normalized so that they

would be unity (up to statistical fluctuations) for uniform and uncorrelated

particle production according to Poisson statistics, but increasing for de-

creasing bin size in case of ‘intermittent’ behaviour. The error on the average

value is based on the actual statistical sample (i.e. does not use any assump-

tions on the distribution to relate errors to the average values of higher

moments). Note that for small bin sizes, where the average multiplicity is

small and the factorial moment therefore only very rarely is non-vanishing,

moment values may fluctuate wildly and the errors given may be too low.

= 33 : stores the factorial moments in PYJETS, using the format:

N = 30, with I = i = 1–10 corresponding to results for slicing the rapidity

range in 2i−1 bins, I = i = 11–20 to slicing the azimuth in 2i−11 bins, and

I = i = 21–30 to slicing both rapidity and azimuth, each in 2i−21 bins;

K(I,1) = 32;

K(I,2) = 99;

K(I,3) = number of bins in rapidity;

K(I,4) = number of bins in azimuth;

P(I,1) = rapidity bin size;

P(I,2) - P(I,5) = 〈F2〉–〈F5〉, i.e. mean of second, third, fourth and fifth

factorial moment;

V(I,1) = azimuthal bin size;

V(I,2) - V(I,5) = statistical errors on 〈F2〉–〈F5〉.
In addition, MSTU(3) = 1 and

K(31,1) = 32;
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K(31,2) = 99;

K(31,5) = number of events analysed.

= 40 : statistics on energy–energy correlation is reset.

= 41 : the energy–energy correlation EEC of the current event is analysed. Which

particles (or partons) are used in the analysis is determined by the MSTU(41)

value. Events are assumed given in their c.m. frame. The weight assigned

to a pair i and j is 2EiEj/E
2
vis, where Evis is the sum of energies of all

analysed particles in the event. Energies are determined from the momenta of

particles, with mass determined according to the MSTU(42) value. Statistics

is accumulated for the relative angle θij, ranging between 0 and 180 degrees,

subdivided into 50 bins.

= 42 : prints a table of the energy–energy correlation EEC and its asymmetry

EECA, with errors. The definition of errors is not unique. In our approach

each event is viewed as one observation, i.e. an EEC and EECA distribution

is obtained by summing over all particle pairs of an event, and then the

average and spread of this event-distribution is calculated in the standard

fashion. The quoted error is therefore inversely proportional to the square

root of the number of events. It could have been possible to view each single

particle pair as one observation, which would have given somewhat lower

errors, but then one would also be forced to do a complicated correction

procedure to account for the pairs in an event not being uncorrelated (two

hard jets separated by a given angle typically corresponds to several pairs

at about that angle). Note, however, that in our approach the squared error

on an EECA bin is smaller than the sum of the squares of the errors on the

corresponding EEC bins (as it should be). Also note that it is not possible to

combine the errors of two nearby bins by hand from the information given,

since nearby bins are correlated (again a trivial consequence of the presence

of jets).

= 43 : stores the EEC and EECA in PYJETS, using the format:

N = 25;

K(I,1) = 32;

K(I,2) = 99;

P(I,1) = EEC for angles between I-1 and I, in units of 3.6◦;

P(I,2) = EEC for angles between 50-I and 51-I, in units of 3.6◦;

P(I,3) = EECA for angles between I-1 and I, in units of 3.6◦;

P(I,4), P(I,5) : lower and upper edge of angular range of bin I, expressed

in radians;

V(I,1) - V(I,3) : errors on the EEC and EECA values stored in P(I,1)

- P(I,3) (see = 42 for comments);

V(I,4), V(I,5) : lower and upper edge of angular range of bin I, expressed

in degrees.

In addition, MSTU(3) = 1 and

K(26,1) = 32;
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K(26,2) = 99;

K(26,5) = number of events analysed.

= 50 : statistics on complete final states is reset.

= 51 : analyses the particle content of the final state of the current event record.

During the course of the run, statistics is thus accumulated on how often

different final states appear. Only final states with up to 8 particles are

analysed, and there is only reserved space for up to 200 different final states.

Most high-energy events have multiplicities far above 8, so the main use

for this tool is to study the effective branching ratios obtained with a given

decay model for e.g. charm or bottom hadrons. Then PY1ENT may be used

to generate one decaying particle at a time, with a subsequent analysis by

PYTABU. Depending on at what level this studied is to be carried out, some

particle decays may be switched off, like π0.

= 52 : gives a list of the (at most 200) channels with up to 8 particles in the final

state, with their relative branching ratio. The ordering is according to mul-

tiplicity, and within each multiplicity according to an ascending order of KF

codes. The KF codes of the particles belonging to a given channel are given

in descending order.

= 53 : stores the final states and branching ratios found in PYJETS, using the for-

mat:

N = number of different explicit final states found (at most 200);

K(I,1) = 32;

K(I,2) = 99;

K(I,5) = multiplicity of given final state, a number between 1 and 8;

P(I,1) - P(I,5), V(I,1) - V(I,3) : the KF codes of the up to 8 parti-

cles of the given final state, converted to real numbers, with trailing zeroes

for positions not used;

V(I,5) : effective branching ratio for the given final state.

In addition, MSTU(3) = 1 and

K(N+1,1) = 32;

K(N+1,2) = 99;

K(N+1,5) = number of events analysed;

V(N+1,5) = summed branching ratio for finals states not given above, either

because they contained more than 8 particles or because all 200 channels

have been used up.

COMMON/PYDAT1/MSTU(200),PARU(200),MSTJ(200),PARJ(200)

Purpose: to give access to a number of status codes and parameters which regulate the

performance of fragmentation and event analysis routines. Most parameters are

described in section 14.3; here only those related to the event-analysis routines

are described.
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MSTU(41) : (D = 2) partons/particles used in the event-analysis routines PYSPHE, PYTHRU,

PYCLUS, PYCELL, PYJMAS, PYFOWO and PYTABU (PYTABU(11) excepted).

= 1 : all partons/particles that have not fragmented/decayed.

= 2 : ditto, with the exception of neutrinos and unknown particles. Also the

lowest-lying neutralino χ0
1 (code 1000022), the graviton (39) and the grav-

itino (1000039) are treated on an equal footing with neutrinos. Other similar

but not foreseen particles would not be disregarded automatically, but would

have to be put to K(I,1) > 10 by hand.

= 3 : only charged, stable particles, plus any partons still not fragmented.

MSTU(42) : (D = 2) assumed particle masses, used in calculating energies E2 = p2 +

m2, as subsequently used in PYCLUS, PYJMAS and PYTABU (in the latter also for

pseudorapidity, pion rapidity or true rapidity selection).

= 0 : all particles are assumed massless.

= 1 : all particles, except the photon, are assumed to have the charged pion mass.

= 2 : the true masses are used.

MSTU(43) : (D = 1) storing of event-analysis information (mainly jet axes), in PYSPHE,

PYTHRU, PYCLUS and PYCELL.

= 1 : stored after the event proper, in positions N + 1 through N + MSTU(3). If

several of the routines are used in succession, all but the latest information

is overwritten.

= 2 : stored with the event proper, i.e. at the end of the event listing, with N

updated accordingly. If several of the routines are used in succession, all the

axes determined are available.

MSTU(44) : (D = 4) is the number of the fastest (i.e. with largest momentum) particles

used to construct the (at most) 10 most promising starting configurations for the

thrust axis determination.

MSTU(45) : (D = 2) is the number of different starting configurations above, which have

to converge to the same (best) value before this is accepted as the correct thrust

axis.

MSTU(46) : (D = 1) distance measure used for the joining of clusters in PYCLUS.

= 1 : dij , i.e. approximately relative transverse momentum. Anytime two clusters

have been joined, particles are reassigned to the cluster they now are closest

to. The distance cut-off djoin is stored in PARU(44).

= 2 : distance measure as in = 1, but particles are never reassigned to new jets.

= 3 : JADE distance measure yij, but with dimensions to correspond approxi-

mately to total invariant mass. Particles may never be reassigned between

clusters. The distance cut-off mmin is stored in PARU(44).

= 4 : as = 3, but a scaled JADE distance yij is used instead of mij. The distance

cut-off ymin is stored in PARU(45).

= 5 : Durham distance measure ỹij, but with dimensions to correspond approxi-

mately to transverse momentum. Particles may never be reassigned between

clusters. The distance cut-off p⊥min is stored in PARU(44).

= 6 : as = 5, but a scaled Durham distance ỹij is used instead of p⊥ij. The distance
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cut-off ỹmin is stored in PARU(45).

MSTU(47) : (D = 1) the minimum number of clusters to be reconstructed by PYCLUS.

MSTU(48) : (D = 0) mode of operation of the PYCLUS routine.

= 0 : the cluster search is started from scratch.

= 1 : the clusters obtained in a previous cluster search on the same event (with

MSTU(48) = 0) are to be taken as the starting point for subsequent cluster

joining. For this call to have any effect, the joining scale in PARU(44) or

PARU(45) must have been changed. If the event record has been modified

after the last PYCLUS call, or if any other cluster search parameter setting

has been changed, the subsequent result is unpredictable.

MSTU(51) : (D = 25) number of pseudorapidity bins that the range between -PARU(51)

and +PARU(51) is divided into to define cell size for PYCELL.

MSTU(52) : (D = 24) number of azimuthal bins, used to define the cell size for PYCELL.

MSTU(53) : (D = 0) smearing of correct energy, imposed cell-by-cell in PYCELL, to simulate

calorimeter resolution effects.

= 0 : no smearing.

= 1 : the transverse energy in a cell, E⊥, is smeared according to a Gaussian

distribution with standard deviation PARU(55)×√
E⊥, where E⊥ is given in

GeV. The Gaussian is cut off so that 0 < E⊥smeared <PARU(56)×E⊥true.

= 2 : as = 1, but it is the energy E rather than the transverse energy E⊥ that is

smeared.

MSTU(54) : (D = 1) form for presentation of information about reconstructed clusters in

PYCELL, as stored in PYJETS according to the MSTU(43) value.

= 1 : the P vector in each line contains η and ϕ for the geometric origin of the jet,

η and ϕ for the weighted center of the jet, and jet E⊥, respectively.

= 2 : the P vector in each line contains a massless four-vector giving the direction

of the jet, obtained as

(px, py, pz, E,m) = E⊥(cos ϕ, sin ϕ, sinh η, cosh η, 0),

where η and ϕ give the weighted center of a jet and E⊥ its transverse energy.

= 3 : the P vector in each line contains a massive four-vector, obtained by adding

the massless four-vectors of all cells that form part of the jet, and calculating

the jet mass from m2 = E2 − p2
x − p2

y − p2
z. For each cell, the total E⊥ is

summed up, and then translated into a massless four-vector assuming that

all the E⊥ was deposited in the center of the cell.

MSTU(61) : (I) first entry for storage of event-analysis information in last event analysed

with PYSPHE, PYTHRU, PYCLUS or PYCELL.

MSTU(62) : (R) number of particles/partons used in the last event analysis with PYSPHE,

PYTHRU, PYCLUS, PYCELL, PYJMAS, PYFOWO or PYTABU.

MSTU(63) : (R) in a PYCLUS call, the number of preclusters constructed in order to speed

up analysis (should be equal to MSTU(62) if PARU(43) = 0.). In a PYCELL call,

the number of cells hit.

MSTU(161), MSTU(162) : hard flavours involved in current event, as used in an analysis

with PYTABU(11). Either or both may be set 0, to indicate the presence of one or
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none hard flavours in event. Is normally set by high-level routines, like PYEEVT

or PYEVNT, but can also be set by you.

PARU(41) : (D = 2.) power of momentum-dependence in PYSPHE, default corresponds to

sphericity, = 1. to linear event measures.

PARU(42) : (D = 1.) power of momentum-dependence in PYTHRU, default corresponds to

thrust.

PARU(43) : (D = 0.25 GeV) maximum distance dinit allowed in PYCLUS when forming

starting clusters used to speed up reconstruction. The meaning of the parameter

is in p⊥ for MSTU(46) ≤ 2 or ≥ 5 and in m else. If = 0., no preclustering is

obtained. If chosen too large, more joining may be generated at this stage than

is desirable. The main application is at high energies, where some speedup is

imperative, and the small details are not so important anyway.

PARU(44) : (D = 2.5 GeV) maximum distance djoin, below which it is allowed to join two

clusters into one in PYCLUS. Is used for MSTU(46)≤ 3 and = 5, i.e. both for p⊥
and mass distance measure.

PARU(45) : (D = 0.05) maximum distance yjoin = m2/E2
vis or ditto with m2 → p2

⊥, below

which it is allowed to join two clusters into one in PYCLUS for MSTU(46) = 4 or 6.

PARU(48) : (D = 0.0001) convergence criterion for thrust (in PYTHRU) or generalized thrust

(in PYCLUS), or relative change of m2
H+m2

L (in PYJMAS), i.e. when the value changes

by less than this amount between two iterations the process is stopped.

PARU(51) : (D = 2.5) defines maximum absolute pseudorapidity used for detector as-

sumed in PYCELL.

PARU(52) : (D = 1.5 GeV) gives minimum E⊥ for a cell to be considered as a potential

jet initiator by PYCELL.

PARU(53) : (D = 7.0 GeV) gives minimum summed E⊥ for a collection of cells to be

accepted as a jet.

PARU(54) : (D = 1.) gives the maximum distance in R =
√

(∆η)2 + (∆ϕ)2 from cell

initiator when grouping cells to check whether they qualify as a jet.

PARU(55) : (D = 0.5) when smearing the transverse energy (or energy, see MSTU(53))

in PYCELL, the calorimeter cell resolution is taken to be PARU(55)×√
E⊥ (or

PARU(55)×
√

E) for E⊥ (or E) in GeV.

PARU(56) : (D = 2.) maximum factor of upward fluctuation in transverse energy or energy

in a given cell when calorimeter resolution is included in PYCELL (see MSTU(53)).

PARU(57) : (D = 3.2) maximum rapidity (or pseudorapidity or pion rapidity, depending

on MSTU(42)) used in the factorial moments analysis in PYTABU.

PARU(58) : (D = 0. GeV) in a PYCELL call, cells with a transverse energy E⊥ below

PARP(58) are removed from further consideration. This may be used to represent

a threshold in an actual calorimeter, or may be chosen just to speed up the

algorithm in a high-multiplicity environment.

PARU(61) : (I) invariant mass W of a system analysed with PYCLUS or PYJMAS, with

energies calculated according to the MSTU(42) value.

PARU(62) : (R) the generalized thrust obtained after a successful PYCLUS call, i.e. ratio
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of summed cluster momenta and summed particle momenta.

PARU(63) : (R) the minimum distance d between two clusters in the final cluster config-

uration after a successful PYCLUS call; is 0 if only one cluster left.

15.6 Histograms

The GBOOK package was written in 1979, at a time when HBOOK [Bru87] was not

available in Fortran 77. It has been used since as a small and simple histogramming

program. For this version of Pythia the program has been updated to run together with

Pythia in double precision. Only the one-dimensional histogram part has been retained,

and subroutine names have been changed to fit Pythia conventions. These modified

routines are now distributed together with Pythia. They would not be used for final

graphics, but may be handy for simple checks, and are extensively used to provide free-

standing examples of analysis programs, to be found on the Pythia web page.

There is a maximum of 1000 histograms at your disposal, numbered in the range 1

to 1000. Before a histogram can be filled, space must be reserved (booked) for it, and

histogram information provided. Histogram contents are stored in a common block of

dimension 20000, in the order they are booked. Each booked histogram requires NX+28

numbers, where NX is the number of x bins and the 28 include limits, under/overflow and

the title. If you run out of space, the program can be recompiled with larger dimensions.

The histograms can be manipulated with a few routines. Histogram output is ‘line printer’

style, i.e. no graphics.

CALL PYBOOK(ID,TITLE,NX,XL,XU)

Purpose: to book a one-dimensional histogram.

ID : histogram number, integer between 1 and 1000.

TITLE : histogram title, at most 60 characters.

NX : number of bins in the histogram; integer between 1 and 100.

XL, XU : lower and upper bound, respectively, on the x range covered by the histogram.

CALL PYFILL(ID,X,W)

Purpose: to fill a one-dimensional histogram.

ID : histogram number.

X : x coordinate of point.

W : weight to be added in this point.

CALL PYFACT(ID,F)

Purpose: to rescale the contents of a histogram.

ID : histogram number.

– 545 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

F : rescaling factor, i.e. a factor that all bin contents (including overflow etc.) are

multiplied by.

Remark: a typical rescaling factor could be f = 1/(bin size * number of events) =

NX/(XU-XL) * 1/(number of events).

CALL PYOPER(ID1,OPER,ID2,ID3,F1,F2)

Purpose: this is a general-purpose routine for editing one or several histograms, which

all are assumed to have the same number of bins. Operations are carried out bin

by bin, including overflow bins etc.

OPER: gives the type of operation to be carried out, a one-character string or a

CHARACTER*1 variable.

= ’+’, ’-’, ’*’, ’/’ : add, subtract, multiply or divide the contents in ID1 and

ID2 and put the result in ID3. F1 and F2, if not 1D0, give factors by which

the ID1 and ID2 bin contents are multiplied before the indicated operation.

(Division with vanishing bin content will give 0.)

= ’A’, ’S’, ’L’ : for ’S’ the square root of the content in ID1 is taken (result 0 for

negative bin contents) and for ’L’ the 10-logarithm is taken (a nonpositive

bin content is before that replaced by 0.8 times the smallest positive bin

content). Thereafter, in all three cases, the content is multiplied by F1 and

added with F2, and the result is placed in ID3. Thus ID2 is dummy in these

cases.

= ’M’ : intended for statistical analysis, bin-by-bin mean and standard deviation of a

variable, assuming that ID1 contains accumulated weights, ID2 accumulated

weight*variable and ID3 accumulated weight*variable-squared. Afterwards

ID2 will contain the mean values (= ID2/ID1) and ID3 the standard de-

viations (=
√
ID3/ID1− (ID2/ID1)2). In the end, F1 multiplies ID1 (for

normalization purposes), while F2 is dummy.

ID1, ID2, ID3 : histogram numbers, used as described above.

F1, F2 : factors or offsets, used as described above.

CALL PYHIST

Purpose: to print all histograms that have been filled, and thereafter reset their bin

contents to 0.

CALL PYPLOT(ID)

Purpose: to print out a single histogram.

ID : histogram to be printed.
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CALL PYNULL(ID)

Purpose: to reset all bin contents, including overflow etc., to 0.

ID : histogram to be reset.

CALL PYDUMP(MDUMP,LFN,NHI,IHI)

Purpose: to dump the contents of existing histograms on an external file, from which

they could be read in to another program.

MDUMP : the action to be taken.

= 1 : dump histograms, each with the first line giving histogram number and title,

the second the number of x bins and lower and upper limit, the third the

total number of entries and under-, inside- and overflow, and subsequent ones

the bin contents grouped five per line. If NHI = 0 all existing histograms are

dumped and IHI is dummy, else the NHI histograms with numbers IHI(1)

through IHI(NHI) are dumped.

= 2 : read in histograms dumped with MDUMP = 1 and book and fill histograms

according to this information. (With modest modifications this option could

instead be used to write the info to HBOOK/HPLOT format, or whatever.)

NHI and IHI are dummy.

= 3 : dump histogram contents in column style, where the first column contains

the x values (average of respective bin) of the first histogram, and subsequent

columns the histogram contents. All histograms dumped this way must have

the same number of x bins, but it is not checked whether the x range is also

the same. If NHI = 0 all existing histograms are dumped and IHI is dummy,

else the NHI histograms with numbers IHI(1) through IHI(NHI) are dumped.

A file written this way can be read e.g. by Gnuplot [Gnu99].

LFN : the file number to which the contents should be written. You must see to it that

this file is properly opened for write (since the definition of file names is platform

dependent).

NHI : number of histograms to be dumped; if 0 then all existing histograms are dumped.

IHI : array containing histogram numbers in the first NHI positions for NHI nonzero.

COMMON/PYBINS/IHIST(4),INDX(1000),BIN(20000)

Purpose: to contain all information on histograms.

IHIST(1) : (D = 1000) maximum allowed histogram number, i.e. dimension of the INDX

array.

IHIST(2) : (D = 20000) size of histogram storage, i.e. dimension of the BIN array.

IHIST(3) : (D = 55) maximum number of lines per page assumed for printing histograms.

18 lines are reserved for title, bin contents and statistics, while the rest can be

used for the histogram proper.
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IHIST(4) : internal counter for space usage in the BIN array.

INDX : gives the initial address in BIN for each histogram. If this array is expanded, also

IHIST(1) should be changed.

BIN : gives bin contents and some further histogram information for the booked his-

tograms. If this array is expanded, also IHIST(2) should be changed.
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16. Summary and outlook

A complete description of the Pythia program would have to cover four aspects:

1. the basic philosophy and principles underlying the programs;

2. the detailed physics scenarios implemented, with all the necessary compromises and

approximations;

3. the structure of the implementation, including program flow, internal variable names

and programming tricks; and

4. the manual, which describes how to use the programs.

Of these aspects, the first has been dealt with in reasonable detail. The second is unevenly

covered: in depth for aspects which are not discussed anywhere else, more summarily for

areas where separate up-to-date papers already exist. The third is not included at all, but

‘left as an exercise’ for the reader, to figure out from the code itself. The fourth, finally,

should be largely covered, although many further comments could have been made, in

particular about the interplay between different parts of the programs. Still, in the end,

no manual, however complete, can substitute for ‘hands on’ experience.

The Pythia program is continuously being developed. We are aware of many short-

comings, some of which hopefully will be addressed in the future. No timetable is set up

for such future changes, however. After all, this is not a professionally maintained software

product, but part of a small physics research project. Very often, developments of the

programs have come about as a direct response to the evolution of the physics stage, i.e.

experimental results and studies for future accelerators. Hopefully, the program will keep

on evolving in step with the new challenges opening up.

In the future, a radically new version of the program is required. Given the decisions

by the big laboratories and collaborations to discontinue the use of Fortran and instead

adopt C++, it is natural to attempt to move also event generators in that direction. The

Pythia 7 project got going in the beginning of 1998, and was an effort to reformulate the

event generation process in object oriented language [Lon99, Ber01]. However, after the

Herwig++ [Gie04] group decided to join in the development of a common administrative

structure, much of the then Pythia 7 went into this new ThePEG [Lon05] framework,

and work on the physics aspects stalled.

Pythia 8 is a clean new start, to provide a C++ successor to Pythia 6. In a return

to the traditional Pythia spirit, it is a completely standalone generator, although some

hooks for links to other programs will be provided. Work on Pythia 8 was begun from

scratch in September 2004, with a three-year ‘road map’ to produce a successor, but initially

heavily biased towards pp/pp physics and certainly far from complete in every respect. No

attempt will be made to carry over all options of the existing code; rather the intent is

to keep only the most recent and relevant physics models. The Pythia 6 and Pythia 8

versions therefore will coexist for several years, with the former rapidly approaching a

steady state, and the latter continuing to be developed further. Thus, it is quite likely

that the current manual will be the last major edition pertaining to the Fortran code, with

future Pythia 6 developments only documented in update notes.
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A. Subprocess summary table

This index is intended to give a quick reference to the different physics processes imple-

mented in the program. Further details are to be found elsewhere in the manual, especially

in section 8. A trailing ’+’ on a few SUSY processes indicates inclusion of charge-conjugate

modes as well.

No. Subprocess

Hard QCD processes:

11 fifj → fifj

12 fifi → fkfk

13 fifi → gg

28 fig → fig

53 gg → fkfk

68 gg → gg

Soft QCD processes:

91 elastic scattering

92 single diffraction (XB)

93 single diffraction (AX)

94 double diffraction

95 low-p⊥ production

Prompt photons:

14 fifi → gγ

18 fifi → γγ

29 fig → fiγ

114 gg → γγ

115 gg → gγ

Open heavy flavour:

(also fourth generation)

81 fifi → QkQk

82 gg → QkQk

83 qifj → Qkfl

84 gγ → QkQk

85 γγ → FkFk

No. Subprocess

Closed heavy flavour:

86 gg → J/ψg

87 gg → χ0cg

88 gg → χ1cg

89 gg → χ2cg

104 gg → χ0c

105 gg → χ2c

106 gg → J/ψγ

107 gγ → J/ψg

108 γγ → J/ψγ

421 gg → cc[3S
(1)
1 ] g

422 gg → cc[3S
(8)
1 ] g

423 gg → cc[1S
(8)
0 ] g

424 gg → cc[3P
(8)
J ] g

425 gq → q cc[3S
(8)
1 ]

426 gq → q cc[1S
(8)
0 ]

427 gq → q cc[3P
(8)
J ]

428 qq → g cc[3S
(8)
1 ]

429 qq → g cc[1S
(8)
0 ]

430 qq → g cc[3P
(8)
J ]

431 gg → cc[3P
(1)
0 ] g

432 gg → cc[3P
(1)
1 ] g

433 gg → cc[3P
(1)
2 ] g

434 gq → q cc[3P
(1)
0 ]

No. Subprocess

435 gq → q cc[3P
(1)
1 ]

436 gq → q cc[3P
(1)
2 ]

437 qq → g cc[3P
(1)
0 ]

438 qq → g cc[3P
(1)
1 ]

439 qq → g cc[3P
(1)
2 ]

461 gg → bb[3S
(1)
1 ] g

462 gg → bb[3S
(8)
1 ] g

463 gg → bb[1S
(8)
0 ] g

464 gg → bb[3P
(8)
J ] g

465 gq → q bb[3S
(8)
1 ]

466 gq → q bb[1S
(8)
0 ]

467 gq → q bb[3P
(8)
J ]

468 qq → g bb[3S
(8)
1 ]

469 qq → g bb[1S
(8)
0 ]

470 qq → g bb[3P
(8)
J ]

471 gg → bb[3P
(1)
0 ] g

472 gg → bb[3P
(1)
1 ] g

473 gg → bb[3P
(1)
2 ] g

474 gq → q bb[3P
(1)
0 ]

475 gq → q bb[3P
(1)
1 ]

476 gq → q bb[3P
(1)
2 ]

477 qq → g bb[3P
(1)
0 ]

478 qq → g bb[3P
(1)
1 ]

479 qq → g bb[3P
(1)
2 ]
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No. Subprocess

Deeply Inel. Scatt.:

10 fifj → fkfl

99 γ∗q → q

Photon-induced:

33 fiγ → fig

34 fiγ → fiγ

54 gγ → fkfk

58 γγ → fkfk

131 fiγ
∗
T → fig

132 fiγ
∗
L → fig

133 fiγ
∗
T → fiγ

134 fiγ
∗
L → fiγ

135 gγ∗
T → fifi

136 gγ∗
L → fifi

137 γ∗
Tγ∗

T → fifi

138 γ∗
Tγ∗

L → fifi

139 γ∗
Lγ∗

T → fifi

140 γ∗
Lγ∗

L → fifi

80 qiγ → qkπ
±

W/Z production:

1 fifi → γ∗/Z0

2 fifj → W±

22 fifi → Z0Z0

23 fifj → Z0W±

25 fifi → W+W−

15 fifi → gZ0

16 fifj → gW±

30 fig → fiZ
0

31 fig → fkW
±

No. Subprocess

19 fifi → γZ0

20 fifj → γW±

35 fiγ → fiZ
0

36 fiγ → fkW
±

69 γγ → W+W−

70 γW± → Z0W±

Light SM Higgs:

3 fifi → h0

24 fifi → Z0h0

26 fifj → W±h0

32 fig → fih
0

102 gg → h0

103 γγ → h0

110 fifi → γh0

111 fifi → gh0

112 fig → fih
0

113 gg → gh0

121 gg → QkQkh
0

122 qiqi → QkQkh
0

123 fifj → fifjh
0

124 fifj → fkflh
0

Heavy SM Higgs:

5 Z0Z0 → h0

8 W+W− → h0

71 Z0
LZ0

L → Z0
LZ0

L

72 Z0
LZ0

L → W+
L W−

L

73 Z0
LW±

L → Z0
LW±

L

76 W+
L W−

L → Z0
LZ0

L

77 W±
L W±

L → W±
L W±

L

No. Subprocess

BSM Neutral Higgs:

151 fifi → H0

152 gg → H0

153 γγ → H0

171 fifi → Z0H0

172 fifj → W±H0

173 fifj → fifjH
0

174 fifj → fkflH
0

181 gg → QkQkH
0

182 qiqi → QkQkH
0

183 fifi → gH0

184 fig → fiH
0

185 gg → gH0

156 fifi → A0

157 gg → A0

158 γγ → A0

176 fifi → Z0A0

177 fifj → W±A0

178 fifj → fifjA
0

179 fifj → fkflA
0

186 gg → QkQkA
0

187 qiqi → QkQkA
0

188 fifi → gA0

189 fig → fiA
0

190 gg → gA0
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No. Subprocess

Charged Higgs:

143 fifj → H+

161 fig → fkH
+

401 gg → tbH+

402 qq → tbH+

Higgs pairs:

297 fifj → H±h0

298 fifj → H±H0

299 fifi → A0h0

300 fifi → A0H0

301 fifi → H+H−

New gauge bosons:

141 fifi → γ/Z0/Z′0

142 fifj → W′+

144 fifj → R

Leptoquarks:

145 qi`j → LQ

162 qg → `LQ

163 gg → LQLQ

164 qiqi → LQLQ

No. Subprocess

Technicolor:

149 gg → ηtc

191 fifi → ρ0
tc

192 fifj → ρ+
tc

193 fifi → ω0
tc

194 fifi → fkfk

195 fifj → fkf l

361 fifi → W+
L W−

L

362 fifi → W±
L π∓

tc

363 fifi → π+
tcπ

−
tc

364 fifi → γπ0
tc

365 fifi → γπ′0
tc

366 fifi → Z0π0
tc

367 fifi → Z0π′0
tc

368 fifi → W±π∓
tc

370 fifj → W±
L Z0

L

371 fifj → W±
L π0

tc

372 fifj → π±
tcZ

0
L

373 fifj → π±
tcπ

0
tc

374 fifj → γπ±
tc

375 fifj → Z0π±
tc

376 fifj → W±π0
tc

377 fifj → W±π′0
tc

381 qiqj → qiqj

382 qiqi → qkqk

383 qiqi → gg

384 fig → fig

385 gg → qkqk

386 gg → gg

387 fifi → QkQk

388 gg → QkQk

No. Subprocess

Compositeness:

146 eγ → e∗

147 dg → d∗

148 ug → u∗

167 qiqj → d∗qk

168 qiqj → u∗qk

169 qiqi → e±e∗∓

165 fifi(→ γ∗/Z0) → fkfk

166 fifj(→ W±) → fkf l

Left-right symmetry:

341 `i`j → H±±
L

342 `i`j → H±±
R

343 `±i γ → H±±
L e∓

344 `±i γ → H±±
R e∓

345 `±i γ → H±±
L µ∓

346 `±i γ → H±±
R µ∓

347 `±i γ → H±±
L τ∓

348 `±i γ → H±±
R τ∓

349 fifi → H++
L H−−

L

350 fifi → H++
R H−−

R

351 fifj → fkflH
±±
L

352 fifj → fkflH
±±
R

353 fifi → Z0
R

354 fifj → W±
R

Extra Dimensions:

391 ff → G∗

392 gg → G∗

393 qq → gG∗

394 qg → qG∗

395 gg → gG∗
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No. Subprocess

SUSY:

201 fifi → ẽLẽ∗L

202 fifi → ẽRẽ∗R

203 fifi → ẽLẽ∗R+

204 fifi → µ̃Lµ̃∗
L

205 fifi → µ̃Rµ̃∗
R

206 fifi → µ̃Lµ̃∗
R+

207 fifi → τ̃1τ̃
∗
1

208 fifi → τ̃2τ̃
∗
2

209 fifi → τ̃1τ̃
∗
2 +

210 fifj → ˜̀
Lν̃∗

` +

211 fifj → τ̃1ν̃
∗
τ +

212 fifj → τ̃2ν̃
∗
τ +

213 fifi → ν̃`ν̃`
∗

214 fifi → ν̃τ ν̃
∗
τ

216 fifi → χ̃1χ̃1

217 fifi → χ̃2χ̃2

218 fifi → χ̃3χ̃3

219 fifi → χ̃4χ̃4

220 fifi → χ̃1χ̃2

221 fifi → χ̃1χ̃3

222 fifi → χ̃1χ̃4

223 fifi → χ̃2χ̃3

224 fifi → χ̃2χ̃4

225 fifi → χ̃3χ̃4

226 fifi → χ̃±
1 χ̃∓

1

227 fifi → χ̃±
2 χ̃∓

2

228 fifi → χ̃±
1 χ̃∓

2

229 fifj → χ̃1χ̃
±
1

No. Subprocess

230 fifj → χ̃2χ̃
±
1

231 fifj → χ̃3χ̃
±
1

232 fifj → χ̃4χ̃
±
1

233 fifj → χ̃1χ̃
±
2

234 fifj → χ̃2χ̃
±
2

235 fifj → χ̃3χ̃
±
2

236 fifj → χ̃4χ̃
±
2

237 fifi → g̃χ̃1

238 fifi → g̃χ̃2

239 fifi → g̃χ̃3

240 fifi → g̃χ̃4

241 fifj → g̃χ̃±
1

242 fifj → g̃χ̃±
2

243 fifi → g̃g̃

244 gg → g̃g̃

246 fig → q̃iLχ̃1

247 fig → q̃iRχ̃1

248 fig → q̃iLχ̃2

249 fig → q̃iRχ̃2

250 fig → q̃iLχ̃3

251 fig → q̃iRχ̃3

252 fig → q̃iLχ̃4

253 fig → q̃iRχ̃4

254 fig → q̃jLχ̃±
1

256 fig → q̃jLχ̃±
2

258 fig → q̃iLg̃

259 fig → q̃iRg̃

261 fifi → t̃1t̃
∗
1

262 fifi → t̃2t̃
∗
2

No. Subprocess

263 fifi → t̃1t̃
∗
2+

264 gg → t̃1t̃
∗
1

265 gg → t̃2t̃
∗
2

271 fifj → q̃iLq̃jL

272 fifj → q̃iRq̃jR

273 fifj → q̃iLq̃jR+

274 fifj → q̃iLq̃∗jL

275 fifj → q̃iRq̃∗jR

276 fifj → q̃iLq̃∗jR+

277 fifi → q̃jLq̃∗jL

278 fifi → q̃jRq̃∗jR

279 gg → q̃iLq̃∗i L

280 gg → q̃iRq̃∗i R

281 bqi → b̃1q̃iL

282 bqi → b̃2q̃iR

283 bqi → b̃1q̃iR + b̃2q̃iL

284 bqi → b̃1q̃
∗
i L

285 bqi → b̃2q̃
∗
i R

286 bqi → b̃1q̃
∗
i R + b̃2q̃

∗
i L

287 fifi → b̃1b̃
∗
1

288 fifi → b̃2b̃
∗
2

289 gg → b̃1b̃
∗
1

290 gg → b̃2b̃
∗
2

291 bb → b̃1b̃1

292 bb → b̃2b̃2

293 bb → b̃1b̃2

294 bg → b̃1g̃

295 bg → b̃2g̃

296 bb → b̃1b̃
∗
2+
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B. Index of subprograms and common-block variables

This index is not intended to be complete, but gives the page where the main description

begins of a subroutine, function, block data, common block, variable or array. For common-

block variables also the name of the common block is given. When some components of an

array are described in a separate place, a special reference (indented with respect to the

main one) is given for these components.

AQCDUP in HEPEUP 305

AQEDUP in HEPEUP 305

BRAT in PYDAT3 507

CHAF in PYDAT4 507

CKIN in PYSUBS 228

COEF in PYINT2 340

EBMUP in HEPRUP 297

HEPEUP common block 304

HEPEVT common block 87

HEPRUP common block 296

ICOL in PYINT2 341

ICOLUP in HEPEUP 307

IDBMUP in HEPRUP 296

IDPRUP in HEPEUP 304

IDUP in HEPEUP 305

IDWTUP in HEPRUP 297

IMSS in PYMSSM 270

ISET in PYINT2 339

ISIG in PYINT3 341

ISTUP in HEPEUP 305

ITCM in PYTCSM 268

K in PYJETS 78

KCHG in PYDAT2 500

KFDP in PYDAT3 507

KFIN in PYSUBS 228

KFPR in PYINT2 340

LPRUP in HEPRUP 303

MAXNUP in HEPEUP 304

MAXPUP in HEPRUP 296

MDCY in PYDAT3 503

MDME in PYDAT3 503

MINT in PYINT1 328

MOTHUP in HEPEUP 307

MRPY in PYDATR 67

MSEL in PYSUBS 226

MSTI in PYPARS 278

MSTJ in PYDAT1, main 484

MSTJ(38) - MSTJ(50) 382

MSTJ(101) - MSTJ(121) 105

MSTP in PYPARS, main 234

MSTP(22) 387

MSTP(61) - MSTP(72) 387

MSTP(81) - MSTP(95) 418

MSTP(131) - MSTP(134) 424

MSTU in PYDAT1, main 480

MSTU(1) and some more 520

MSTU(41) - MSTU(63) 541

MSTU(101) - MSTU(118) 264

MSTU(161) - MSTU(162) 543

MSUB in PYSUBS 228

MWID in PYINT4 341

N in PYJETS 78

NGEN in PYINT5 343

NPRUP in HEPRUP 302

NUP in HEPEUP 304

P in PYJETS 81

PARF in PYDAT2 501

PARI in PYPARS 281

PARJ in PYDAT1, main 490

PARJ(80) - PARJ(90) 386

PARJ(121) - PARJ(171) 109

PARJ(180) - PARJ(195) 268

PARP in PYPARS, main 258

PARP(61) - PARP(72) 390

PARP(78) - PARP(100) 425

PARP(131) 428

PARU in PYDAT1, main 483

PARU(41) - PARU(63) 544

PARU(101) - PARU(195) 264

PDFGUP in HEPRUP 297
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PDFSUP in HEPRUP 297

PMAS in PYDAT2 501

PROC in PYINT6 344

PUP in HEPEUP 308

PY1ENT subroutine 473

PY2ENT subroutine 473

PY3ENT subroutine 474

PY4ENT subroutine 474

PY2FRM subroutine 320

PY4FRM subroutine 321

PY6FRM subroutine 323

PY4JET subroutine 324

PYADSH function 380

PYALEM function 263

PYALPS function 263

PYANGL function 478

PYBINS common block 547

PYBOEI subroutine 477

PYBOOK subroutine 545

PYCBLS common block 431

PYCELL subroutine 535

PYCHGE function 478

PYCKBD function 328

PYCLUS subroutine 534

PYCOMP function 478

PYCTAG common block 431

PYCTTR subroutine 429

PYDAT1 common block 480

PYDAT2 common block 500

PYDAT3 common block 503

PYDAT4 common block 507

PYDATA block data 328

PYDATR common block 67

PYDCYK subroutine 498

PYDECY subroutine 477

PYDIFF subroutine 326

PYDISG subroutine 326

PYDOCU subroutine 326

PYDUMP subroutine 547

PYEDIT subroutine 515

PYEEVT subroutine 104

PYERRM subroutine 478

PYEVNT subroutine 222

PYEVOL subroutine 428

PYEVWT subroutine 286

PYEXEC subroutine 476

PYFACT subroutine 545

PYFCMP function 429

PYFILL subroutine 545

PYFOWO subroutine 537

PYFRAM subroutine 224

PYGAGA subroutine 326

PYGAMM function 328

PYGANO function 327

PYGBEH function 328

PYGDIR function 328

PYGGAM function 327

PYGIVE subroutine 475

PYGVMD function 327

PYHEPC subroutine 89

PYHFTH function 328

PYHIST subroutine 546

PYI3AU subroutine 328

PYINBM subroutine 325

PYINDF subroutine 477

PYINIT subroutine 219

PYINKI subroutine 325

PYINPR subroutine 325

PYINRE subroutine 325

PYINT1 common block 328

PYINT2 common block 339

PYINT3 common block 341

PYINT4 common block 341

PYINT5 common block 343

PYINT6 common block 344

PYINT7 common block 344

PYINT8 common block 344

PYINT9 common block 345

PYINTM common block 430

PYISJN common block 432

PYISMX common block 431

PYJETS common block 78

PYJMAS subroutine 536

PYJOIN subroutine 475
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PYK function 518

PYKCUT subroutine 224

PYKFDI subroutine 477

PYKFIN subroutine 498

PYKLIM subroutine 326

PYKMAP subroutine 326

PYLIST subroutine 516

PYLOGO subroutine 478

PYMAEL function 380

PYMASS function 478

PYMAXI subroutine 325

PYMEMX subroutine 381

PYMEWT subroutine 381

PYMIGN subroutine 428

PYMIHG subroutine 429

PYMIHK subroutine 429

PYMIRM subroutine 429

PYMRUN function 263

PYMSRV common block 276

PYMSSM common block 270

PYMULT subroutine 428

PYNAME subroutine 478

PYNMES subroutine 498

PYNULL subroutine 547

PYOPER subroutine 546

PYOFSH subroutine 326

PYP function 519

PYPARS common block 233, 278

PYPART common block 391

PYPCMP function 429

PYPDEL subroutine 327

PYPDFL subroutine 327

PYPDFU subroutine 327

PYPDGA subroutine 327

PYPDPI subroutine 328

PYPDPR subroutine 328

PYPILE subroutine 325

PYPLOT subroutine 546

PYPREP subroutine 477

PYONIA subroutine 105

PYPTDI subroutine 477

PYPTFS subroutine 378

PYPTIS subroutine 381

PYPTMI subroutine 429

PYQQBH subroutine 328

PYR function 66

PYRGET subroutine 66

PYRSET subroutine 66

PYRADK subroutine 104

PYRAND subroutine 326

PYRECO subroutine 328

PYREMN subroutine 428

PYRESD subroutine 326

PYROBO subroutine 514

PYSAVE subroutine 325

PYSCAT subroutine 326

PYSHOW subroutine 378

PYSIGH subroutine 326

PYSLHA subroutine 500

PYSPEN function 328

PYSPHE subroutine 533

PYSPLI subroutine 328

PYSSMT common block 276

PYSSPA subroutine 380

PYSTAT subroutine 222

PYSTRF subroutine 477

PYSUBS common block 226

PYTABU subroutine 537

PYTAUD subroutine 478

PYTCSM common block 268

PYTEST subroutine 42

PYTHRU subroutine 533

PYTIME subroutine 478

PYUPDA subroutine 499

PYUPEV subroutine 315

PYUPIN subroutine 315

PYUPRE subroutine 310

PYWAUX subroutine 328

PYWIDT subroutine 326

PYX3JT subroutine 104

PYX4JT subroutine 104

PYXDIF subroutine 104

PYXJET subroutine 104

PYXKFL subroutine 104
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PYXTEE subroutine 104

PYXTOT subroutine 325

PYZDIS subroutine 477

RMSS in PYMSSM 274

RRPY in PYDATR 67

RTCM in PYTCSM 269

RVLAM in PYMSRV 276

RVLAMB in PYMSRV 276

RVLAMP in PYMSRV 276

SCALUP in HEPEUP 304

SFMIX in PYSSMT 276

SIGH in PYINT3 341

SIGT in PYINT7 344

SMW in PYSSMT 276

SMZ in PYSSMT 276

SPINUP in HEPEUP 309

UMIX in PYSSMT 276

UMIXI in PYSSMT 276

UPEVNT subroutine 303

UPINIT subroutine 296

UPVETO subroutine 290

V in PYJETS 81

VCKM in PYDAT2 503

VINT in PYINT1 333

VMIX in PYSSMT 276

VMIXI in PYSSMT 276

VTIMUP in HEPEUP 309

VXPANH in PYINT9 345

VXPANL in PYINT9 345

VXPDGM in PYINT9 345

VXPVMD in PYINT9 345

WIDS in PYINT4 342

XERRUP in HEPRUP 303

XMAXUP in HEPRUP 303

XPANH in PYINT8 345

XPANL in PYINT8 345

XPBEH in PYINT8 345

XPDIR in PYINT8 345

XPVMD in PYINT8 344

XSEC in PYINT5 343

XSECUP in HEPRUP 302

XSFX in PYINT3 341

XWGTUP in HEPEUP 304

ZMIX in PYSSMT 276

ZMIXI in PYSSMT 276
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[Ben88] M. Bengtsson and T. Sjöstrand, Parton showers in leptoproduction events, Z. Physik

C 37 (1988) 465.

[Ber81] E.L. Berger and D.L. Jones, Inelastic photoproduction of Jψ and upsilon by gluons,

Phys. Rev. D 23 (1981) 1521.

[Ber82] F.A. Berends, R. Kleiss and S. Jadach, Radiative corrections to muon pair and quark

pair production in electron-positron collisions in the Z0 region, Nucl. Phys. B 202

(1982) 63; Monte Carlo simulation of radiative corrections to the processes

e+e− → µ+µ− and e+e− → Q̄Q in the Z0 region, Comput. Phys. Commun. 29

(1983) 185.

[Ber84] E.L. Berger, E. Braaten and R.D. Field, Large pT production of single and double

photons in proton proton and pion-proton collisions, Nucl. Phys. B 239 (1984) 52.

– 561 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C37%2C148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C37%2C148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C79%2C291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC68%2C518
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C41%2C1585
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C100%2C202
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD42%2C815
http://xxx.lanl.gov/abs/hep-ph/0101232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C31%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C31%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C34%2C251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2762
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C46%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB185%2C435
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB289%2C810
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB289%2C36
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC37%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC37%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C1521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB202%2C63
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB202%2C63
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C29%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C29%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB239%2C52


J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

[Ber85] F.A. Berends and R. Kleiss, Initial state radiation at LEP energies and the

corrections to Higgs boson production, Nucl. Phys. B 260 (1985) 32.

[Ber85a] L. Bergström and G. Hulth, Induced Higgs couplings to neutral bosons in e+e−

collisions, Nucl. Phys. B 259 (1985) 137.

[Ber89] F.A. Berends et al., in Z physics at LEP 1, G. Altarelli, R. Kleiss and C. Verzegnassi

eds., CERN 89-08 (Geneva, 1989), Vol. 1, p. 89.
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M. Beneke, M. Krämer and M. Vänttinen, Inelastic photoproduction of polarised Jψ,

Phys. Rev. D 57 (1998) 4258 [hep-ph/9709376];

B.A. Kniehl and J. Lee, Polarized Jψ from χ/cj and ψ′ decays at the Tevatron, Phys.

Rev. D 62 (2000) 114027 [hep-ph/0007292].

[Bon73] G. Bonneau, M. Gourdin and F. Martin, Inelastic lepton anti-lepton scattering and

the two photon exchange approximation, Nucl. Phys. B 54 (1973) 573.

[Boo01] E. Boos et al., Generic user process interface for event generators, in proceedings of

the Workshop on physics at TeV colliders, Les Houches, France, 21 May – 1 June

2001 [hep-ph/0109068].

[Bor93] F.M. Borzumati and G.A. Schuler, Real and virtual photon contributions to inelastic

ep scattering, Z. Physik C 58 (1993) 139.

[Bor99] F. Borzumati, J.-L. Kneur and N. Polonsky, Higgs-strahlung and R-parity violating

slepton-strahlung at hadron colliders, Phys. Rev. D 60 (1999) 115011

[hep-ph/9905443];

J. Alwall and J. Rathsman, Improved description of charged Higgs boson production

at hadron colliders, JHEP 12 (2004) 050 [hep-ph/0409094];

see also http://www.isv.uu.se/thep/MC/matchig/.

[Bow81] M.G. Bowler, e+e− production of heavy quarks in the string model, Z. Physik C 11

(1981) 169.

– 562 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB260%2C32
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB259%2C137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C134%2C365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC43%2C331
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB370%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB370%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB273%2C703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB503%2C341
http://xxx.lanl.gov/abs/hep-ph/0101316
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD1%2C1416
http://xxx.lanl.gov/abs/hep-ex/0005012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C1125
http://xxx.lanl.gov/abs/hep-ph/9407339
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C4258
http://xxx.lanl.gov/abs/hep-ph/9709376
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C114027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C114027
http://xxx.lanl.gov/abs/hep-ph/0007292
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB54%2C573
http://xxx.lanl.gov/abs/hep-ph/0109068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC58%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C115011
http://xxx.lanl.gov/abs/hep-ph/9905443
http://jhep.sissa.it/stdsearch?paper=12%282004%29050
http://xxx.lanl.gov/abs/hep-ph/0409094
http://www.isv.uu.se/thep/MC/matchig/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC11%2C169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC11%2C169


J
H
E
P
0
5
(
2
0
0
6
)
0
2
6

[Bra64] S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The principal axis of jets. An

attempt to analyze high-energy collisions as two-body processes, Phys. Lett. A 12

(1964) 57;

E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587.

[Bra79] S. Brandt and H.D. Dahmen, Axes and scalar measures of two-jet and three-jet

events, Z. Physik C 1 (1979) 61.

[Bru87] R. Brun and D. Lienart, HBOOK user guide, CERN program library long write-up

Y250 (1987);

R. Brun and N. Cremel Somon, HPLOT user guide, CERN program library long

write-up Y251 (1988).

[Bru89] R. Brun et al., GEANT 3, CERN report DD/EE/84-1 (1989);

Geant4 collaboration, S. Agostinelli et al., Nucl. Instrum. Meth. A506 (2003) 250.

[Bru96] P. Bruni, A. Edin and G. Ingelman, in preparation (draft ISSN 0418-9833).

[Bud75] V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The two photon particle

production mechanism. Physical problems. Applications. Equivalent photon

approximation, Phys. Rept. 15 (1974) 181.

[But05] C.M. Buttar et al., in HERA and the LHC workshop proceedings, CERN-2005-014

(Geneva, 2005), A. De Roeck and H. Jung eds., p. 192 [hep-ph/0601012].

[Cah84] R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B

136 (1984) 196;

R.N. Cahn, Production of heavy Higgs bosons: comparisons of exact and approximate

results, Nucl. Phys. B 255 (1985) 341;

G. Altarelli, B. Mele and F. Pitolli, Heavy Higgs production at future colliders, Nucl.

Phys. B 287 (1987) 205.

[Can97] B. Cano-Coloma and M.A. Sanchis-Lozano, Charmonia production in hadron colliders

and the extraction of color octet matrix elements, Nucl. Phys. B 508 (1997) 753

[hep-ph/9706270];

A. Edin, G. Ingelman and J. Rathsman, Quarkonium production at the Tevatron

through soft color interactions, Phys. Rev. D 56 (1997) 7317 [hep-ph/9705311].

[Car95] M. Carena, J.-R. Espinosa, M. Quiros and C.E.M. Wagner, Analytical expressions for

radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355

(1995) 209 [hep-ph/9504316];

M. Carena, M. Quiros and C.E.M. Wagner, Effective potential methods and the Higgs

mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343].

[Car96] M. Carena et al., in Physics at LEP2, G. Altarelli, T. Sjöstrand and F. Zwirner eds.,
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High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun.

135 (2001) 238 [hep-ph/0010017].
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